电动车用轮毂电机研究现状与发展趋势2
轮毂电机技术

轮毂电机技术标题: 轮毂电机技术介绍:在汽车与电动车行业中,轮毂电机技术正逐渐成为主流。
将电机直接集成在车轮上,无需传动系统,可以提供更高的效率和灵活性。
本文将深入探讨轮毂电机技术的工作原理、优势和应用领域。
一、工作原理轮毂电机是一种将电机和车轮通过内置设计融合在一起的创新技术。
传统车辆使用发动机和传动系统将动力传输到车轮上,而轮毂电机则将电机直接安装在车轮内。
这种设计可以消除传统传动系统的能量损失,并提供更高效的动力传输。
轮毂电机主要由电动机、控制单元和传感器组成。
电动机通过控制单元接收来自车辆的指令,然后使用电力将车轮驱动起来。
传感器可以检测车轮转速和位置,并将这些信息传递给控制单元,以便控制电机的运行。
二、优势1. 提高车辆效率:轮毂电机可以实现更高效的动力传输,减少了传动系统的能量损失。
这一优势可以提高车辆的续航里程,并减少能源消耗。
2. 增加驾驶灵活性:由于电机直接集成在车轮上,轮毂电机可以实现精确的动力分配和控制。
这使得车辆更具有响应性和可操控性,提供更好的驾驶体验。
3. 提高安全性:传统的车辆设计中,发动机和传动系统集中在车辆前部,这可能导致碰撞时受到严重损坏。
相比之下,轮毂电机可以更好地分散动力,并将碰撞冲击分散到车辆的各个部位,提高车辆的安全性。
4. 减少零部件和维护成本:传统的发动机和传动系统需要大量的零部件,并需要定期维护和更换。
而轮毂电机通过将电机集成在轮毂内,减少了传统零部件的数量,降低了维护成本。
三、应用领域轮毂电机技术逐渐在各个领域中得到广泛应用。
以下是一些主要的应用领域:1. 电动汽车:轮毂电机是电动汽车的核心技术之一。
它提供了高效的动力传输和灵活的驾驶控制,有助于提高电动汽车的续航里程和性能。
2. 混合动力汽车:在混合动力汽车中,轮毂电机可以与传统燃油发动机配合使用。
通过电机的辅助,可以提供更高的动力输出和改善燃油经济性。
3. 自动驾驶技术:轮毂电机的精准动力控制和响应速度使其成为自动驾驶技术的重要组成部分。
我国新能源汽车驱动电机产业发展现状及趋势研究

我国新能源汽车驱动电机产业发展现状及趋势研究目录一、内容概览 (2)1.1 研究背景与意义 (2)1.2 国内外研究现状综述 (3)1.3 研究内容与方法 (5)1.4 论文结构安排 (6)二、我国新能源汽车驱动电机产业发展概述 (8)2.1 新能源汽车驱动电机技术发展历程 (9)2.2 我国新能源汽车驱动电机产业市场规模 (10)2.3 我国新能源汽车驱动电机产业竞争格局 (11)三、我国新能源汽车驱动电机产业发展现状分析 (13)3.1 驱动电机类型及技术路线分析 (14)3.2 驱动电机主要生产企业及产品分析 (15)3.3 技术创新与研发投入情况分析 (16)3.4 存在的问题与挑战分析 (17)四、我国新能源汽车驱动电机产业发展趋势预测 (18)4.1 市场需求预测 (19)4.2 技术发展趋势 (20)4.3 政策环境展望 (21)4.4 产业链协同发展前景 (22)五、结论与建议 (23)5.1 研究结论总结 (25)5.2 对产业发展的建议 (26)5.3 研究局限与未来展望 (27)一、内容概览随着全球气候变化和环境污染问题日益严重,新能源汽车作为低碳、环保的交通工具,受到了各国政府和市场的高度重视。
我国新能源汽车产业在国家政策的支持下,取得了显著的发展成果,其中驱动电机作为新能源汽车的核心部件之一,其产业发展现状及趋势备受关注。
本文档将对我国新能源汽车驱动电机产业发展现状进行详细分析,包括产业规模、技术水平、市场需求等方面的现状;同时,通过对国内外驱动电机产业发展趋势的研究,探讨我国驱动电机产业未来的发展方向和战略选择。
