极坐标和参数方程基础知识及重点题型word版本
高中数学选修44极坐标与全参数方程知识点与题型

选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1) 极坐标系: 如图 4-4-1 所示,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位, 一个角度单位 ( 往常取弧度 ) 及其正方向 ( 往常取逆时针方向 ) ,这样就成立了一个极坐标系.(2) 极坐标: 平面上任一点 M 的地点能够由线段 OM 的长度 ρ 和从 Ox 到 OM 的角度 θ 来刻画,这两个数构成的有序数对 ( ρ ,θ) 称为点M 的极坐标.此中 ρ 称为点 M 的极径, θ 称为点 M 的极角. 2.极坐标与直角坐标的互化点 M直角坐标 (x , y)极坐标 (ρ, θ)互化 公式题型一 极坐标与直角坐标的互化1、已知点 P 的极坐标为 ( 2,) ,则点 P 的直角坐标为 ( )4A.( 1,1)B. (1,-1 )C. (-1 ,1)D.(-1 ,-1)2、设点 P 的直角坐标为 ( 3,3) ,以原点为极点,实轴正半轴为极轴成立极坐标系(02 ) ,则点 P 的极坐标为( )A . (32,3 )B .(32,5)C .(3,5)D .(3,3)44 4 43.若曲线的极坐标方程为 ρ = 2sin θ +4cos θ ,以极点为原点,极轴为 x 轴正半轴 成立直角坐标系,则该曲线的直角坐标方程为 ________.4.在极坐标系中,过点 (1,0) 而且与极轴垂直的直线方程是 ( )A .ρ =cos θB . ρ = sin θC . ρcos θ= 1D.ρ sin θ= 15.曲线 C 的直角坐标方程为 x 2+y 2- 2x =0,以原点为极点, x 轴的正半轴为极轴成立极坐标系,则曲线 C 的极坐标方程为 ________.π6. 在极坐标系中,求圆ρ=2cos θ与直线 θ= 4( ρ>0) 所表示的图形的交点的极坐标.题型二极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,假如不可以直接用极坐标解决,可先转变成直角坐标方程,而后求解.ππ3与极1. 在极坐标系中,已知圆 C经过点 P(2,4 ) ,圆心为直线ρsinθ-3=-2轴的交点,求圆 C 的直角坐标方程.π2.圆的极坐标方程为ρ=4cos θ,圆心为 C,点 P 的极坐标为 4,3,则|CP| =________.π3.在极坐标系中,已知直线 l 的极坐标方程为ρ sin θ+4=1,圆 C的圆心的极坐标π是 C 1,4,圆的半径为 1.(i)则圆 C的极坐标方程是 ________; (ii) 直线 l 被圆 C所截得的弦长等于 ________.π4. 在极坐标系中,已知圆C:ρ= 4cos θ被直线 l :ρsinθ-6=a截得的弦长为2 3,则实数 a 的值是 ________.二、参数方程1.参数方程和一般方程的互化(1)曲线的参数方程和一般方程是曲线方程的不一样形式.一般地,能够经过消去参数而从参数方程获得一般方程.(2)假如知道变数 x, y 中的一个与参数t 的关系,比如x=f(t),把它代入一般方程,求出另一个变数与参数的关系y=g(t),那么,x= f t ,就是曲线的参数方程.y= g t2.常有曲线的参数方程和一般方程点的轨迹一般方程直线y- y0= tan α(x-x0 )圆x2+ y2=r 2椭圆x2y2a2+b2= 1(a>b>0)参数方程x=x0+ tcos α(t 为参数 )y=y0+ tsin αx= rcos θ( θ为参数 )y= rsin θx= acos φ(φ为参数 )y= bsin φ题型一参数方程与一般方程的互化【例 1】把以下参数方程化为一般方程:1 x=3+cos θ,x=1+2t ,(1)(2)3 y=2-sin θ;y=5+t.2题型二直线与圆的参数方程的应用1、已知直线 l 的参数方程为x= 1+ t,x= 2cos θ+ 2,(参数 t∈R),圆 C 的参数方程为(参y= 4- 2t y= 2sin θ数θ∈ [0,2π,])求直线 l 被圆 C 所截得的弦长.2、曲线 C的极坐标方程为:ρ =acosθ(a>0),直线l的参数方程为:(1)求曲线 C与直线 l 的一般方程;(2)若直线 l 与曲线 C相切,求 a 值.3、在直角坐标系xoy 中,曲线 C1的参数方程为,(α 为参数),以原点O为极点, x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)求曲线C1的一般方程与曲线C2的直角坐标方程;(Ⅱ)设 P 为曲线 C1上的动点,求点P 到 C2上点的距离最小值.