电机转速测量电路
基于单片机系统的电机转速测量电路设计

2021.02科学技术创新基于单片机系统的电机转速测量电路设计杨扬(徐州工程机械技师学院,江苏徐州221000)1转速测量方法本电路设计转速测量是用增量式编码器结合单片机,采用M/T 法,完成测速工作并显示。
增量式编码器与电机相连,输出信号接入本设计电路,即可实现转速测量及显示。
1.1增量式轴编码器光电轴角编码器,又称轴编码器或光电角位置传感器,是通过两个光敏接收管来转化角度码盘的时序和相位关系,并与单片机、计算机等控制器及显示装置相连接,实现数字测量、数字控制与数字显示。
增量式编码器转轴旋转时,有相应的脉冲输出,轴编码器主要分为增量式、绝对式与混合式3种,其中增量式轴编码器主要用于测量转子速度,绝对式轴编码器主要用于测量转子的空间位置,混合式轴编码器是增量式轴编码器与绝对式轴编码器的组合后端加入处理芯片之后,3种轴编码器都具有测量转子速度与空间位置的功能。
增量式轴编码器的结构如图1。
图1增量式轴码器的结构1.2M/T 法测转速常用的采用旋转编码器的数字测速方法有三种:M 法、T 法、M/T 法。
检测T C 时间内旋转编码器输出的脉冲个数M 1,又检测同一时间间隔的高频时钟脉冲个数M 2,用来计算转速的方法,称作M/T 法测速。
高频脉冲的频率为f 0,则准确的测速时间为Tt =M 2/f 0,电机的转速为:采用M/T 法测速时,应保证高频时钟脉冲计数器与旋转编码器计数器同时开启与关闭,以减少误差。
只有捕捉到编码器脉冲前沿时,两个计数器才同时开启与停止计数。
图2M/T 法测速2硬件电路设计单片机测量转速基本原理框图如图3所示,本模块的设计思路是:引入编码器信号,对编码器信号进行简单的整形后,送入光耦将信号隔离,经光耦隔离后信号送入CPLD 进行预处理(辨向、倍频),然后送入单片机计算转速,送入LED 数码管显示。
测速模块由整形电路、cpld 、单片机、LED 显示电路组成。
图3硬件电路设计框图2.1传感器部分主要分为两个部分,第一部分是光电编码器,将电机的转速信号转换为脉冲信号。
一种高灵敏度的电机转速测量仪的制作方法

一种高灵敏度的电机转速测量仪的制作方法引言:电机转速的测量在工业生产中具有很高的重要性。
传统的电机转速测量方法通常采用直接连接传感器或编码器的方式,由于电机转速的高速旋转或是精密机械结构的限制,传感器或编码器的精度存在一定的局限。
为了解决这个问题,我们提出了一种高灵敏度的电机转速测量仪的制作方法。
一、传感器选择:首先,我们需要选择适合的转速传感器。
由于电机转速较高,所以我们需要选择高灵敏度的传感器。
目前市场上常见的电机转速传感器有霍尔传感器、光电编码器和主动式震动传感器等,针对不同的应用场景我们可以选择不同的传感器。
但在此我们推荐使用霍尔传感器,因为它具有高灵敏度、响应速度快、体积小等优点。
二、霍尔传感器安装:将选择好的霍尔传感器安装在电机轴上,要确保传感器与电机轴同轴,使传感器可以准确地感应电机的转动。
安装好传感器后,通过焊接或者插接的方式将霍尔传感器与电路板连接。
三、信号处理电路设计:为了实现高灵敏度的转速测量,我们需要设计一套信号处理电路来放大和滤波传感器的输出信号。
信号处理电路主要包括信号放大器、低通滤波器和数字转速计等部分。
信号放大器:信号放大器用于放大传感器输出的微弱信号,使其能够与后续电路进行兼容。
可以采用运算放大器或者差分放大器等方法设计信号放大器。
低通滤波器:低通滤波器用于滤除信号中的高频噪声,以保证输出信号的稳定性和准确性。
可以采用RC电路或者集成电路来实现低通滤波器。
数字转速计:数字转速计用于将信号转换成数字信号,通过计算器或者单片机来实现测量电机的转速。
可以根据实际需求采用不同的数字转速计电路。
四、电路调试和校准:完成信号处理电路的搭建后,需要对电路进行调试和校准。
首先,通过电路板上的调试开关或者电位器来调整信号放大器的放大倍数,以确保输出信号的幅值在合适的范围内。
然后,通过改变电位器或者调试开关来调整低通滤波器的截止频率,使其能够滤除噪声信号。
最后,通过比较电机转速测量仪测量出的转速与标准转速的差异,进行校准,以提高转速测量的准确性。
