电容阻值降低、漏电失效分析报告

合集下载

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析2014-08-02摘要:本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。

1.案例背景MLCC电容在使用过程中出现阻值降低、漏电失效现象。

2.分析方法简述透视检查NG及OK样品均未见裂纹、孔洞等明显异常。

图1.样品X射线透视典型照片从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因。

EDS能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%。

从电容外观来看,所有样品表面均未见明显异常,如裂纹等。

图2.电容典型外观照片利用数字万用表分别测试NG电容和OK电容的电阻,并将部分失效样品机械分离、清洗后测试其电阻,对电容进行失效验证。

电学性能测试表明,不存在PCB上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故电极层孔洞不是电容漏电的原因。

对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。

电子产品失效分析报告

电子产品失效分析报告

电子产品失效分析报告1. 引言电子产品在人们的生活中扮演着重要的角色,但是随着使用时间的增长,电子产品也会出现各种问题和故障。

本报告旨在分析电子产品失效的原因,并提出相应的解决方案。

2. 失效原因分析2.1. 电子元件老化电子产品中的电子元件随着时间的推移会逐渐老化,导致其性能下降甚至失效。

常见的老化现象包括电容器漏电、电阻器阻值变大等。

为了减少电子元件老化对电子产品的影响,制造商应选择高质量的元件,并进行严格的质量控制。

2.2. 错误使用一些用户可能没有正确地使用电子产品,例如过度放置在高温环境中、频繁插拔接口等。

这些错误使用行为会导致电子产品的损坏和失效。

为了避免错误使用带来的问题,用户在使用电子产品时应仔细阅读产品说明书,并按照说明操作。

2.3. 劣质零部件一些电子产品制造商为了降低成本,会采用劣质零部件进行生产。

这些劣质零部件往往容易出现故障和失效,从而影响整个电子产品的性能。

为了解决这个问题,制造商应提高零部件的质量标准,并加强供应链管理。

2.4. 设计缺陷一些电子产品在设计阶段存在一些缺陷,导致其易受损或者失效。

设计缺陷可能包括电路板布线不合理、散热系统设计不足等。

制造商应加强产品设计的质量控制,提前发现和修复设计缺陷。

3. 解决方案3.1. 提高制造工艺制造商应加强制造工艺的质量控制,确保每个环节都符合标准。

采用高质量的焊接、组装和测试工艺,以减少制造过程中的问题。

3.2. 提供准确的产品说明书制造商应提供准确、清晰的产品说明书,包括产品正确的使用方法、禁忌事项等。

用户在使用产品前应仔细阅读说明书,并按照说明进行操作,以避免错误使用导致的问题。

3.3. 检测和筛选劣质零部件制造商应加强对供应链的管理,检测和筛选劣质零部件。

与可靠的供应商建立长期合作关系,并进行质量审核,以提高零部件的可靠性。

3.4. 加强设计阶段的质量控制制造商应在设计阶段加强质量控制,确保产品设计合理、稳定。

通过模拟和实验验证设计的可行性和稳定性,减少设计缺陷对产品性能的影响。

电容器常见漏电失效模式分析及应用建议

电容器常见漏电失效模式分析及应用建议

第36卷第9期电子元件与材料V ol.36 No.9 2017年9月ELECTRONIC COMPONENTS AND MATERIALS Sep. 2017电容器常见漏电失效模式分析及应用建议崔德胜,陈朝杰,彭磊,熊盛阳,高憬楠(中国运载火箭技术研究院元器件可靠性中心,北京 100076)摘要: 分析了近年来发生的电容器漏电失效典型案例,研究了瓷介电容器和钽电解电容器的漏电失效机理,分析表明金属迁移和介质层缺陷是导致电容器产生漏电流的主要原因。