综合应用1、曲线x25t(t为参数 ) 与坐标轴的交点是()y12tA(0,2、1B1、1,0)C(0,4)、(8,0)D(0,5 、) (,0)(0,) () (8,0) 52529x2sin2(为参数)化为一般方程为()3、参数方程sin2yA.y x2B. y x2C.y x2(2x3)D. y x2(0y 1)3.判断以下结论的正误.(1)平面直角坐标系内的点与坐标能成立一一对应关系,在极坐标系中点与坐标也是一一对应关系 ()π(2)若点 P 的直角坐标为 (1 ,- 3) ,则点 P的一个极坐标是(2,-3)()(3)在极坐标系中,曲线的极坐标方程不是独一的()(4)极坐标方程θ=π ( ρ≥0) 表示的曲线是一条直线 ()x t1)4.参数方程为t (t为参数 ) 表示的曲线是(y2A.一条直线B.两条直线C.一条射线D.两条射线5.与参数方程为A .x2y24C.x2y24x t(t为参数 ) 等价的一般方程为()y 2 1 t1 B .x2y21(0x1)41(0 y 2) D .x2y21(0x1,0 y 2)415.参数方程x2为参数所表示的曲线是()y tan cotA.直线B.两条射线 C .线段D.圆16.以下参数方程(t 是参数)与一般方程y2x 表示同一曲线的方程是:()x tB.x2x tD .x1cos2tA.t 2sin t C.y t1cos2ty y sin ty tant3. 由参数方程x 2 sec 21 为参数,给出曲线在直角坐标系下的方程y 2tan22是。
(完整版)极坐标和参数方程知识点+典型例题及其详解

极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.错误!.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2. 错误!.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). (三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。
(完整版)极坐标与参数方程知识点总结大全

极坐标与参数方程一、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.练习1.若直线的参数方程为,则直线的斜率为( )12()23x tt y t=+⎧⎨=-⎩为参数A .B .C .D .2323-3232-2.下列在曲线上的点是( )sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数A .B .C .D .1(,231(,)42-3.将参数方程化为普通方程为( )222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数A .B .C .D .2y x =-2y x =+2(23)y x x =-≤≤2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,它的参数方程为:。
4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
(完整word版)高中数学极坐标与参数方程大题(详解)

参数方程极坐标系解答题1.已知曲线C:+=1,直线 l:(t为参数)(Ⅰ)写出曲线 C 的参数方程,直线l 的一般方程.(Ⅱ)过曲线 C 上随意一点P 作与 l 夹角为 30°的直线,交l 于点 A ,求 |PA|的最大值与最小值.考点:参数方程化成一般方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.剖析:(Ⅰ )联想三角函数的平方关系可取x=2cos θ、y=3sin θ得曲线 C 的参数方程,直接消掉参数t 得直线 l 的一般方程;(Ⅱ )设曲线C 上随意一点P( 2cosθ, 3sinθ).由点到直线的距离公式获得P 到直线 l 的距离,除以sin30°进一步获得 |PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线 C:+=1 ,可令 x=2cos θ、 y=3sin θ,故曲线 C 的参数方程为,(θ为参数).