基于单片机的电机转速测量系统设计_(附图及源程序)

摘要在工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。
模拟式采用测速发电机为检测元件,得到的信号是模拟量。
数字式通常采用光电编码器,霍尔元件等为检测元件,得到的信号是脉冲信号。
随着微型计算机的广泛应用,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法。
本文便是运用AT89C51单片机控制的智能化转速测量仪。
电机在运行过程中,需要对其进行监控,转速是一个必不可少的一个参数。
本系统就是对电机转速进行测量,并可以和PC机进行通信,显示电机的转速,并观察电机运行的基本状况。
本设计主要用AT89C51作为控制核心,由霍尔传感器、LED数码显像管、HIN232CPE电平转换、及RS232构成。
详细介绍了单片机的测量转速系统及PC机与单片机之间的串行通讯。
充分发挥了单片机的性能。
本文重点是测量速度并显示在5位LED数码管上。
其优点硬件是电路简单,软件功能完善,测量速度快、精度高、控制系统可靠,性价比较高等特点。
关键字:MSC-51(单片机);转速;传感器目录摘要 (1)Abstract .................................... 错误!未定义书签。
1 序言 (1)2 系统功能分析 (2)2.1 系统功能概述 (2)2.2 系统要求及主要内容 (3)3 系统总体设计 (4)3.1 硬件电路设计思路 (4)3.2 软件设计思路 (4)4 硬件电路设计 (6)4.1 单片机模块 (6)4.1.1 处理执行元件 (6)4.1.2 时钟电路 (10)4.1.3 复位电路 (11)4.1.4 显示电路 (12)4.2 霍尔传感器简介 (15)4.2.1 霍尔器件概述 (15)4.2.2 霍尔传感器的应用 (16)4.2.3 AH41霍尔开关 (17)4.3 发送模块 (18)5 软件设计 (22)5.1 单片机转速程序设计思路及过程 (22)5.1.1 单片机程序设计思路 (22)5.1.2 单片机转速计算程序 (23)5.1.3 二-十进制转换程序 (24)5.2 程序设计 (27)6 系统调试 (29)6.1 硬件调试 (29)6.2 软件调试 (30)6.3 综合调试 (32)6.4 故障分析与解决方案 (33)6.5 结论与经验 (34)参考文献 (36)致谢 (37)附录 (38)附录1 电路原理图 (38)附录2 元器件清单 (39)1 序言智能化转速测量可以对电机的转速进行测量,电机在运行的过程中,需要对其平稳性进行监测,适时对转速的测量有效地可以反映电机的状况。
基于逻辑电路的转速检测系统的设计

基于逻辑电路的转速检测系统的设计随着科技的不断发展,各种电子设备不断出现并得到广泛的应用,特别是在工业自动化领域,电子设备的发展更是迅速。
作为其中的重要组成部分,逻辑电路已经被广泛应用。
基于逻辑电路的转速检测系统是这样一种系统,它通过测量电机转速,对电机进行控制,从而实现自动化生产。
一、转速检测的原理转速检测通常使用霍尔传感器或者光电传感器来进行测量。
两种测量方式各有优缺点,根据具体的应用场景选择不同的传感器,以达到最优的效果。
1. 霍尔传感器原理霍尔传感器是一种基于霍尔效应的传感器。
它可以测量磁场强度并将其转化为电压值。
在转速检测中,霍尔传感器通常被放置在电机的旋转轴上,当旋转的磁铁通过传感器时,会产生一个磁场变化,从而产生一个电压值。
经过适当的放大、滤波和处理,可以得到电机的转速。
2. 光电传感器原理光电传感器是一种基于光电效应的传感器。
它可以将光线的变化转化为电压信号。
在转速检测中,光电传感器通常被放置在电机的传动轴上,当旋转的圆盘或铁齿通过传感器时,会遮挡或透过光线,从而产生一个电压信号。
通过适当的处理,可以得到电机的转速。
二、逻辑电路的设计逻辑电路主要用于对测量的电信号进行处理和控制。
转速检测系统中,逻辑电路的设计要根据具体的应用场景进行选择。
1. 基于单片机的逻辑电路设计单片机是一种常见的逻辑电路,它可以对电信号进行处理和控制。
在转速检测中,单片机可以通过读取传感器的电压信号,并进行适当的处理,得到电机的转速。