以电容器漏电流产生的理论机理为基础,从选择、检验和使用可靠性角度,提出了一系列电容器选型建议、检验准则和使用要求,以确保电容器在航天等高可靠领域的应用。

关键词: 瓷介电容器;钽电解电容器;漏电;可靠性;选用;航天doi: 10.14106/ki.1001-2028.2017.09.009中图分类号: TM53 文献标识码:A 文章编号:1001-2028(2017)09-0038-05Research for common leakage failure modes of capacitors andsuggestions for applicationCUI Desheng, CHEN Zhaojie, PENG Lei, XIONG Shengyang, GAO Jingnan(Electronic Components Technology Center, CALT, Beijing 100076, China)Abstract: A typical case of capacitor leakage fault in recent years was analyzed. The failure mechanism of ceramic capacitors and tantalum electrolytic capacitors were studied. The analysis show that the main causes of leakage current are metal migration and the defects in medium layer. Then a series of selection recommendations, inspection standards and application requirements are proposed from the view of selection, inspection and reliability, in order to improve the reliability of application for aerospace application and other high reliable fields.Key words: ceramic capacitor; tantalum electrolytic capacitors; leakage; reliability; selection; aerospace电容器是组成电子电路的主要元件之一,起耦合、滤波、储能等作用。

漏报开关失效分析报告

漏报开关失效分析报告

漏报开关失效分析报告————————————————————————————————作者: ————————————————————————————————日期:漏电保护开关失效性分析总结报告本次分析的是嘉荣公司的三相漏报开关。

共有样品20个。

经过接吸油烟机负载发现,其中良品一个,失效19个。

此次主要对对漏报开关的外观及焊工艺做了分析。

对此20个样品进行编号、整理其原故障描述、检查外观并接吸油烟机负载后,得出下表:编号原故障描述接负载通电现象外观描述1 不工作不通电完好2 插头被烧坏不通电完好3 不通电不通电完好4 不通电不通电完好5 不通电不通电完好6 不工作不通电开关盒关不上7 不通电不通电开关线有脏渍8 不点火负载能正常工作有脏渍9 全机没电不通电完好10不通电不通电接线头有损坏11 不通电不通电完好12不加热电源线坏不通电完好13 不通电不通电完好14不工作不通电完好15 不通电不通电完好不通电完好16 不通电电源线坏17 不工作不通电完好18 不加热电源线不通电完好坏19 不加热不通电接线头有损坏20不通电不通电完好发现的主要问题有以下几个方面:1. 外观方面2号样品开关插头处有被烧的现象有烧毁的图1.1 2号样品2.PCB工艺2.1线路板上有锡渣锡图2.19号样品2.2焊盘没有焊满焊盘没图2.2 9号样品2.3焊接不均匀焊接不均图2.312号样品2.4整版不干净很多赃物电路板上图2.49号样品2.5元器件焊脚过长没有处理好图2.5 14号样品2.6焊盘不垂直电路板图2.6 6号样品2.7按键生锈元器件脚过长,焊盘不垂按键生图2.7 6号样品2.8二极管的玻璃体封装被电烙铁焊了二极管的玻璃体封图2.812号样品2.9爬电距离L N小于2.5mmL N 之间的爬电距图2.96号样品2.10复位键断裂、脱扣图2.106号样品2.11PCB铜箔与PCB相靠近图2.1112号样品2.12线路板烧板复位键断PCB铜箔与PCB板有烧图2.129号样品2.13丝印不清楚、混乱丝印很混乱,图2.13 12号样品2.14元件靠PCB板边太近元器件靠PCB图2.14 14号样品3.问题总结此次漏保开关失效性分析共发现问题14类,分别为1)线路板上有锡渣2)焊盘没有焊满3)焊接不均匀4)整版不干净很多赃物5)元器件焊脚过长没有处理好6)焊盘不垂直电路板7)按键生锈8)二极管的玻璃体封装被电烙铁焊了9)爬电距离L N小于2.5mm10)复位键断裂、脱扣11)PCB铜箔与PCB相靠近12)线路板烧板13)丝印不清楚、混乱14)元件靠PCB板边太近其中9号问题(爬电距离小于2.5mm)、11号问题(PCB铜箔与PCB相靠近)、14号(元件靠PCB板边太近)属于原理设计上的问题,其余属于焊接工艺不良问题。