对于直线l:,由① 得: t=x ﹣ 2,代入②并整理得: 2x+y ﹣ 6=0;(Ⅱ )设曲线C 上随意一点P( 2cosθ, 3sinθ).P 到直线 l 的距离为.则,此中α为锐角.当 sin(θ+α)=﹣ 1 时, |PA|获得最大值,最大值为.当 sin(θ+α)=1 时, |PA|获得最小值,最小值为.评论:本题考察一般方程与参数方程的互化,训练了点到直线的距离公式,表现了数学转变思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:,曲线 C 的参数方程为:(α为参数).(I)写出直线 l 的直角坐标方程;(Ⅱ)求曲线 C 上的点到直线 l 的距离的最大值.考点:参数方程化成一般方程.专题:坐标系和参数方程.剖析:(1)第一,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)第一,化简曲线 C 的参数方程,而后,依据直线与圆的地点关系进行转变求解.解答:解:( 1)∵直线 l 的极坐标方程为:,∴ρ(sinθ﹣cosθ) =,∴,∴ x ﹣ y+1=0 .(2)依据曲线 C 的参数方程为:( α为参数).得( x ﹣ 2) 2+y 2=4 ,它表示一个以( 2, 0)为圆心,以 2 为半径的圆,圆心到直线的距离为: d= ,∴曲线 C 上的点到直线l 的距离的最大值= .评论: 本题要点考察了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线 C 1:( t 为参数),C 2:( θ为参数).( 1)化 C 1,C 2 的方程为一般方程,并说明它们分别表示什么曲线;( 2)若 C 1 上的点 P 对应的参数为 t=, Q 为 C 2 上的动点,求 P Q 中点 M 到直线 C 3: ( t 为参数)距离的最小值.考点 : 圆的参数方程;点到直线的距离公式;直线的参数方程. 专题 : 计算题;压轴题;转变思想.剖析: (1)分别消去两曲线参数方程中的参数获得两曲线的一般方程,即可获得曲线C 1 表示一个圆;曲线C 2表示 一个椭圆;(2)把 t 的值代入曲线 C 1 的参数方程得点 P 的坐标,而后把直线的参数方程化为一般方程,依据曲线 C 2 的参数方程设出 Q 的坐标, 利用中点坐标公式表示出M 的坐标, 利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可获得距离的最小值. 解答:(t 为参数)化为一般方程得: (x+4 ) 2+( y ﹣ 3) 2=1,解:( 1)把曲线 C 1:所以此曲线表示的曲线为圆心(﹣4, 3),半径 1 的圆;把 C 2:( θ为参数) 化为一般方程得: + =1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在 x 轴上,长半轴为 8,短半轴为 3 的椭圆;(2)把 t=代入到曲线 C 1 的参数方程得: P (﹣ 4, 4),把直线 C 3:(t 为参数)化为一般方程得: x ﹣ 2y ﹣ 7=0,设 Q 的坐标为 Q ( 8cos θ, 3sin θ),故 M (﹣ 2+4cos θ, 2+ sin θ)所以 M 到直线的距离d= =,(此中 sin α= , cos α= )进而当 cos θ= , sin θ=﹣时, d 获得最小值.评论:本题考察学生理解并运用直线和圆的参数方程解决数学识题,灵巧运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.4.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴成立直角坐标系,圆 C 的极坐标方程为,直线 l 的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆 C上不一样于 A , B 的随意一点.(Ⅰ )求圆心的极坐标;(Ⅱ)求△ PAB 面积的最大值.考点:参数方程化成一般方程;简单曲线的极坐标方程.专题:坐标系和参数方程.剖析:(Ⅰ )由圆 C 的极坐标方程为2,把,化为ρ=代入即可得出.(II )把直线的参数方程化为一般方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得 |AB|=2,利用三角形的面积计算公式即可得出.解答:C 的极坐标方程为2,解:(Ⅰ )由圆,化为ρ=把代入可得:圆 C 的一般方程为x 2+y2﹣ 2x+2y=0 ,即( x﹣ 1)2+( y+1 )2=2.