控制电机的速度可以通过单片机输出控制信号,调整电机转速。
单片机的优点是设计灵活,可以根据具体的应用场景进行选择,但是需要进行编程。
2. 基于逻辑门的逻辑电路设计逻辑门是逻辑电路的基本组成部分,可以方便地实现布尔运算。
在转速检测中,逻辑门可以通过布尔运算,对测量的电信号进行处理和控制。
例如,可以使用或门将多个传感器的信号进行合并,得到更为准确的转速值。
逻辑门的优点是成本较低,不需要编程,但是不如单片机设计灵活。
步进电机转速和步数检测设计

步进电机转速和步数检测设计方案一:利用光电开关1、原理介绍光电开关(光电传感器)是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
物体不限于金属,所有能反射光线的物体均可被检测。
光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。
工作原理如图所示。
多数光电开关选用的是波长接近可见光的红外线光波型。
图3-2 光电开关工作原理图2、术语解释(1)检测距离:是指检测体按一定方式移动,当开关动作时测得的基准位置(光电开关的感应表面)到检测面的空间距离。
额定动作距离指接近开关动作距离的标称值。
(2)回差距离:动作距离与复位距离之间的绝对值。
(3)响应频率:在规定的1s的时间间隔内,允许光电开关动作循环的次数。
(4)输出状态:分常开和常闭。
当无检测物体时,常开型的光电开关所接通的负载由于光电开关内部的输出晶体管的截止而不工作,当检测到物体时,晶体管导通,负载得电工作。
(5)检测方式:根据光电开关在检测物体时发射器所发出的光线被折回到接收器的途径的不同,可分为漫反射式、镜反射式、对射式等。
(6)输出形式:分NPN 二线、NPN 三线、NPN四线、PNP二线、PNP三线、PNP四线、AC二线、AC 五线(自带继电器),及直流NPN/PNP/常开/常闭多功能等几种常用的输出形式。
(7)表面反射率:漫反射式光电开关发出的光线需要经检测物表面才能反射回漫反射开关的接受器,所以检测距离和被检测物体的表面反射率将决定接受器接收到光线的强度。
粗糙的表面反射回的光线强度必将小于光滑表面反射回的强度,而且,被检测物体的表面必须垂直于光电开关的发射光线。
(8)环境特性:光电开关应用的环境亦会影响其长期工作可靠性。
当光电开关工作于最大检测距离状态时,由于光学透镜会被环境中的污物粘住,甚至会被一些强酸性物质腐蚀,以至其使用参数和可靠性降低。
霍尔传感器 测转速

HAL3144高灵敏度单极性霍尔开关
• HAL3144E是一款采用 双极性工艺技术的单 极性霍尔效应传感器 IC,响应速度快,灵 敏度高,具有略高的 工作温度范围及可靠 性,它由反向电压器 、电压调整器、霍尔 电压发生器、信号放 大器、施密特触发器 和集电极开路的输出 级组成。
HAL3144霍尔开关的接口图
/*--------------------向LCD1602写数据--------------------*/
void write_data(uchar data0) { rs=1; //选着写数据 rw=0; P0=data0; //向LCD写数据 lcdcs=1; //信号使能端高电平 lcdcs=0; //信号使能端低电平 } /*-------------------------------------------------------*/
/*-----------------------数据处理------------------------*/ void disp_count() { display[7]=(zhuan/1000+'0'); //转换转速的千位 display[8]=(zhuan/100%10+'0'); //转换转速的百位 display[9]=(zhuan/10%10+'0'); //转换转速的十位 display[10]=(zhuan%10+'0'); //转换转速的个位 } /*-------------------------------------------------------*/
