数据挖掘之关联规则.ppt
关联规则挖掘

例
▪ 设交易集D,经过对D的分析,得到表格:
买牛奶 不买牛奶
合计
买咖啡 20 70 90
不买咖啡
合计
5
25
5
75
10
100
所有可能的关联规则
Rules
S
C
1
买牛奶→买咖啡
0.2
0.8
2
买咖啡→买牛奶
0.2
0.22
3
买牛奶→不买咖啡
0.05
0.2
4
不买咖啡→买牛奶
0.05
0.5
▪ 定义2:规则的支持度。
Customer buys beer
▪ 支持度描述了A 和B 这两个物品集在所有的 事务中同时出现的概率有多大。
▪ 规则AB在数据库D中具有支持度S,即概
率P(AB),即:S(A B) P(AB) | AB |
▪
|D|
▪ 其中|D|表示事务数据库D的个数,表示A、 B两个项集同时发生的事务个数。
2关联规则挖掘
▪ 在关联规则的三个属性中,支持度和可信 度能够比较直接形容关联规则的性质
▪ 事实上,人们一般只对满足一定的支持度 和可信度的关联规则感兴趣。
▪ 因此,为了发现有意义的关联规则,需要 由用户给定两个阈值:
最小支持度(min_sup)和最小可信度 (min_conf)
频繁项集
▪ 如果项集满足最小支持度,则它称之为 频繁项集(Frequent Itemset)。
▪ 更确切的说,关联规则通过量化的数字描述物 品甲的出现对物品乙的出现有多大的影响
现实中,这样的例子很多。
例如超级市场利用前端收款机收集存储了大量的售货数 据,这些数据是一条条的购买事务记录,每条记录存储 了
第1章 《数据挖掘》PPT绪论

Knowledge
Information
Data
3 of 43
1.1数据挖掘基本概念
第一章 绪论
1.1.1 数据挖掘的概念
数据挖掘、数据库、人工智能
• 数据挖掘是从数据中发掘知识的过程,在这个过程中人工智能和数据库技术可以作 为挖掘工具,数据可以被看作是土壤,云平台可以看作是承载数据和挖掘算法的基 础设施 。在挖掘数据的过程中需要用到一些挖掘工具和方法,如机器学习的方法。 当挖掘完毕后,数据挖掘还需要对知识进行可视化和展现。
21 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
• WEKA WEKA 是一个基于JAVA 环境下免费开源的数据挖掘工作平台,集合了大量能承担数据 挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及 在新的交互式界面上的可视化。
22 of 43
1.3数据挖掘常用工具
•R • Weka • Mahout • RapidMiner • Python • Spark MLlib
第一章 绪论
20 of 43
1.3数据挖掘常用工具
第一章 绪论
1.3.2 开源工具
•R R是用于统计分析和图形化的计算机语言及分析工具,提供了丰富的统计分析和数据挖 掘功能,其核心模块是用C、C++和Fortran编写的。
为了提高系统的决策支持能力,像ERP、SCM、HR等一些应用系统也逐渐与数据 挖掘集成起来。多种理论与方法的合理整合是大多数研究者采用的有效技术。
12 of 43
1.2 数据挖掘起源及发展历史
第一章 绪论
3 数据挖掘面临的新挑战
随着物联网、云计算和大数据时代的来临,在大数据背景下数据挖掘要面临的挑 战,主要表现在以下几个方面:
关联规则在数据挖掘中的应用

-
1
2
目录
3
CONTENTS
4
5
引言 关联规则的定义 关联规则的挖掘过程 关联规则在数据挖掘中的应用
结论
1
引言
引言
关联规则是数据挖掘中的一种重要技术,主要 用于发现数据集中变量之间的有趣关系,如购
物篮分析中经常一起购买的商品组合
关联规则可以揭示数据集中变量之间的潜在关 联,从而帮助企业更好地理解客户需求、优化
5
结论
结论
关联规则在数据挖掘中 具有广泛的应用前景, 可以帮助企业更好地理 解客户需求、优化产品 组合、提高销售策略等
然而,关联规则挖掘也 存在一些挑战,如处理 大规模数据、处理高维 数据等
未来,随着技术的不断 发展,相信关联规则挖 掘将会在更多领域发挥 重要作用
-
谢谢观看
XXXXX
XXXXXX XXXXX
3
关联规则的挖掘过 程
关联规则的挖掘过程
关联规则的挖掘过程 通常包括以下步骤
关联规则的挖掘过程
数据准备
首先需要对数据进行预处理,包括数据清洗、数据转换等, 以便为后续的关联规则挖掘提供合适的数据格式和结构
关联规则生成
