材料成形技术
材料成型方法

材料成型方法绪论“材料成型方法”是材料成型及控制工程专业学生的一门重要的技术基础课程,主要研究机器零件的常用材料和材料成形方法,即从选择材料到毛坯或零件成形的综合性课程。
通过本课程的学习,可获得常用工程材料及材料成形工艺的知识,培养学生工艺分析的能力,了解现代材料成形的先进工艺、技术和发展趋势,为后续课程学习和工作实践奠定必要的基础。
材料是科学与工业技术发展的基础。
先进的材料已成为当代文明的主要支柱之一。
人类文明的发展史,是一部学习利用材料、制造材料、创新材料的历史。
如果查看一下诺贝尔物理、化学奖的获得者,不难发现20世纪的物理学家和化学家们曾对材料科学做过一系列的贡献。
Laue(1914)发现X光晶体衍射,Guillaume(1920)发现合金中的反常性质,Bridgeman (1946)发现高压对材料的作用,Schockley、Bardeen、Brattain(1956)三人发现了半导体晶体管,Landau(1962)的物质凝聚态理论,Townes(1964)发现导致固体激光的出现,Neel(1970)发现材料的反铁磁现象,Anderson、Mott、van Vleck(1977)研究了非晶态中的电子性状,Wilson(1982)对相变的研究成功,Bednorz、Müller(1987)发现了30°K 的超导氧化物,Smaller、Kroto(1996)发现C-60,Kilby(2000)发明第一块芯片,上述物理领域的诺贝尔获奖者的不少工作是直接针对材料的。
至于化学家们,可以举出Giauque (1949)研究低温下的物性,Staudinger(1953)研究高分子聚合物,Pauling(1954)研究化学键,Natta、Ziegler(1963)合成高分子塑料,Barton、Hassel(1969)研究有机化合物的三维构象,Heegler、Mcdermild、白川英树(2000)三人发现导电高分子。
材料成形原理

名词解释1、凝固:是物质由液相转变为固相的过程,是液态成形技术的核心问题,也是材料研究和新材料开发领域共同关注的问题。
2、均质形核:形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也称“自发形核” 。
非均质形核:依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”或“非自发形核”。
3、粗糙界面:界面固相一侧的点阵位置只有约50%被固相原子所占据,形成坑坑洼洼、凹凸不平的界面结构。
大多数金属界面属于这种结构。
光滑界面:界面固相一侧的点阵位置几乎全部为固相原子所占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。
非金属及化合物大多属于这种。
4、外生生长:晶体自型壁生核,然后由外向内单向延伸的生长方式。
内生生长:等轴枝晶在熔体内部自由生长的方式5、沉淀脱氧:是指溶解于液态金属中的脱氧剂直接和熔池中的[FeO]起作用,使其转化为不溶于液态金属的氧化物,并脱溶沉淀转入熔渣中的一种脱氧方式扩散脱氧:在熔池尾部,随着温度的下降,液态金属中过饱和的氧化铁会向熔渣中扩散6、裂纹:在应力与致脆因素的共同作用下,使材料的原子结合遭到破坏,在形成新界面时产生的缝隙裂纹热裂:是铸件处于高温状态时形成的裂纹类缺陷。
凝固裂纹(结晶裂纹):金属凝固结晶末期,在固相线附近发生的晶间开裂现象冷裂纹:是指金属经焊接或铸造成形后冷却到较低温度时产生的裂纹7、塑性:材料受力破坏前可承受最大塑性变形的能力。
塑性指标:1、拉伸试验(断后伸长率和断面收缩率越大说明塑性越好)2、压缩试验3、扭转试验。
8、主平面:切应力为零的平面;主应力:主平面上的正应力:主方向:主平面的法线方向,亦即主应力的方向;主切应力平面:使切应力达到极大值的平面称为主切应力平面;主切应力:主切应力平面上所作用的切应力称为主切应力9、屈服准则(也称塑性条件或塑性方程):质点进入塑性状态时,各应力分量之间满足的关系屈雷斯加(T resca)屈服准则(又称最大剪应力准则):材料(质点)中的最大剪应力达到某一临界值时,材料发生屈服,该临界值取决于材料在变形条件下的性质,而与应力状态无关密塞斯(mises)屈服准则:当受力物体内质点应力偏张量的第2不变量I2 达到某一临界值时,材料发生屈服,该临界值取决于材料在变形条件下的性质,而与应力状态无关。
材料成型基础