MLCC漏电失效分析 (2)

MLCC漏电失效分析 (2)

M L C C漏电失效分析美信检测失效分析实验室摘要:本文通过X射线透视检查、MLCC外观、MLCC内部结构分析及SEM/EDS检查,认为造成MLCC漏电失效的原因为:电容本身质量问题,MLCC内部存在镍瘤,镍瘤的存在使热应力裂纹的萌生产生了可能。

关键词:MLCC, 镍瘤,片式多层陶瓷电容器,失效分析,MLCC漏电失效分析1. 案例背景客户端在老化实验测试阶段发现MLCC出现漏电失效,其不良比率不详,该MLCC焊接工艺为回流焊接工艺。

2. 分析方法简述通过外观检查OK样品与NG样品表面未见明显异常。

NG样品OK样品通过X射线透视检查,OK样品和NG样品内部均未发现裂纹孔洞等异常。

MLCC X射线透视内部结构图将OK样品和NG样品分别切片,然后在金相显微镜下放大拍照观察MLCC内部结构,NG样品电容内部存在镍瘤及热应力裂纹,而OK样品未见异常。

MTT(美信检测)是一家从事材料及零部件品质检验、鉴定、认证及失效分析服务的第三方实验室,网址:联系电话:、。

裂纹镍瘤NG样品OK样品通过对样品剖面SEM/EDS分析,NG样品电容内部电极层不连续,存在明显镍瘤;其镍瘤周围多条向外延伸裂纹并在裂缝通道内发现明显碳化痕迹(EDS结果中C含量高达50%),此应为热应力裂纹,裂纹的存在直接导致电容性能异常;而OK样品电容内部电极层连续,陶瓷介质层致密未发现孔洞及镍瘤,电容性能良好。

镍瘤位置碳化痕迹位置NG样品电容内部局部形貌EDS能谱图(镍瘤位置)OK样品电容内部结构空白样品电容内部形貌和EDS能谱图(镍瘤位置)➢失效模式分析:多层陶瓷电容器(MLCC)本身的内在可靠性十分优良,可长时间稳定使用。

但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对可靠性产生严重的影响。

陶瓷多层电容器(MLCC)失效的原因一般分为外部因素和内在因素。

内在因素包括: 陶瓷介质内空洞、介质层分层;外部因素包括:热应力裂纹及机械应力裂纹。

电容失效模式和失效机理

电容失效模式和失效机理

电容失效模式和失效机理
电容器是一种常见的电子元件,它们在电子设备中起着储存电荷和滤波的重要作用。

然而,电容器也会出现失效,主要有以下几种模式和机理:
1. 电容漏电流增加,电容器在使用过程中,由于介质老化或者制造过程中的缺陷,会导致电容器的绝缘性能下降,从而使得电容器的漏电流增加。