∴圆心坐标为( 1,﹣ 1),∴圆心极坐标为;(Ⅱ )由直线l 的参数方程(t为参数),把t=x代入y=﹣1+2t 可得直线l 的一般方程:,∴圆心到直线l 的距离,∴|AB|=2==,点 P 直线 AB 距离的最大值为,.评论:本题考察了把直线的参数方程化为一般方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考察了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy 中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴成立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.考点:椭圆的参数方程;椭圆的应用.专题:计算题;压轴题.剖析:由题意椭圆的参数方程为为参数),直线的极坐标方程为.将椭圆和直线先化为一般方程坐标,而后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为一般方程为( 4 分)点到直线的距离( 6 分)所以椭圆上点到直线距离的最大值为,最小值为.( 10 分)评论:本题考察参数方程、极坐标方程与一般方程的差别和联系,二者要会相互转变,依据实质状况选择不一样的方程进行求解,这也是每年高考必考的热门问题.6.在直角坐标系xoy 中,直线 I 的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴成立极坐标系,曲线 C 的极坐标方程为ρ=cos(θ+).(1)求直线 I 被曲线 C 所截得的弦长;(2)若 M ( x, y)是曲线 C 上的动点,求 x+y 的最大值.考点:参数方程化成一般方程.专题:计算题;直线与圆;坐标系和参数方程.剖析:(1)将曲线 C 化为一般方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长知足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M ,再由两角和的正弦公式化简,运用正弦函数的值域即可获得最大值.解答:解:( 1)直线 I 的参数方程为(t为参数),消去t,可得, 3x+4y+1=0 ;因为ρ= cos(θ+ ) = (),2 2 2﹣x+y=0 ,其圆心为(,﹣),半径为 r= ,即有ρ=ρcosθ﹣ρsinθ,则有 x +y圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M (,),则 x+y=因为θ∈R,则x+y 的最大值为=sin (1.),评论:本题考察参数方程化为标准方程,极坐标方程化为直角坐标方程,考察参数的几何意义及运用,考察学生的计算能力,属于中档题.7.选修 4﹣ 4:参数方程选讲已知平面直角坐标系xOy ,以 O 为极点, x 轴的非负半轴为极轴成立极坐标系,P 点的极坐标为,曲线 C 的极坐标方程为.(Ⅰ)写出点 P 的直角坐标及曲线 C 的一般方程;(Ⅱ)若 Q 为 C 上的动点,求PQ 中点 M 到直线 l:(t为参数)距离的最小值.考参数方程化成一般方程;简单曲线的极坐标方程.点:专坐标系和参数方程.题:分( 1)利用 x= ρcosθ, y= ρsinθ即可得出;析:( 2)利用中点坐标公式、点到直线的距离公式及三角函数的单一性即可得出,解解( 1)∵ P 点的极坐标为,答:∴=3,= .∴点 P 的直角坐标2 2 2把ρ=x +y, y= ρsinθ代入可得,即∴曲线 C 的直角坐标方程为.( 2)曲线 C 的参数方程为(θ为参数),直线 l 的一般方程为 x﹣ 2y﹣ 7=0设,则线段 PQ 的中点.那么点 M 到直线 l 的距离. ,∴点 M 到直线 l 的最小距离为.点本题考察了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的评:单一性等基础知识与基本技术方法,考察了计算能力,属于中档题.8.在直角坐标系xOy 中,圆 C 的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴成立极坐标系.(Ⅰ)求圆 C 的极坐标方程;(Ⅱ)直线 l 的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O, P,与直线l 的交点为Q,求线段 PQ 的长.考点:简单曲线的极坐标方程;直线与圆的地点关系.