基于频繁项集,可以生成关联规则。这些规则可以表示为“如 果购买商品A,则购买商品B”的形式
商品或服务
03
金融欺诈检测
在金融领域,关联规 则可以用于检测欺诈 行为。通过对客户的 交易记录进行分析, 可以发现异常的交易 组合或模式,从而及
时发现欺诈行为
04
医疗诊断
在医疗领域,关联规 则可以用于辅助诊断。 通过对患者的症状和 病史进行分析,可以 发现疾病之间的关联 关系,从而为医生提
关联规则与关联分析

Customer buys diaper
• 对所有满足最小支持度 和置信度的关联规则
– 支持度s是指事务集D中 包含 AB 的百分比
su p( p o A r B ) tP (A B )
Customer buys beer
TID 2000 1000 4000 5000
购买的item A,B,C A,C A,D B,E,F
关联规则挖掘分类 (1)
• 关联规则有多种分类:
– 根据规则中所处理的值类型
• 布尔关联规则
com pfiunta e_m r ncain aa l_sgoefm tweanrte
• 量化关联规则(规则描述的是量化的项或属性间的关联性)
a( X g ," 3 . e 3 .0 " ) . 9 in( X c ," 4 o k .4 2 .m k . " ) 8 b e( u X ," c yo s" ) m – 根据规则中涉及的数据维
• 关联规则是形如X→Y的蕴含表达式,其中 X和Y是不相交的项集。
• 关联规则的强度可以用它的支持度 (support)和置信度(confidence)度量。 支持度确定了规则可以用于给定数据集的 频繁程度,而置信度确定了Y包含X的事务 中出现的频繁程度。
规则度量:支持度和置信度
Customer buys both
• 单维关联规则 • (仅涉及buys这个维)
bu (X y ,"csom ") p bu u (X ty ,e "ss rof"t)ware
• 多维关联规则
关联规则挖掘分类 (2)
– 根据规则集所涉及的抽象层
• 单层关联规则 • 多层关联规则 (在不同的抽象层发现关联规则)
数据挖掘——关联分析

结果:
尿丌湿销量增长18% 啤酒销量30%
目录
1 2 关联分析是什么 原理与基础概念 关联分析的应用 案例分析
3
4
关联分析是什 么
关联分析是什么
兲联分析是数据挖掘领域常用的一类算法,主要用于収现 隐藏在大型数据集中有意义的联系,所収现的模式通常用 关联规则或频繁项集的形式表示。能够帮助企业做很多很 有用的产品组合推荐、优惠促销组合,同时也能指导货架
原理与基础概念
TID 1 Items Bread,Milk
2
3 4 5
Bread,Diaper,Beer,Eggs
Milk,Diaper,Beer,Coke Bread,Milk.Diaper,Beer Bread,Milk,Diaper,Coke
原理与基础概念
就啤酒、尿丌湿案例而言,首先必须要设定最小支持度不最小可信
度两个阈值,在此假设最小支持度min-support=5%且最小可信度 min-confidence=65%。用公式可以描述为:
Support{Diaper,Beer}≥5%and Confidence{Diaper,Beer}≥65%
其中,Support{Diaper,Beer}≥5%于此应用范例中的意义为:在 所有的交易记录资料中,至少有5%的交易呈现尿布不啤酒这两项商品 被同时购买的交易行为。Confidence{Diaper,Beer}≥65%于此应用范
摆放是否合理,还能够找到更多的潜在客户,真正的把数
据挖掘落到实处。
关联分析是什么
简单的说,就是収现大量数据中项集乊间有趣的兲联。在交 易数据、兲系数据或其他信息载体中,查找存在于项目集合 或对象集合乊间的频繁模式、兲联、相兲性或因果结构。
数据挖掘入门ppt课件

15.05.2021
数据库
数据仓库
精选编辑ppt
知识库
14
三、数据挖掘方法
3.1 可以分别按挖掘任务、挖掘对象和挖掘方法来分 类。
1. 按挖掘任务分类:包括分类或预测知识模型发 现,数据总结,数据聚类,关联规则发现,时 序模式发现,依赖关系或依赖模型发现,异常 和趋势发现等。
2. 按挖掘对象分类:包括关系数据库,面向对象 数据库,空间数据库,时态数据库,文本数据 库,多媒体数据库,异构数据库,数据仓库, 演绎数据库和Web数据库等。
8. 模式解释:对在数据挖掘步骤中发现的模式 (知识)进行解释。通过机器评估剔除冗余或 无关模式,若模式不满足,再返回到前面某些 处理步骤中反复提取。