在分析现状的基础上,本文档还将提出一些建议,以期为我国新能源汽车驱动电机产业的发展提供有益的参考和借鉴。
1.1 研究背景与意义随着全球能源结构的转型和低碳经济的发展,新能源汽车作为未来汽车产业的重要发展方向,正受到各国政府和企业的高度关注。
新能源汽车产业已经进入了快速发展的阶段,特别是驱动电机作为新能源汽车的核心部件,其技术水平直接影响到整车的性能和经济性。
轮毂电机驱动技术的研究

-182-科学技术创新2019.09轮毂电机驱动技术的研究田太伟戚龙喜凌素琴(江苏远东电机制造有限公司,江苏泰州225500)摘要:新能源汽车是未来汽车行业的主流,轮毂电机驱动技术的发展象征着新能源汽车驱动发展的重要方向。
在此背景下,本文简要从轮毂电机驱动的技术进行概述,介绍轮毂电机的驱动形式以及轮毂电机驱动系统在电动汽车上的应用,以其对新能源汽车的发展具有借鉴意义。
关键词:电动汽车;驱动;特性分析中图分类号:U463.343文献标识码:A文章编号:2096-4390(2019)09-0182-02随着经济社会的不断发展,人们的生活水平得到逐步提升,对环境的要求也越来越高。
汽车排放的尾气一直被认为是环境污染的重要来源,因此使得能源与环保问题长期成为了汽车领域发展的瓶颈,其对汽车领域的发展也具有一定的制约作用。
世界各国的汽车公司以及政府都在积极推进和研究新能源汽车的发展,明确了新能源汽车的范围是纯电动汽车、燃料电池车以及插电式混合动力车等。
在新能源汽车领域,轮毂电机是汽车的核心组成部件,在新能源汽车领域起着举足轻重的作用,下文将简要对轮毂电机驱动技术进行简要介绍。
1轮毂电机驱动技术概述纵观世界新能源汽车的发展,欧洲、美国以及日本等发达国家在新能源汽车领域已经形成了较为完善的汽车产业链,欧盟计划在2020年生产新能源汽车数量超过五百万辆,同时已经下拨14.3亿欧元用来支持新能源汽车的研发;此外,日本计划在2020年将新能源汽车的占比提升至50%;我国工信部在《节能与新能源汽车产业发展规划》中指出到2020年我国的新纯电动车以及PHEV的市场份额为500万辆,汽车的电动化是大势所趋,其核心部件电机作为主要的驱动方式在新能源汽车的发展过程中发挥着重要的作用。
目前在汽车行业普遍采用的电机为轮毂电机,如图1所示为轮毂式电机的外观图。
轮毂电机安装在空间相对较小的轮毂中,使电机系统受磁场饱和、路面激励以及负载等因素的影响较为明显,因此可以严格控制轮毂汽车的性能。
浅谈新能源汽车轮毂电机

浅谈新能源汽车轮毂电机一、轮毂电机的工作原理新能源汽车轮毂电机是指将电机集成于车轮轴承内的一种电动机,它通过电能转换为机械能,从而驱动车辆运行。
轮毂电机是新能源汽车动力传动系统的重要组成部分,其工作原理与普通电动机基本相同,都是利用电磁感应原理完成电能转换的过程。
轮毂电机通过电磁场的变化,使得电能转化为机械能,从而带动车轮转动,推动汽车前行。
二、轮毂电机的特点1. 高效节能:相比传统内燃机汽车,新能源汽车轮毂电机具有高效节能的特点,能够将电能转化为机械能的效率更高,从而降低能源消耗和减少尾气排放。
2. 空间利用率高:由于轮毂电机集成于车轮轴承内,无需额外的传动装置,因此可以更充分地利用车辆空间,使得整车结构更加紧凑。
3. 响应速度快:轮毂电机具有响应速度快的特点,能够在瞬间提供足够的扭矩输出,使得车辆动力性能更加优越。
4. 增强安全性:由于轮毂电机的集成布局,能够实现四驱独立控制,从而提高了车辆的稳定性和操控性,增强了行车安全性。
5. 带来静音舒适的驾驶体验:轮毂电机无需传动装置,不存在传统内燃机汽车的变速箱、离合器等零部件,从而减少了噪音和振动,带来更加静音舒适的驾驶体验。
三、轮毂电机的发展趋势1. 高性能化:未来新能源汽车轮毂电机将朝着高性能化的方向发展,提高功率密度和效率,以满足更高的动力需求。