专题:直线与圆.剖析:(I)圆 C 的参数方程(φ为参数).消去参数可得:( x﹣ 1)2+y2=1.把 x= ρcosθ, y= ρsinθ代入化简即可获得此圆的极坐标方程.(II )由直线 l 的极坐标方程是ρ( sinθ+ )=3 ,射线 OM :θ= .可得一般方程:直线 l ,射线 OM .分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:( I)圆 C 的参数方程(φ为参数).消去参数可得:( x﹣1)2+y2=1.把 x= ρcosθ,y= ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II )如下图,由直线l 的极坐标方程是ρ( sinθ+ ) =3 ,射线OM :θ= .可得一般方程:直线l ,射线OM .联立,解得,即Q.联立,解得或.∴P.∴|PQ|= =2.评论:本题考察了极坐标化为一般方程、曲线交点与方程联立获得的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题.9.在直角坐标系 xoy 中,曲线 C1的参数方程为(α为参数),以原点 O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线 C2的极坐标方程为ρsin(θ+ ) =4 .( 1)求曲线 C1的一般方程与曲线 C2 的直角坐标方程;( 2)设 P 为曲线 C1上的动点,求点 P 到 C2上点的距离的最小值,并求此时点P 的坐标.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.剖析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcosθ、 y=ρsinθ,把极坐标方程化为直角坐标方程.(2)求得椭圆上的点到直线x+y﹣8=0的距离为,可得 d 的最小值,以及此时的α的值,进而求得点P的坐标.解答:解:( 1)由曲线 C1:,可得,两式两边平方相加得:,即曲线 C1 的一般方程为:.由曲线 C2 :得:,即ρsinθ+ρcosθ=8,所以 x+y ﹣ 8=0,即曲线 C2 的直角坐标方程为:x+y ﹣ 8=0 .(2)由( 1)知椭圆 C1与直线 C2无公共点,椭圆上的点到直线 x+y ﹣ 8=0 的距离为,∴当时, d 的最小值为,此时点P 的坐标为.评论:本题主要考察把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.10.已知直线l 的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心 C 的直角坐标;(Ⅱ)由直线l 上的点向圆 C 引切线,求切线长的最小值.考点:简单曲线的极坐标方程.专题:计算题.剖析:(I)先利用三角函数的和角公式睁开圆 C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用2 2 2C 的直角坐标.ρcosθ=x ,ρsinθ=y ,ρ=x +y ,进行代换即得圆 C 的直角坐标方程,进而获得圆心(II )欲求切线长的最小值,转变为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:( I)∵,∴,∴圆 C 的直角坐标方程为,即,∴圆心直角坐标为.( 5 分)(II )∵ 直线 l 的一般方程为,圆心 C 到直线 l 距离是,∴直线 l 上的点向圆 C 引的切线长的最小值是( 10 分)评论:本题考察点的极坐标和直角坐标的互化,能在极坐标系顶用极坐标刻画点的地点,领会在极坐标系和平面直角坐标系中刻画点的地点的差别,能进行极坐标和直角坐标的互化.11.在直角坐标系 xOy 中,以 O 为极点, x 轴正半轴为极轴成立坐标系,直线l 的参数方程为,( t 为参数),曲线 C 1 的方程为 ρ( ρ﹣ 4sin θ) =12 ,定点 A ( 6, 0),点 P 是曲线 C 1 上的动点, Q 为 AP 的中点.( 1)求点 Q 的轨迹 C 2 的直角坐标方程;( 2)直线 l 与直线 C 2 交于 A ,B 两点,若 |AB| ≥2 ,务实数 a 的取值范围.考点 : 简单曲线的极坐标方程;参数方程化成一般方程. 专题 : 坐标系和参数方程.剖析: (1)第一,将曲线 C 1 化为直角坐标方程,而后,依据中点坐标公式,成立关系,进而确立点Q 的轨迹 C 2 的直角坐标方程;(2)第一,将直线方程化为一般方程,而后,依据距离关系,确立取值范围.