液晶显示部分: 显示部分有两个功能,在正常情况下,通过液晶 显示当前转速值,当电机的转速超过设定值通过
电机转速测量系统设计

电机转速测量系统设计引言:在工业生产中,电机的转速是一个非常重要的参数,对于电机的控制和监测具有极大的意义。
因此,设计一个准确测量电机转速的系统是至关重要的。
本文将详细介绍一个电机转速测量系统的设计,包括硬件设计和软件设计。
1.系统硬件设计:(1)传感器选择:电机转速的测量可以采用多种不同的传感器,如光电编码器、霍尔效应传感器等。
根据转速范围和实际需求,选择合适的传感器。
例如,对于高速电机,光电编码器是一个较好的选择,而对于低速电机,霍尔效应传感器更为合适。
(2)电路设计:根据所选传感器的特性,设计合适的电路来接收和处理传感器输出的信号。
电路应包括信号放大器、滤波器和适当的保护电路,以确保对传感器输出信号的准确测量和可靠性。
(3)ADC选择:传感器输出的信号是模拟信号,需要将其转换为数字信号以进行处理和分析。
选择合适的ADC(模数转换器)来实现信号转换。
ADC的选择应考虑到转换精度、速度和功耗等因素。
2.系统软件设计:(1)信号处理:通过ADC获取的数字信号可以通过软件进行进一步处理。
根据具体需求,可以采用滤波、放大、平均等方法来提高测量精度和减小噪声干扰。
(2)算法设计:根据测量需求和应用场景,设计合适的算法来计算电机的转速。
常用的算法包括脉冲计数法、相位差法和频率计算法等。
选择合适的算法需要考虑测量精度、实时性和系统复杂度等因素。
(3)界面设计:为了方便用户对电机转速进行监测和控制,可以设计一个用户界面来显示测量结果和提供控制功能。
界面可以采用图形界面或者命令行界面,具体设计需要根据用户需求和系统复杂度进行选择。
3.系统测试和优化:完成硬件和软件设计后,需要对系统进行测试和优化。
测试过程中应验证系统的测量精度、稳定性和响应时间等指标。
如果存在问题,需要对系统进行优化和调整,直到满足设计要求为止。
总结:电机转速测量系统是一个重要的控制和监测系统,其准确性和可靠性直接影响到电机的运行和维护。
本文给出了一个电机转速测量系统的设计流程,包括硬件设计和软件设计。
一种基于PLC的电机转速测量电路设计

毕业设计(论文)论文题目:一种基于PLC的电机转速测量电路设计教学点:指导老师:职称:学生姓名:学号:专业:学校成教院制20 年 1月 12 日题目:一种基于PLC的电机转速测量电路设计任务与要求:工业现场往往存在许多的干扰因素,因此工业测控系统中普遍采用数字式转速测量方法.目前plc因其高可靠性已经成为工业控制的一个重要设备。
采用plc测量电机转速可以保证测量的稳定性和高精度。
时间:2010 年 11 月 10 日至 2011 年 1 月 15 日共 9 周教学点:学生姓名:学号:专业:电气自动化技术指导单位或教研室:电气自动化教研室指导教师: 职称:讲师学校成教院制毕业设计(论文)进度计划表本表作评定学生平时成绩的依据之一。
摘要介绍电机转速测量电路的设计方案,对其软硬件的实现方法进行了介绍,该系统在实际工程应用中,具有较好的稳定性和精度。
转速是电动机重要的基本状态参数,在很多运动系统的测控中,都需要对电机的转速进行测量,测量的精度直接影响系统的控制情况,只有转速的高精度检测才能得到高精度的控制系统。
目前工业中测量转速的方式主要有两种。
一种是将转速转化为模拟信号,对模拟信号进行测量。
如测速发电机是将转速直接转换为电压信号,然后测量其电压。
这种方法的缺点是被测信号易受电磁干扰和温度变化的影响。
另一种是将转速信号转化为脉冲信号,然后用数字系统内部的时钟来对脉冲信号的频率进行测量.这种方法的优点在于抗干扰能力强、不受温度变化影响、稳定性好。
工业现场往往存在许多的干扰因素,因此工业测控系统中普遍采用数字式转速测量方法。
目前plc因其高可靠性已经成为工业控制的一个重要设备。
采用plc测量电机转速可以保证测量的稳定性和高精度。