2. 集成化:随着技术的不断进步,轮毂电机将更趋向于集成化设计,减少体积和重量,从而使得整车的能耗降低,续航里程得到提升。
3. 智能化:未来轮毂电机将实现智能控制,实现车辆动力系统的智能化管理,提高能量的利用效率和续航里程。
4. 可靠性提升:轮毂电机所处的工作环境较为恶劣,对电机的可靠性要求较高。
未来轮毂电机将在材料、工艺和设计等方面进行优化,提高其可靠性和寿命。
新能源汽车轮毂电机作为新能源汽车的重要核心部件,具有很高的发展潜力。
随着新能源汽车产业的不断发展,轮毂电机的技术水平将不断提高,其在推动新能源汽车革命、提高车辆性能和驾驶体验方面将发挥着越来越重要的作用。
电动车电机驱动控制技术的研究现状及其发展趋势

电动车电机驱动控制技术的研究现状及其发展趋势随着环保意识的增强以及油料的日渐枯竭,电动车成为了一种备受瞩目的交通方式。
电动车的动力系统主要由电池组、控制系统和电动机三部分组成,其中电动机是电动车重要的动力驱动源。
电动车电机驱动控制技术是电动车发展的重要基石,本文将对其研究现状及发展趋势进行探讨。
电动车电机驱动控制技术是电动车关键技术之一,其研究可以追溯到上世纪70年代。
随着电子技术和计算机技术的发展,电动车电机控制技术也得到了空前的发展。
目前,电机控制技术已经发展成为了一门完整的学科体系,包括电动机建模、控制器设计、传感器设计和软件设计等许多方面。
电动车电机驱动控制技术的研究方向主要包括以下几方面:(1)电机建模和仿真:通过建立电机的数学模型,预测电机的性能和工作状态,仿真电机在不同工况下的响应。
(2)控制器设计:根据电机的建模结果,设计控制器并进行优化,实现对电机的精确控制,提高电机的效率和降低电机的损耗。
(3)传感器设计:为了实现对电机的精准控制,需要设计各种传感器,如位置传感器、速度传感器等,以获取电机的准确状态信息。
(4)软件设计:电动车电机控制系统需要精心设计的软件支持,为控制器提供良好的运算和处理能力。
1.2 电动车电机驱动控制技术的应用目前,电动车电机控制技术已经广泛应用于电动车的生产和制造,包括普通电动车、混合动力车和纯电动车等。
电动车电机控制技术已经成为电动车的关键技术之一,直接影响电动车的动力性能、能源利用率和行驶稳定性等方面。
随着科技的不断进步,电动车电机驱动控制技术也在不断发展和改进,未来发展趋势如下:2.1 电机控制器高集成化发展随着电子技术的不断发展和制造工艺的发展,电机控制器的集成度不断提高,控制器体积不断减小,性能不断提高。
未来,电机控制器将实现完全集成化,以满足电动车市场的要求。
2.2 高功能、高误差修正算法的发展电机控制算法的精度直接关系到电机性能的优劣。
因此,在未来,将出现更多的高精度的电机控制算法,这些算法将具有更高的工作效率和精度,能够更准确地控制电机的运行状态,提高电机的效率和稳定性。
简述新能源汽车驱动电机发展的趋势

新能源汽车驱动电机发展的趋势主要有以下几个方面:
1. 高效化:随着能源危机和环保问题的日益严重,提高驱动电机的效率成为了新能源汽车发展的重要方向。
未来驱动电机将更加注重高效、节能和环保。
2. 小型化:为了满足新能源汽车空间紧凑、轻量化的需求,驱动电机将向小型化方向发展。
小型化的驱动电机不仅可以降低车辆的自重,还可以提高车辆的动力性能和续航里程。
3.集成化:随着汽车电子技术的不断发展,驱动电机与控制系统的集成度将不断提高。
这种集成化设计可以降低系统复杂度、提高系统稳定性和可靠性,并有助于实现更好的节能和环保效果。
4.智能化:智能化是新能源汽车发展的另一个重要方向。
未来驱动电机将与车辆的其他电子系统实现高度集成,实现智能控制和优化,提高车辆的整体性能和竞争力。
5.多元化:随着新能源汽车市场的不断扩大和技术的不断进步,驱动电机的种类和应用范围也将不断扩大。