解答: 解:( 1)依据题意,得22﹣ 4y=12 ,曲线 C 1 的直角坐标方程为: x +y 设点 P ( x ′, y ′), Q ( x , y ),依据中点坐标公式,得,代入 x 2+y 2﹣ 4y=12 ,得点 Q 的轨迹 C 2 的直角坐标方程为: ( x ﹣3) 2+( y ﹣ 1) 2=4,( 2)直线 l 的一般方程为: y=ax ,依据题意,得,解得实数 a 的取值范围为: [0, ] .评论: 本题要点考察了圆的极坐标方程、 直线的参数方程, 直线与圆的地点关系等知识, 考察比较综合, 属于中档题,解题要点是正确运用直线和圆的特定方程求解.12.在直角坐标系 xoy中以O 为极点,x轴正半轴为极轴成立坐标系.圆 C 1,直线C 2 的极坐标方程分别为ρ=4sin θ,ρcos() =2.( Ⅰ )求C 1 与 C 2 交点的极坐标;( Ⅱ )设 P 为 C 1 的圆心, Q 为 C 1 与 C 2 交点连线的中点, 已知直线 PQ 的参数方程为( t ∈R 为参数),求 a ,b 的值.考点 : 点的极坐标和直角坐标的互化;直线与圆的地点关系;参数方程化成一般方程. 专题 : 压轴题;直线与圆.剖析: (I )先将圆 C 1,直线 C 2 化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由( I )得, P 与 Q 点的坐标分别为( 0, 2),(1, 3),进而直线 PQ 的直角坐标方程为 x ﹣y+2=0 ,由参数方程可得 y= x ﹣+1,进而结构对于 a , b 的方程组,解得 a , b 的值.解答: 解:( I )圆 C 1,直线 C 2 的直角坐标方程分别为x 2+( y ﹣2) 2=4, x+y ﹣ 4=0 ,解得 或 ,∴C 与 C 交点的极坐标为( 4, ).( 2,).12(II )由( I )得, P 与 Q 点的坐标分别为( 0, 2),(1, 3), 故直线 PQ 的直角坐标方程为 x ﹣ y+2=0 ,由参数方程可得 y= x ﹣ +1,∴,解得 a=﹣ 1,b=2 .评论: 本题主要考察把极坐标方程化为直角坐标方程、把参数方程化为一般方程的方法,方程思想的应用,属于基础题.13.在直角坐标系 xOy 中, l 是过定点 P ( 4, 2)且倾斜角为 α的直线;在极坐标系(以坐标原点 O 为极点,以 x 轴非负半轴为极轴,取同样单位长度)中,曲线 C 的极坐标方程为 ρ=4cos θ( Ⅰ )写出直线 l 的参数方程,并将曲线C 的方程化为直角坐标方程;( Ⅱ )若曲线 C 与直线订交于不一样的两点 M 、 N ,求 |PM|+|PN|的取值范围.解答:解:( I )直线 l 的参数方程为( t 为参数).2曲线 C 的极坐标方程 ρ=4cos θ可化为 ρ=4 ρcos θ.把 x= ρcos θ,y= ρsin θ代入曲线 C 的极坐标方程可得 x 2+y 2=4x ,即( x ﹣ 2) 2+y 2=4.(II )把直线 l 的参数方程为 ( t 为参数)代入圆的方程可得: t 2+4( sin α+cos α) t+4=0 . ∵曲线 C 与直线订交于不一样的两点 M 、 N ,∴△ =16 ( sin α+cos α)2﹣ 16> 0, ∴sin αcos α>0,又 α∈[0,π),∴.又 t 1+t 2=﹣ 4( sin α+cos α), t 1t 2=4.∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵ , ∴,∴.∴|PM|+|PN| 的取值范围是.评论:本题考察了直线的参数方程、圆的极坐标方程、直线与圆订交弦长问题,属于中档题.14.在直角坐标系xOy 中,直线l 的参数方程为(t为参数),以原点为极点,x 轴正半轴为极轴成立极坐标系,⊙C 的极坐标方程为ρ=2 sinθ.(Ⅰ)写出⊙ C 的直角坐标方程;(Ⅱ)P 为直线 l 上一动点,当P 到圆心 C 的距离最小时,求P 的直角坐标.考点:点的极坐标和直角坐标的互化.专题:坐标系和参数方程.剖析:2,把代入即可得出;.(I)由⊙ C 的极坐标方程为ρ=2 sinθ.化为ρ=2(II )设 P ,又 C .利用两点之间的距离公式可得|PC|= ,再利用二次函数的性质即可得出.解答:解:( I)由⊙ C 的极坐标方程为ρ=2 sin θ.2 2 2,∴ρ=2 ,化为 x +y =配方为=3.(II )设 P ,又 C .