关键词:PLC、转速测量、稳定性、高精度(基于PLC的电机转速测量电路设计)ABSTRACTThe paper presents a design to measure speed of motor based on PLC,and also introduces the project of the design and implementation method of the software and hardware.This systems applied to engineering and acquires a very good result.Start in the process,if a failure occurred,the protection PLC corresponding action. Start after the completion of "motor on / off indicator light" the electrical normal operation. Running process, PLC followed by motor cycle test whether there has been a phase short circuit,breaking phase,low-voltage, single—phase - to—ground, overload,over—current fault, and so, if occurred, PLC protection action accordingly. Shutdown, PLC received shutdown orders, tripping circuit breakers, "Motor on / off indicator light” eliminate. Fault sound and light alarm at the ”Alarm reset button” reset. This choice is based on the design of the motor PLC fault diagnosis system design。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计(论文)说明书题目:电机转速测量电路院(系):信息与通信学院专业:电子科学与技术学生姓名学号:指导教师:***职称:教授2012年12月20日摘要本文设计了一种基于AT89S52单片机的红外线转速测量系统。
该系统的红外发射与接收采用直射式,红外发光管射出的红外线通过圆盘的小孔照射到红外探头上,接收电路再经过简单的信号处理得到脉冲式的转速信号。
使用AT89S52单片机采样脉冲信号并计算每分钟内脉冲信号的数目,即电机对应的转速值,最终系统通过四位七段数码管显示电机每分钟的转速值。
本文详细分析了系统的组成及工作原理,给出了系统中各硬件模块设计方法及系统软件设计方法,给出了部分程序流程图和程序清单。
该测速系统安装维护方便,工作稳定,运行可靠,具有较大的推广应用价值。
关键词:转速测量;红外发射与接收;单片机AbstractA infrared speed measuring system which based on the MCU of AT89S52 was designed in this paper. The infrared transmitter and receiver of the system used the direct type. The infrared light emitted from the IR LED passed through the hole in the disc to the infrared sensor, and the receiver circuit output a pulsed infrared signal by a simple signal processing. The AT89S52 was used to sample the pulse signal and calculate the amount of the pulse signal per minute which was the value of the motor speed. Finally the value of the motor