未来驱动电机将涵盖纯电动、混合动力、燃料电池等多种类型,满足不同类型新能源汽车的需求。
总之,未来新能源汽车驱动电机的发展趋势将是高效化、小型化、集成化、智能化和多元化。
这些趋势将推动新能源汽车技术不断向前发展,为汽车产业带来更加美好的未来。
2024年轮毂电机市场分析现状

2024年轮毂电机市场分析现状引言轮毂电机作为一种新兴的智能汽车动力传动技术,具有高效、节能、环保等优势,在汽车行业中得到了广泛的应用和重视。
本文将对轮毂电机市场的现状进行分析,并探讨未来的发展趋势。
市场规模随着智能出行的需求不断增加,轮毂电机市场的规模也在迅速扩大。
根据市场研究数据显示,截至2020年,全球轮毂电机市场规模已经超过XX亿美元,并预计在未来几年内将保持持续增长。
市场驱动因素环保政策推动随着全球对环境保护的关注度不断提升,各国纷纷出台了一系列的环保政策,鼓励使用节能环保的新能源车辆。
轮毂电机作为一种高效、环保的动力传动技术,受到了政府的大力支持,推动了市场的发展。
电动车销量增长电动车作为轮毂电机的主要应用领域,近年来取得了显著的销量增长。
随着电动车销量的增加,轮毂电机市场也获得了更多的机会和发展空间。
技术进步推动随着科技的不断进步,轮毂电机的性能不断提升,成本不断降低。
高效的轮毂电机能够满足汽车轻量化、高效能源利用的需求,因而受到了市场的青睐。
市场竞争格局目前,全球轮毂电机市场存在着较多的竞争企业,主要包括国内外知名汽车厂商和专业电机供应商。
竞争主要体现在产品性能、价格、服务等方面。
在产品性能方面,制造商不断进行技术创新,力求提高电机的功率输出、能量转换效率等关键指标。
同时,还注重产品的可靠性和安全性,满足用户的多样化需求。
在价格方面,由于市场竞争激烈,制造商们不断降低产品价格,以争夺更多的市场份额。
价格下降使得轮毂电机逐渐成为可接受的替代传统汽车动力传动系统的选项。
在服务方面,制造商提供全方位的售前售后服务,包括技术支持、维修保养等,以提高用户的满意度和忠诚度。
市场挑战与机遇挑战1.技术挑战:轮毂电机技术仍处于发展初期,需要进一步提高功率密度、能量转换效率等关键技术指标。
2.市场竞争激烈:目前市场上存在较多的竞争企业,产品同质化现象严重,制造商需要不断创新来脱颖而出。
3.成本压力:轮毂电机的制造成本较高,需要进一步降低成本,提高性价比。
轮毂电机及其电动车技术发展

1 2 3 4 51 前言随着能源短缺和环境污染形势日渐恶化,新能源汽车已成为世界各国的重点研发领域。
电动车作为最主要的新能源汽车类型,电驱动技术是其核心技术之一。
随着电池、电机等电动车相关技术的日渐成熟,产品级电动车已经实现量产化,轮毂电机以其突出优势,得到国内外整车及零部件厂商持续的关注和研发投入。
本文对轮毂电机进行概述,说明其技术优势和难点,对当前主流轮毂电机产品及其驱动的电动车进行综述,总结由轮毂电机引发的技术发展趋势。
轮毂电机将2个或多个电机集成于轮毂内部,驱动形式可分为减速驱动和直接驱动。
减速驱动型轮毂电机多采用内转子结构实现减速驱动,由于电机转速高,需要配置减速器降低输出转速并增加转矩,以适应车轮的输出需求。
直接驱动型多采用外转子结构实现直接驱动,无需减速机构,可实现驱动系统轻量化,但装备直接驱动轮毂电机的电动车在起步时,转矩从零开始上升,导致加速性较差。
两种驱动形式的优缺点如表1所示。
直流电机、永磁无刷直流电机、开关磁阻电机、异步电机、永磁同步电机等均可用于研发轮毂电机。
目前先进轮毂电机多采用效率高、功率密度大、可靠性好的永磁同步电机。
表1 不同类型轮毂电机优缺点对比减速驱动类型的轮毂电机按照减速机构类型,又可分为同轴摆线减速器式轮毂电机、同轴行星齿轮减速器式轮毂电机和偏轴式轮毂电机。
2.2 轮毂电机和轮毂电机电动车优势轮毂电机作为电动车动力源,本身具有一系列优势,包括:响应速度快、转矩控制精度高、可提供驱动和制动转矩、可独立进行转矩控制、使用寿命长等。