1、金属液态成形技术:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成形方法称为液态成形。
简称铸造。
2、充型能力:液态合金充满铸型型腔,获得形状完整,轮廓清晰铸件的能力。
衡量充型能力可用所能形成的铸件最小壁厚。
充型能力的好与差,首先取决于铸造合金的流动性;同时又受到外界条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。
3、流动性:液态金属本身的流动能力。
衡量流动性一般采用螺旋试样长度。
金属的种类、成分、结晶特征及其它物理性能,决定了流动性4、收缩:金属液态、凝固及固态冷却过程中发生体积减少的现象。
5、铸件在冷却和凝固过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的地方出现孔洞。
容积大而比较集中的孔洞称为缩孔;细小而分散的孔洞称为缩松。
6、缩孔形成条件:金属在恒温或较窄的温度范围内结晶,铸件由表及里逐层凝固。
缩松形成条件:金属结晶温度范围较宽,呈体积凝固方式(糊状凝固)。
7、铸件在凝固和随后的冷却过程中,固态收缩受到阻碍而引起的内应力,称为铸造应力。
热应力、相变应力、机械阻碍应力8、偏析:铸件(尤其是厚壁铸件)凝固后截面上不同部位,以至晶粒内部,产生化学成分不均匀的现象。
偏析产生的原因是由于各种铸造合金在结晶过程中发生了溶质再分配的结果。
9、熔炼:固态炉料按比例装入熔炉加热熔化,通过一系列冶金反应,转化成具有一定化学成分和温度符合铸造成形要求的液态金属。
10、金属熔化后,液态金属通过浇注系统充填铸型型腔的过程称为浇注过程。
11、浇注系统:铸型中液态金属流入铸型型腔的通道。
12、砂型铸造:以粘土砂为主要造型材料13、特种铸造:通过改变铸型材料、浇注方法、充型形式、凝固条件等形成的铸造技术14、金属固态塑性成形:在外力作用下,使金属材料产生预期的塑性变形,以获得所需的形状、尺寸和力学性能的毛坯或零件的加工方法。
15、金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得优质毛坯或零件的难易程度。
工程材料与成形技术基础

工程材料与成形技术基础工程材料是指用于工程结构和设备制造的材料,包括金属材料、非金属材料和复合材料等。
而成形技术则是指将原材料加工成所需形状和尺寸的工艺技术。
工程材料与成形技术是工程制造的基础,对于提高产品质量、降低成本、提高生产效率具有重要意义。
首先,工程材料的选择对产品的性能和质量有着至关重要的影响。
不同的工程材料具有不同的物理、化学和力学性能,因此在工程设计中需要根据产品的使用环境和要求来选择合适的材料。
例如,在高温环境下需要使用耐热材料,而在腐蚀性环境中需要使用耐腐蚀材料。
因此,工程材料的选择需要综合考虑材料的性能、成本和加工工艺等因素。
其次,成形技术对产品的成型质量和生产效率有着直接影响。
成形技术包括铸造、锻造、冲压、焊接等多种工艺,每种工艺都有其适用的材料和产品类型。
在实际生产中,需要根据产品的形状、尺寸和要求来选择合适的成形技术,并结合材料的性能和加工工艺来进行生产。
例如,在金属材料的成形过程中,需要考虑材料的塑性变形性能、热处理工艺和成形设备的选型等因素。
此外,工程材料与成形技术的发展也在不断推动着工程制造技术的进步。
随着材料科学和加工技术的不断发展,新型工程材料和先进成形技术不断涌现,为工程制造提供了更多的选择和可能。
例如,复合材料的应用和先进成形技术的发展,使得产品的轻量化、高强度化和精密化成为可能,推动了航空航天、汽车制造、船舶制造等领域的发展。
综上所述,工程材料与成形技术是工程制造的基础,对产品的质量、成本和生产效率有着重要的影响。
在工程设计和生产中,需要充分考虑材料的选择和成形技术的应用,以实现产品的性能优化和工艺优化。
同时,工程材料与成形技术的不断发展也为工程制造技术的进步提供了新的动力和可能,推动着工程制造向着更高质量、更高效率和更环保的方向发展。
金属材料八大成形工艺