9. 知识评价:将发现的知识以用户能了解的方式 呈现给用户。其中也包括对知识一致性的检查, 以确信本次发现的知识不会与以前发现的知识 相抵触。
15.05.2021
2.1 KDD定义 人们给KDD下过很多定义,内涵也各不
相同,目前公认的定义是由Fayyad等人提出 的。
所谓基于数据库的知识发现(KDD)是指 从大量数据中提取有效的、新颖的、潜在 有用的、最终可被理解的模式的非平凡过 程。
15.05.2021
精选编辑ppt
5
2.2 KDD过程
KDD是一个人机交互处理过程。该过程 需要经历多个步骤,并且很多决策需要由 用户提供。从宏观上看,KDD过程主要经 由三个部分组成,即数据整理、数据挖掘 和结果的解释评估。
15.05.2021
精选编辑ppt
6
知识发现(KDD)的过程
解释/评估
数据挖掘
预处理 及变换
变换后的数据
数据清理筛选 目标数据
关联规则
内部资料 泰迪科技()
4
关联规则——Apriori算法介绍
以超市销售数据为例,提取关联规则的最大困难在于当存在
很多商品时,可能的商品的组合(规则的前项与后项)的数
目会达到一种令人望而却步的程度。因而各种关联规则分析 的算法从不同方面入手减小可能的搜索空间的大小以及减小 扫描数据的次数。 Apriori算法是最经典的挖掘频繁项集的算法,第一次实现了 在大数据集上可行的关联规则提取,其核心思想是通过连接 产生候选项与其支持度然后通过剪枝生成频繁项集。
内部资料 泰迪科技()
5
关联规则——Apriori算法介绍
1、关联规则和频繁项集
,
(1)关联规则的一般形式 项集A、B同时发生的概率称为关联规则的支持度:
Support ( A B) P( A B)
项集A发生,则项集B也同时发生的概率为关联规则的置信度:
Confidence( A B) P( B|A)
订单号 1 2 3 4 5 6 7 8 9 10 菜品id 18491, 8693,8705 8842,7794 8842,8693 18491,8842,8693,7794 18491,8842 8842,8693 18491,8842 18491,8842,8693,8705 18491,8842,8693 18491,8693 菜品id a,c,e b,d b,c a,b,c,d a,b b,c a,b a,b,c,e a,b,c a,c,e
项集将不会存在于 Ck ,该过程就是剪枝。
内部资料 泰迪科技()
13
关联规则——Apriori算法实现
Apriori算法的实现的两个过程 过程一:找出所有的频繁项集。 过程二:由频繁项集产生强关联规则 由过程一可知未超过预定的最小支持度阈值的项集已被剔除, 如果剩下这些规则又满足了预定的最小置信度阈值,那么就挖 掘出了强关联规则。
挖掘多关系关联规则
什么是数据挖掘?
挖掘多关系关联规则
广义的数据挖掘的定义: 数据挖掘是从大量数据中挖 掘有趣模式和知识的过程。 数据源包括数据库、数据 仓库、WEB、其他信息存储 库或者动态地流入系统的数据。
挖掘多关系关联规则
关联规则
关联规则是数据挖掘中的一项重要和基础的技术, 已进行了多方面的深入研究,有着广泛的应用。
挖掘多关系关联规则
一个查询,如果其支持度符合用户定义的最小支持度则称为一个频繁查 询.对于两个查询Q1=?−l1,…,lm和Q2=?−l1,…,lm,lm+1,…,ln,如果对于Q1的 每个替换,用常数替换后的每个原子均出现在Q2的某个替换对应的替换后的 原子中,则称Q1θ-包含Q2,即Q1是比Q2更一般的查询,Q2是比Q1更具体的查 询. 例如,若Q1=?−Kids(KID), Likes(KID,X),Has(KID,Y),而 Q2=?−Kids(KID),Likes(KID,X),Has(KID,Y),Prefer(KID,X,Y),则Q1θ-包含Q2, 也称Q2是Q1的特殊化(specialization).
挖掘多关系关联规则
2.3 信息丢失问题
将多关系转换为单关系的另外一种方法是创建一些新的属性,将来自其他表 的信息通过汇总和聚集集成在一个关系中,从而将多关系数据库转化为单一关系, 在ILP领域,这种方法称为命题化(prepositionalization).例如,对于图1中的3个表,可 以通过该方法生成如表2所示的单个表Student1.
挖掘多关系关联规则
定义2(连接表): 将一个数据库中的所有表进行连接构成一个泛 关系表,称为连接表(join table). 表1所示的泛关系表就是图1中的3个表的连接表.