轮毂电机直接安装于驱动轮内,无需设计变速器、万向传动装置、差速器等传统传动部件,将给电动车底盘设计与控制带来巨大变革和优化,包括:(1)系统效率提高,轮毂电机驱动系统比集中式电机驱动效率高出10%以上;(2)转矩响应精度高、响应速度快,可实现分布式驱动轮独立控制;(3)底盘布置自由度高,整车轻量化程度大幅提高;是混合动力汽车、纯电动汽车、燃料电池汽车的优选动力源;(4)有利于实现更加优化的分布式驱动、制动控制,更便于自动驾驶上层控制策略的实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动车用轮毂电机研究现状与发展趋势褚文强, 辜承林(华中科技大学电气与电子工程学院,湖北武汉 430074) 摘 要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能。
阐述了轮毂电机的不同驱动方式及其国内外研究与应用现状。
无位置传感器控制技术、转矩脉动的抑制、弱磁扩速、电机本体的设计及永磁材料等将是今后轮毂电机的研究热点。
关键词:电动汽车;驱动系统;轮毂电机中图分类号:T M384∶U469.72 文献标识码:A 文章编号:167326540(2007)0420001205Appli ca ti on St a tus and D evelop i n g Tend of I n2W heelM otors Used for Electr i c Auto m ob ileCHU W en2qiang, G U Cheng2lin(College of Electrical and Electr onic Engineering,Huazhong University ofScience and Technol ogy,W uhan430074,China) Abstract:The advantages of in2wheel mot or compared with the driving syste m of traditi onal mot ors are de2 scribed.Then t w o different driving methods and their app licati on status at home and abr oad are intr oduced.The qual2 itative analysis of several kinds of typ ical driving mot or is made next.Their perf or mances are compared and their ad2 vantages/disadvantages are als o point out.Finally the devel op ing trend of wheeled mot or technol ogy is p resented.Key words:electr i c auto m ob ile;dr i v i n g syste m;i n2wheel m otor0 概 述 早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。
该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。
近年来,随着电动汽车的兴起,轮毂电机重新引起了重视。
轮毂电机驱动系统的布置非常灵活,可以使电动汽车成为两个前轮驱动、两个后轮驱动或四轮驱动。
与内燃机汽车和单电机集中驱动电动汽车相比,使用轮毂电机驱动系统的汽车具有以下几方面优势:(1)动力控制由硬连接改为软连接型式。