金属材料八大成形工艺
(6)金属型铸造(gravity die casting) 金属型铸造:指液态金属在重力作用下充填金属铸型并在型中 冷却凝固而获得铸件的一种成型方法。 应用:金属型铸造既适用于大批量生产形状复杂的铝合金、镁 合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。
金属材料八大成形工艺
金属材料八大成形工艺
(3)挤压 挤压:坯料在三向不均匀压应力作用下,从模具的孔口或 缝隙挤出使之横截面积减小长度增加,成为所需制品的加 工方法叫挤压,坯料的这种加工叫挤压成型Байду номын сангаас 应用:主要用于制造长杆、深孔、薄壁、异型断面零件。
金属材料八大成形工艺
(4)拉拔 拉拔:用外力作用于被拉金属的前端,将金属坯料从小于 坯料断面的模孔中拉出,以获得相应的形状和尺寸的制品 的一种塑性加工方法。 应用:拉拔是金属管材、棒材、型材及线材的主要加工方 法。
金属材料八大成形工艺
(10)连续铸造(continual casting) 连续铸造:是一种先进的铸造方法,其原理是将熔融的金属, 不断浇入一种叫做结晶器的特殊金属型中,凝固(结壳)了的 铸件连续不断地从结晶器的另一端拉出,它可获得任意长或特 定的长度的铸件。 应用:用连续铸造法可以浇注钢、铁、铜合金、铝合金、镁合 金等断面形状不变的长铸件,如铸锭、板坯、棒坯、管子等。
金属材料八大成形工艺
(4)低压铸造(low pressure casting) 低压铸造:是指使液体金属在较低压力(0.02~0.06MPa)作用下 充填铸型,并在压力下结晶以形成铸件的方法.。 应用:以传统产品为主(气缸头、轮毂、气缸架等)。
金属材料八大成形工艺
(5)离心铸造(centrifugal casting) 离心铸造:是将金属液浇入旋转的铸型中,在离心力作用下填 充铸型而凝固成形的一种铸造方法。 应用:离心铸造最早用于生产铸管,国内外在冶金、矿山、交 通、排灌机械、航空、国防、汽车等行业中均采用离心铸造工 艺,来生产钢、铁及非铁碳合金铸件。其中尤以离心铸铁管、 内燃机缸套和轴套等铸件的生产最为普遍。
材料成形三要素材料成形发展

材料成形三要素材料成形发展
材料成形是指通过给予材料外力或能量,改变材料的形状、组织结构和性能的工艺方法。
材料成形的三个要素是:材料、成形工艺和成形设备。
1.材料:材料是进行成形的基础,能够发挥一定的塑性和变形能力。
成形材料通常包括金属、塑料、陶瓷等。
不同材料具有不同的成形性能和特点,所以在进行成形过程中需要选择合适的材料。
2.成形工艺:成形工艺是指通过给予材料外力或能量,使其发生形变并获得所需形状的工艺方法。
常见的成形工艺包括压力成形、挤压成形、拉伸成形、旋转成形等。
不同的成形工艺适用于不同的材料和形状要求。
3.成形设备:成形设备是具备一定性能和功能的设备,用于实施成形工艺。
常见的成形设备包括压力机、挤压机、拉伸机等。
不同的成形设备具有不同的工作原理和操作方法,可以根据成形需求选择合适的设备。
随着科技的发展,材料成形技术也得到了不断的改进和创新。
新材料的开发和成形工艺的改进,使得材料成形在航空航天、汽车制造、电子设备等领域得到了广泛应用。
例如,金属成形工艺的发展促进了轻量化汽车的生产,塑料成形技术的进步使得电子产品更加小巧轻便。
材料成形的发展不仅提高了产品的质量和性能,也极大地推动了工业的发展。
工程材料与成形技术基础