【数据挖掘技术】关联规则(Apriori算法)
【数据挖掘技术】关联规则(Apriori算法)⼀、关联规则中的频繁模式关联规则(Association Rule)是在数据库和数据挖掘领域中被发明并被⼴泛研究的⼀种重要模型,关联规则数据挖掘的主要⽬的是找出:【频繁模式】:Frequent Pattern,即多次重复出现的模式和并发关系(Cooccurrence Relationships),即同时出现的关系,频繁和并发关系也称为关联(Association).⼆、应⽤关联规则的经典案例:沃尔玛超市中“啤酒和尿不湿”的经典营销案例购物篮分析(Basket Analysis):通过分析顾客购物篮中商品之间的关联,可以挖掘顾客的购物习惯,从⽽帮助零售商可以更好地制定有针对性的营销策略。
以下列举⼀个最简单也最经典的关联规则的例⼦:婴⼉尿不湿—>啤酒[⽀持度=10%,置信度=70%]这个规则表明,在所有顾客中,有10%的顾客同时购买了婴⼉尿不湿和啤酒,⽽在所有购买了婴⼉尿不湿的顾客中,占70%的⼈同时还购买了啤酒。
发现这个关联规则后,超市零售商决定把婴⼉尿不湿和啤酒摆在⼀起进⾏销售,结果明显提⾼了销售额,这就是发⽣在沃尔玛超市中“啤酒和尿不湿”的经典营销案例。
三、⽀持度(Support)和置信度(Confidence)事实上,⽀持度和置信度是衡量关联规则强度的两个重要指标,他们分别反映着所发现规则有⽤性和确定性。
【⽀持度】规则X->Y的⽀持度:事物全集中包含X U Y的事物百分⽐。
Support(A B)= P(A B)⽀持度主要衡量规则的有⽤性,如果⽀持度太⼩,则说明相应规则只是偶发事件,在商业实践中,偶发事件很可能没有商业价值。
【置信度】规则X->Y的置信度:既包括X⼜包括Y的事物占所有包含了X的事物数量的百分⽐。
Confidence(A B)= P(B|A)置信度主要衡量规则的确定性(可预测性),如果置信度太低,那么从X就很难可靠的推断出Y来,置信度太低的规则在实践应⽤中也没有太⼤⽤途。
数据挖掘常用的方法(分类回归聚类关联规则)
数据挖掘常用的方法(分类回归聚类关联规则)数据挖掘是一种通过分析大量数据来发现模式、关联和趋势的过程。
常用的数据挖掘方法包括分类、回归、聚类和关联规则,下面将对它们进行详细介绍。
回归(Regression)是一种预测方法,它用于建立输入(自变量)和输出(因变量)之间的关系模型。
回归分析通过分析已知数据集的特征和输出值,确定数据的模式,并使用这些模式进行未知数据的预测。
回归分析中常用的算法包括线性回归、多项式回归和逻辑回归等。
回归方法广泛应用于价格预测、销售预测、股票市场分析等领域。
聚类(Clustering)是将数据按照相似性划分为不同的群组的方法。
聚类的目标是找到数据中相似的样本,并将它们归入同一类别。
聚类算法根据不同的相似性度量标准,如欧氏距离、曼哈顿距离和余弦相似度等,来计算样本之间的距离。
常见的聚类算法包括K-means、层次聚类和DBSCAN等。
聚类方法在市场分析、社交网络分析和图像处理等领域有着广泛应用。
关联规则(Association Rules)是一种描述数据之间关系的方法。
关联规则分析用于发现数据集中不同项之间的关联关系。
关联规则通过计算不同项之间的支持度和置信度来确定关联程度。
支持度指一个项集在数据集中出现的频率,而置信度指一些项集出现时,另一个项集也出现的概率。
常见的关联规则算法包括Apriori和FP-Growth等。
关联规则分析在市场篮子分析、交叉销售和网站推荐等领域中非常有用。
除了上述的四种常用的数据挖掘方法外,还有一些其他重要的方法,如异常检测、特征工程和文本挖掘等。
数据挖掘方法的选择取决于数据的特点和分析的目标。
在实际应用中,可以根据实际问题来选择合适的方法,并通过算法优化和模型评估来提高模型的准确性和可解释性。
总之,分类、回归、聚类和关联规则是数据挖掘中常用的方法。
它们能够从大量的数据中挖掘出有用的信息和模式,帮助人们做出准确的预测和决策。
随着数据量的不断增加和数据挖掘技术的不断发展,这些方法将在未来的数据分析中发挥更加重要的作用。