通过电子线控技术,实现各电动轮从零到最大速度的无级变速和各电动轮间的差速要求,从而省略了传统汽车所需的机械式操纵换档装置、离合器、变速器、传动轴和机械差速器等,使驱动系统和整车结构简洁,有效可利用空间大,传动效率提高。
(2)各电动轮的驱动力直接独立可控,使其动力学控制更为灵活、方便;能合理控制各电动轮的驱动力,从而提高恶劣路面条件下的行驶性能。
(3)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。
(4)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。
若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。
(5)若在采用轮毂电机驱动系统的四轮电动汽车上导入线控四轮转向技术(4W S),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。
1 驱动系统1.1 驱动方式 轮毂电机的驱动方式可以分为减速驱动和直接驱动两大类[1]。
在减速驱动方式下(见图1),电机一般在高—1—速下运行,而且对电机的其他性能没有特殊要求,因此可选用普通的内转子电机。
减速机构放置在电机和车轮之间,起减速和增加转矩的作用。
减速驱动的优点是:电机运行在高转速下,具有较高的比功率和效率;体积小、重量轻,通过齿轮增力后,扭矩大、爬坡性能好;能保证在汽车低速运行时获得较大的平稳转矩。
不足之处是:难以实现液态润滑,齿轮磨损较快、使用寿命短,不易散热,噪声偏大。
减速驱动方式适用于丘陵或山区,以及要求过载能力较大、旅游健身等场合[2]。
图1 减速驱动示意图 在直接驱动方式下(见图2),电机多采用外转子(即直接将转子安装在轮辋上)。
为了使汽车能顺利起步,要求电机在低速时能提供大的转矩。
此外,为了使汽车能够有较好的动力性,电机需具有较宽的调速范围。
直接驱动的优点有:不需要减速机构,不但使得整个驱动轮结构更加简单、紧凑,轴向尺寸也减小,而且效率进一步提高,响应速度也变快。
其缺点是:起步、顶风或爬坡等图2 直接驱动示意图承载大扭矩时需大电流,易损坏电池和永磁体;电机效率峰值区域很小,负载电流超过一定值后效率急剧下降。
此方式适用于平路或负载较轻的场合[2]。
1.2 电机类型 要使电动汽车有较好的使用性能,驱动电机应具有较宽的调速范围、较高的转速、足够大的起动扭矩,以及体积小、重量轻、效率高,并具有强动态制动和能量回馈等特性[5]。
目前,电动汽车用电动机主要有异步电动机(I M )、永磁无刷电动机(P MBL M )和开关磁阻电动机(SR M )、横向磁场电机(TFP M )等四类[5]。
1.2.1 异步电动机 异步电机在四类电机中发展历史最为长久,其设计、制造以及控制技术都相对成熟,且具有结构简单、制造容易、低费用、高可靠性等优点,受到欧美国家的青睐。
但此类电机也存在一些缺点:效率不高(特别是在低速时),功率密度一般;是一个强偶合、多变量、非线性的系统,需采用矢量控制和直接转矩等控制手段,控制成本较高。
1.2.2 永磁无刷电动机 与其他电机相比,永磁无刷电机具有功率密度高、效率高、体积小、结构简单、输出转矩大、可控性好、可靠性高、噪声低等一系列优点,在电动汽车领域颇受青睐。
日本绝大多数电动汽车采用永磁无刷电机驱动系统。
其缺点是:因受永磁材料的限制,目前最大电机功率也只有几十千瓦;其次,永磁转子的励磁无法调节,导致电机调速困难,调速范围不宽。
1.2.3 开关磁阻电动机 开关磁阻电机是近20年才发展起来的一种新型调速电机,具有简单可靠、可在较宽转速和转矩范围内高效运行、可四象限运行、响应速度快和成本较低等优点。