这种失效模式会导致电路中的电流泄露,影响整个电路的性能。

2. 电容器内部短路,电容器内部的金属层或电介质层可能会出现短路现象,导致电容器无法正常工作。

这种失效模式会导致电路中的电压异常,甚至损坏其他元件。

3. 电容器老化,随着使用时间的增加,电容器的性能会逐渐下降,如电容值减小、损耗角正切值增大等,最终导致电容器失效。

这种失效模式是由于电容器内部材料的老化和疲劳造成的。

4. 电容器机械损坏,在运输、安装或使用过程中,电容器可能会受到机械振动或冲击,导致内部连接不良或元件损坏,从而引起
电容器失效。

总的来说,电容器的失效主要是由于材料老化、制造缺陷、外部环境等因素引起的。

为了延长电容器的使用寿命,可以采取合适的工作条件、定期检测和维护等措施,以确保电容器的可靠性和稳定性。

无功补偿电容器常见故障分析与预防

无功补偿电容器常见故障分析与预防

无功补偿电容器常见故障分析与预防
无功补偿电容器是一种常用的电力设备,用于补偿电网中的无功功率,提高电网的功
率因数。

然而,由于长期运行和恶劣的工作环境,无功补偿电容器也容易出现各种故障。

本文将就无功补偿电容器常见的故障进行分析,并探讨相应的预防措施。

1. 电容器电容值降低
无功补偿电容器在工作过程中,由于长期受到电网的电压和电流的影响,电容值会逐
渐降低。

当电容值降低到一定程度时,将影响电容器的无功补偿效果。

预防措施:定期检查无功补偿电容器的电容值是否正常,如出现问题,及时更换电容器。

2. 电容器压力逐渐升高
3. 电容器内部故障
无功补偿电容器内部电容器的连接点、绝缘材料、金属箔等部件容易出现老化、氧化、松动等问题,导致电容器内部故障。

4. 电容器充电电流过大
无功补偿电容器在充电过程中,由于电路中电阻、电感等因素的存在,会导致电容器
充电电流过大,进而引起电容器故障。

预防措施:对电容器的充电电路进行合理设计和计算,避免充电电流过大。

无功补偿电容器在工作过程中受到电网电压的影响,当电网电压波动过大时,会使得
电容器内部出现交流过电压过高现象,引起电容器损坏甚至爆炸。

预防措施:在设计无功补偿电容器时,考虑到电网电压波动的因素,选用合适的电容
器和过压保护装置。

总之,为了保证无功补偿电容器的安全运行和延长使用寿命,需要定期检查和维护,
及时更换损坏的部件和装置,采取有效的预防措施。

电容阻值降低漏电失效分析

电容阻值降低漏电失效分析

电容阻值降低漏电失效分析电容阻值的降低和漏电失效是电容器在使用过程中可能出现的一些问题,下面将对这两个问题进行分析。

一、电容阻值降低电容阻值的降低可能由以下原因引起:1.电容器老化:长时间使用后,电容器内部的电解液可能会发生变质,导致电容器内部的电极和电介质之间的电阻值增加,从而导致电容阻值降低。

2.温度变化:电容器的温度变化会导致电容极板的线性膨胀或收缩,进而导致电容极板之间的距离变化,从而改变了电容阻值。

3.电压过高:当电容器所承受的电压超过其耐压范围时,电容器可能会发生击穿,导致电容阻值降低。

4.外部电磁干扰:电容器的阻值可能会受到外部电磁干扰的影响,例如强磁场或高频电磁波等,导致电容阻值降低。

5.安装不当:如果电容器的安装方式不正确,例如固定方式不稳定、引线接触不良等,都可能导致电容阻值降低。

针对以上原因,可以采取以下措施来避免电容阻值的降低:1.定期检测:定期检测电容器的阻值情况,一旦发现阻值降低,应及时更换电容器。

2.选择合适温度范围:根据使用环境选择合适的电容器,以避免温度变化对电容阻值的影响。

3.控制电压范围:确保电容器所承受的电压不超过其额定值,避免电容击穿。

4.防止电磁干扰:采取相应的屏蔽措施,以减小外部电磁干扰对电容器的影响。

5.安装稳固:确保电容器的固定方式牢固可靠,引线接触良好,以避免安装不当对电容阻值的影响。

二、漏电失效电容器的漏电失效指的是电容器内部电介质的绝缘性能下降,导致漏电现象的发生。

漏电失效可能由以下原因引起:1.电容器老化:长时间使用后,电容器的绝缘性能可能会降低,导致电容器内部发生漏电。

2.温度变化:电容器的温度变化会导致电容极板的线性膨胀或收缩,进而导致电容极板之间的绝缘距离变化,从而增加了电容器的漏电风险。

3.电压过高:电容器所承受的电压超过其耐压范围时,电容器内部电介质可能会被击穿,导致漏电失效。

4.湿度变化:电容器工作环境的湿度变化可能导致电容器绝缘性能下降,进而导致漏电现象的发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容阻值降低、漏电失效分析
2014-08-02
摘要:
本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。