工程材料与成形技术基础
工程材料与成形技术基础
工程材料是指用于各种工程应用的材料,包括金属、塑料、陶瓷、复合材料等。
工程材料的特性决定着其适合的应用范围以及需要采取
何种成形技术来加工。
在选择和应用材料时,需考虑各项性能指标,
包括强度、硬度、韧性、耐腐蚀性、耐热性、导热性、导电性等。
工程材料的成形技术可分为两大类:热成形与冷成形。
热成形包
括锻造、轧制、挤压等,该类成形技术以高温、高压作用为主,可改
变材料的晶粒状态、结构和形状,从而提高材料的机械性能。
冷成形
包括拉伸、冲压、剪切、折弯等,该类成形技术以低温、低压作用为主,主要用于薄板、薄壁、小件等细密零部件的制造。
在应用材料时,需要根据其特性选择合适的成形技术进行加工,
以达到理想的效果。
例如,在生产中需要使用成本低廉、加工强度高
的材料,可以选择钢铁、铜、铝等金属材料,并采用锻造、挤压等热
成形技术进行加工。
而在制造精密零部件时,需要使用耐磨耗、耐腐
蚀性能好的材料,可以选择高强度塑料或钛合金等,并采用拉伸、冲
压等冷成形技术进行加工。
总之,工程材料与成形技术基础是工程领域中极为重要的一个方面。
只有深入了解各种材料的特性和成形技术的特点,才能在实践中
选择和应用合适的材料和成形技术,从而提高产品质量、降低生产成本。
材料成形技术基础

电子制造
材料成形技术在电子设备的封装和连接中起着重要 作用。
航空航天
艺术雕塑
材料成形技术用于制造航空航天部件和航天器结构。 材料成形技术被艺术家用于创作各种雕塑作品。
材料成形技术的挑战与发展趋势
1 高性能材料
随着科技的进步,材料成形技术需要适应高性能材料的特性和要求。
材料成形技术基础
材料成形技术是制造业中最常用的加工技术之一,它涉及到各种成形工艺、 成形材料以及成形工艺流程。
成形技术定义
成形技术是通过施加力或应用热量将原始材料转化为所需形状和尺寸的加工方法。
主要成形技术分类
1 压力成形技术
将材料置于模具中,并施加压力使其变形, 如冲压、铸造等。
2 热成形技术
2 节能环保
开发符合节能环保要求的成形工艺和材料,减少资源消耗和环境污染。
3 数字化制造
利用数字化技术实现材料成形过程的自动化和智能化。
3
成形操作
按照成形工艺要求进行操作,施加力或应用热量使材料变形。
常见的成形材料
金属
如铝、钢等,用于制造汽车零部件、电子设备等。
塑料
如聚乙烯、聚丙烯等,广泛用于塑料制品的生产。
陶瓷
如瓷器、陶器等,用于制作装饰品、器皿等。
复合材料
如碳纤维增强复合材料,用于制造航空航天部件。
材料成形技术的应用领域
汽车制造
通过加热材料使其变软或熔化,然后形成所 需形状,如热压、热挤压等。
3 凝固成形技术
通过材料凝固过程中的相变来实现成形,如 注射成型、凝胶成型等。
4 仿生如3D打印、 模具复制等。
成形工艺流程
1