但其缺点也很多:转矩存在较大波动,振动大,噪声大;系统非线性,建模困难,控制成本高;功率密度低等。
1.2.4 横向磁场电机 横向磁场电机最早是由德国著名电机专家H.W eh 于上世纪80年代末提出,并将之使用到电力舰船、电动汽车上。
与其他电机相比,横向磁场电机的优点十分突出:实现了电路和磁路解耦,设计自由度大大提高;高转矩密度,大约是标准工—2—业用异步电机的5~10倍,且特别适合应用于要求低速、大转矩等场合;绕组形式简单,不存在传统电机的端部,绕组利用率高;各相间相互独立;效率高;控制电路与永磁无刷电动机相同,可控性好等。
目前,国外已成功开发了很多电动汽车用横向磁场电机,国内也正在积极开展相关研究。
但其也存在不少缺点:永磁体数目多,用量大;结构较为复杂,工艺要求高,电机成本高;漏磁严重;功率因素低;自定位转矩较大等。
各类电机的综合指标比较见表1。
由表1可见,永磁无刷电机将是电动汽车的最佳选择,而横向磁场电机则因其能量密度高、适合低速大转矩场合等特点,将成为直接驱动式电动汽车的首选部件。
表1 各种电动机基本性能比较项目异步永磁无刷开关磁阻横向磁场功率密度中高中最高转矩2转速特性好好好好效率/%79~8590~9278~8691~93功率因数/%82~8590~9360~6535~55调速范围1∶51∶2.251∶31∶2.25可靠性好一般优秀一般电机重量重轻一般轻成本/(美元/k W)8~1210~156~1012~17可控性好好好好控制成本高一般很高一般综合性能差最好中好2 应用领域及研究现状2.1 电动汽车 电动汽车最早于1834年问世,但因一次充电续驶里程不能满足人们的要求而于20世纪30年代退出历史舞台。
20世纪70年代,由于环境和能源问题的凸显,电动汽车又成为各国研究的重点。
国外有很多研究所和公司都对轮毂电机进行了专项研究,并已经开始将其应用到实际产品中。
美国通用汽车高级技术研发中心成功地将研制的轮毂电机应用到雪弗兰s-10皮卡车中。
该电机给车轮增加的重量只有约15kg,却可产生约25 k W的功率,产生的扭矩比普通的雪弗兰s-10四缸皮卡车高出60%,加速性能也有所提高。
日本对轮毂电机研究起步早,其技术在世界上处于领先[3]。
日本庆应义塾大学清水浩教授领导的电动汽车研究小组在过去的十几年中,研制的I Z A、ECO、K AZ等电动汽车均采用轮毂电机驱动技术。
其中后轮驱动电动汽车ECO采用的永磁无刷直流电机,额定功率6.8k W,峰值功率可达20k W。
日本的各大公司也在2003年东京汽车展上纷纷推出自己的轮毂驱动产品,如普利司通公司的动力阻尼型车轮内装式电机系统、丰田公司的燃料电池概念车F I N E2N等。
法国的T M4公司设计的一体化电动轮,采用外转子式永磁无刷直流电机,额定功率为18.5k W,额定转速为950r/m in,额定工况下的平均效率可以达到96.3%;峰值功率可达80k W,峰值扭矩为670N·m,最高转速为1385r/m in。
国内的轮毂电机技术虽然起步较晚,但近几年随着国家“八六三”计划电动汽车重大课题研究的深入,各高校对该技术的研究也有所加强。
同济大学汽车学院在2002年、2003年独立研制的“春晖一号”和“春晖二号”就采用4个低速永磁直流无刷轮毂电机直接驱动系统。
中国科学院北京三环通用电气公司开发出了电动汽车专用的7.5k W轮毂电机。
哈工大2爱英斯电动汽车研究所开发的E V962I型电动汽车采用了多态轮毂电机的轮毂驱动系统(见图3)。
该轮毂电机采用双边混合式磁路结构,兼有同步电动机和异步电动机的双重特性,驱动轮额定功率6.8k W,最大功率15k W,最大转矩25N·m。
图3 多态轮毂电机示意图2.2 电动自行车 目前,国内外绝大部分电动自行车都采用轮毂电机驱动方式。
厂家无需对车型作较大的改变即可装配,且没有传动机构,结构十分简单[4]。