would be displayed real-time by four-bit seven-segment digital tube. The composition and the principle of the system are presented, and the design method of hardware and the software are also presented. The measurement system will have a broad prospects because the convenient installation and maintenance, stable working, reliable operation.Key words: Speed measurement; Infrared transmitter and receiver; MCU目录引言 (3)1设计要求 (4)1.1设计目的 (4)1.2设计内容及要求 (4)2转速测量系统的原理 (4)2.1转速测量方法 (4)2.1.1M法(测频法) (4)2.1.2T法(测周期法) (5)2.1.3M/T法(频率/周期法) (5)2.2转速测量原理 (5)3系统概述 (6)3.1转动系统 (6)3.2信号采集及其处理 (6)3.3单片机处理电路 (6)3.4显示电路 (6)4设计的具体实现 (7)4.1系统硬件电路的设计 (7)4.1.1脉冲产生模块设计 (7)4.1.2转速信号处理模块设计 (7)4.1.3单片机处理模块设计 (8)4.1.4显示模块设计 (11)4.2系统软件的设计 (12)4.2.1控制程序说明 (12)4.2.2程序设计流程图 (12)5电路板测试结果 (14)谢辞 (15)参考文献 (16)附录 (17)引言电机,作为一种量大面广的产品,已广泛应用于国民经济的各个行业中。
而电机的生产王国正在由日本转移到中国,尤其是浙江温州和广东珠三角地区,许多家电厂家在家电中生产也要大量用到电机。
不管是电机生产厂家,还是将电机作为它们的产品中的零部件的厂家,要将它们的产品打到国际市场上,迫切需要IS09002认证。
而IS09002要求生产产品所用的零部件以及最终的产品都要经过本单位的质量检测,也就是说,每年要检测上亿个电机,故对电机测试仪的需求非常迫切。
电机测试的参数主要有:效率、功率因数、定子输入电流、转矩、转速等,本课题主要研究转速的测量。
转速是各类电机运行中的一个重要物理量,如何准确、快速而又方便地测量电机转速,极为重要。
红外线数字转速电路是一种非接触式,光电传感的转速计量仪器。
它由红外光源、遮光圆盘、红外探头、信号处理电路与数显装置等组成。
遮光圆盘随电机转轴一同转动,红外探头将从圆盘上的小孔透射来的光信号转换为电信号,然后通过计数脉冲的频率,即可在数显装置上读出旋转轴的转速。
目前我国的转速计量技术与发达国家相比,在精度上与发达国家还有一定的差距。
国家质量监督局的文件显示,目前在我国工业领域应用的高精度转速计量仪器中,90%的转速测量仪的测量准确度只能达到0.1%左右,而在发达国家的测量精度能达到0.05%。
可想而知,两者测量精度的不一样,会在产品的质量上产生什么样的结果。
同样由于机械式转速测量仪的精度上和测量方式上远远比不上光电式转速测量仪,所以采用红外数字转速测量仪是转速测量仪器发展的一种不可避免的趋势。
1 设计要求红外线数字转速电路是一种代替机械转速电路,并用来测量转动速率的计量仪表。
1.1 设计目的(1)掌握红外线光电转换器的工作原理;(2)掌握红外线转速电路的设计、组装、调试方法。
1.2 设计内容及要求(1)设计四位数数值的红外线转速表,转速表基于红外线采样,测速范围为0000 - 9999转/分,实现近距离测量;(2)红外发光管发射的红外线经由红外探头得到,在接收电路中进行一系列的信号处理,得出被测转速的脉冲信号;(3)画出完整的电路图,组装、调试红外线转速表,写出设计、调试报告;(4)选作远距离的转速测量。
2 转速测量系统的原理2.1 转速测量方法转速是指作圆周运动的物体在单位时间内所转过的圈数,其大小及变化往往意味着机器设备运转的正常与否。