1.案例背景
MLCC电容在使用过程中出现阻值降低、漏电失效现象。

2.分析方法简述
透视检查NG及OK样品均未见裂纹、孔洞等明显异常。

图1.样品X射线透视典型照片
从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因EDS
能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%
从电容外观来看,所有样品表面均未见明显异常,如裂纹等。

图2.电容典型外观照片
利用数字万用表分别测试NG电容和0K电容的电阻,并将部分失效样品
机械分离、清洗后测试其电阻,对电容进行失效验证。

电学性能测试表明,不存在PCB 上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层
存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故
电极层孔洞不是电容漏电的原因。

对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞
内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部
发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电
极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介
质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。

对比失效样品,0K样品电容内部结构成分一致,内电极为Ni电极,电极层连续性较差,且存在较多细小孔洞。

但并未发现贯穿相邻电极的孔洞和机械应力裂纹的存
在,电容表面破损程度亦较低,故不存在漏电现象。

图3.NG样品金相切片照片
图5.NG样品表层EDS能谱图
3.分析与讨论
多层陶瓷电容器(MLCC本身的内在可靠性十分优良,可长时间稳定使用。

但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对可靠性产生严重的影响。

陶瓷多层
电容器(MLCC失效的原因一般分为外部因素和内在因素。

内在因素包括:陶瓷介质内
空洞、介质层分层;外部因素包括:热应力裂纹及机械应力裂纹。

1)陶瓷介质内的孔洞
所谓的陶瓷介质内的孔洞是指在相邻电极间的介质层中存在较大的孔洞,
这些孔洞由于内部可能含有水汽或离子,在端电极间施加电压时,降低此处的耐压强度,导致此处发生过电击穿现象。

2)介质层分层
多层陶瓷电容的烧结为多层材料堆叠共烧,烧结温度在1000 C以上。

层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。

值得一提的是,某些分层还可能导致陶瓷介质内部产生裂纹,或在介质层内出现断续的电极颗粒等,这些都与电容器的生产工艺有关。

分层的直接影响是绝缘电阻降低,电容量减小。

3)热应力裂纹实际使用中各种温度冲击往往容易产生热应力,热应力产生的裂纹主要分布区域为陶瓷靠近端电极的两侧,常见的表现形式为贯穿瓷体的裂纹,有的裂纹与内电
极呈现90°。

需要强调的是,这些裂纹产生后,不一定在现场就表现出实效,大多数是在使用一段时间后,水汽或离子进入裂纹内部,致使电容的绝缘电阻降低而导致电容失效。

4)机械应力裂纹
多层陶瓷电容器(MLCC的特点是能够承受较大的压应力,但抵抗弯曲能力比较差。

器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂。

常见的应力源有:工艺过程电路板流转操作;流转过程中的人、设备、重力等因素;元件接插操作;电路测试;单板分割;电路板安装;电路板定位铆接;螺丝安装等。

该裂纹一般源于器件上下金属化端子,沿45°向器件内部扩展,详见图6。

E&典酣板背曲引起的机械应力黜疔亘囹
4.结论
综合以上测试分析可知,导致电容阻值下降、电容漏电是多方面原因共同
作用的结果,主要来自于三方面:(1)MLCC本身内部存在介质空洞,这属于内在因素,
是由生产工艺所导致的;(2)端电极与介质结合处存在机械应力裂纹,机械应力裂纹属于外在因素,器件组装过程中任何可能产生弯曲变形的操作都可能导致器件开裂; (3)电容外表面存在破损,同样属于外在因素,主要由于金属端电极材料和陶瓷介质
热膨胀系数失配所致。

相关文档
最新文档