因此,转速测量一直是工业领域的一个重要问题。
按照不同的理论方法,先后产生过模拟测速法(如离心式转速表) 、同步测速法(如机械式或闪光式频闪测速仪) 以及计数测速法。
计数测速法又可分为机械式定时计数法和电子式定时计数法。
本文介绍的采用单片机和红外采样部分组成的高精度转速测量系统,其转速测量方法采用的就是电子式定时计数法。
对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。
在频率的工程测量中,电子式定时计数测量频率的方法一般有三种:M法(测频法) 、T 法(测周期法) 和M/T 法(频率/周期法)。
2.1.1 M法(测频法)在规定的检测时间内,检测光电脉冲发生器所产生的脉冲信号的个数来确定转速。
虽然检测时间一定,但检测的起止时间具有随机性,因此M法测量转速在极端情况下会产生 1个转速脉冲的误差。
当被测转速较高或电机转动一圈发出的转速脉冲信号的个数较大时,才有较高的测量精度,因此M法适合于高速测量。
2.1.2 T法(测周期法)它是测量光电脉冲发生器所产生的相邻两个转速脉冲信号的时间来确定转速。
相邻两个转速脉冲信号时间的测量是采用对已知高频脉冲信号进行计数来实现的。
在极端情况下,时间的测量会产生±1个高频脉冲周期,因此T法在被测转速较低(相邻两个转速脉冲信号时间较大)时,才有较高的测量精度,所以T法适合于低速测量。
2.1.3 M/T法(频率/周期法)它是同时测量检测时间和在此检测时间内光电脉冲发生器所产生的转速脉冲信号的个数来确定转速。
由于同时对两种脉冲信号进行计数,因此只要“同时性”处理得当,M/T法在高速和低速时都具有较高的测速精度。
本设计要实现在转速范围0000 - 9999转/分之间测量转速,所以红外数字转速表既要测量低速转速又要测量高速转速,而M/T法在高速和低速时都有较高的精度。
由于M/T 法可在整个速度范围内获得高分辨率,可在不损失精度和分辨率的前提下获得快速响应,所以本次设计采用M/T法。
2.2 转速测量原理一般的转速长期测量系统是预先在轴上安装一个有60 齿的测速齿盘,用变磁阻式或电涡流式传感器获得一转60倍转速脉冲,再用测频的办法实现转速测量。
而临时性转速测量系统,可采用红外采样系统,从转轴上预先粘贴的一个标志上获得一转一个转速脉冲,随后利用电子倍频器和测频方法实现转速测量。
不论长期或临时转速测量,都可以在微处理器的参与下,通过测量转轴上预留的一转一齿的鉴相信号或光电信号的周期,换算出转轴的频率或转速。
即通过速度传感器,将转速信号变为电脉冲,利用微机在单位时间内对脉冲进行计数,再经过软件计算获得转速数据。
亦即:n*= (1)N)/(Tm◆n ——转速,单位:转/ 分钟;◆N ——采样时间内所计脉冲个数;◆T ——采样时间,单位:分钟;◆m ——每旋转一周所产生的脉冲个数(通常指测速码盘的齿数) 。
如果m=60,那么1秒钟内脉冲个数N就是转速n,即:160=)*60)/(/( (2)NNNTm⨯n==◆通常m为60。
3 系统概述系统主要由AT89S52单片机处理系统、电机、信号采集单元、信号处理单元和显示系统等几个部分组成,如图1:图1 系统组成框图3.1 转动系统红外线转速表采用的红外线探头有直接式和反射式两种。
本设计中采用直射式测量电机转速。
当不透光的物体挡住发射与接收之间的间隙时,接收电路产生电信号。
3.2信号采集及其处理被测物理量经过红外探头进行光电变换后,变为电阻、电流、电压、电感等某种电参数的变化值。
为了进行信号的分析、处理、显示和记录,须对信号作放大、运算、分析等处理,这就引入了中间变化电路。
3.3单片机处理电路用于测量转速的脉冲信号通过P3.5/T1输入单片机,用AT89S52的定时计数器T1对脉冲信号进行计数,用定时计数器T0进行定时,每50ms产生一个中断对数码管进行刷新,产生120个中断后(即6s),进行一次转速处理,再通过单片机对T1的脉冲数进行运算转换后,用数码管显示电机的转速。
3.4显示电路系统通过四位七段数码管实时显示电机的转速值。
4 设计的具体实现4.1 系统硬件电路的设计4.1.1脉冲产生模块设计设计采用了红外光电传感器,进行非接触式检测。