∴|PC|= = ≥2 ,所以当 t=0 时, |PC|获得最小值 2 .此时 P( 3,0).评论:本题考察了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考察了推理能力与计算能力,属于中档题.15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2订交于A,B两点.(Ⅰ)把曲线 C1, C2的极坐标方程转变为直角坐标方程;(Ⅱ)求弦 AB 的长度.考点:简单曲线的极坐标方程.专题:计算题.剖析:(Ⅰ )利用直角坐标与极坐标间的关系,即利用C1的直角坐标方程.(Ⅱ )利用直角坐标方程的形式,先求出圆心(长度.解答:解:(Ⅰ)曲线 C2 :( p∈R)表示直线 y=x,2ρcosθ曲线 C1:ρ=6cosθ,即ρ=62 2 2 2所以 x +y =6x 即( x﹣3) +y =92 2 2C2及曲线ρcosθ=x ,ρsinθ=y ,ρ=x +y ,进行代换即得曲线3,0)到直线的距离,最后联合点到直线的距离公式弦AB 的(Ⅱ )∵圆心( 3, 0)到直线的距离,r=3 所以弦长 AB==.∴弦 AB 的长度.评论:本小题主要考察圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.16.在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴成立坐标系,直线l 的极坐标方程为ρsin(θ+)=,圆 C 的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心 C 的极坐标;(Ⅱ)当 r 为什么值时,圆 C 上的点到直线l 的最大距离为3.考点:简单曲线的极坐标方程;直线与圆的地点关系.专题:计算题.剖析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的一般方程;利用同角三角函数的基本关系,消去θ可得曲线 C 的一般方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P 到直线 l 的距离的最大值,最后列出对于 r 的方程即可求出r 值.解答:解:( 1)由ρsin(θ+ ) = ,得ρ( cosθ+sin θ) =1,∴直线 l: x+y ﹣ 1=0 .由得 C:圆心(﹣,﹣).∴圆心 C 的极坐标( 1,).(2)在圆 C:的圆心到直线l 的距离为:∵圆 C 上的点到直线l 的最大距离为3,∴.r=2﹣∴当 r=2 ﹣时,圆C上的点到直线l 的最大距离为3.评论:本小题主要考察坐标系与参数方程的有关知识,详细波及到极坐标方程、参数方程与一般方程的互化,点到直线距离公式、三角变换等内容.17.选修 4﹣ 4:坐标系与参数方程在直角坐标 xOy 中,圆 C 1: x 2+y 2=4,圆 C 2:(x ﹣ 2) 2+y 2=4.( Ⅰ )在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆 C 1, C 2 的极坐标方程,并求出圆 C 1, C 2的交点坐标(用极坐标表示) ; ( Ⅱ )求圆 C 1 与 C 2 的公共弦的参数方程.考点 : 简单曲线的极坐标方程;直线的参数方程. 专题 : 计算题;压轴题.剖析:(I )利用,以及 x 2 2 2C 1, C 2 的极坐标方程,求出圆 C 1, C 2 的交点极坐标,+y =ρ,直接写出圆 而后求出直角坐标(用坐标表示) ;(II )解法一:求出两个圆的直角坐标,直接写出圆 C 1 与 C 2 的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,而后求出圆 C 1 与 C 2 的公共弦的参数方程.解答:解:( I )由 222, x +y =ρ,可知圆 ,的极坐标方程为 ρ=2,圆 ,即的极坐标方程为 ρ=4cos θ,解得: ρ=2,,故圆 C 1, C 2 的交点坐标( 2,),( 2, ).(II )解法一:由得圆 C 1, C 2 的交点的直角坐标( 1,),(1,).故圆 C 1, C 2 的公共弦的参数方程为(或圆 C 1, C 2 的公共弦的参数方程为)(解法二)将 x=1 代入得 ρcos θ=1进而于是圆 C 1, C 2 的公共弦的参数方程为 .评论: 本题考察简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考察计算能力.。
极坐标与参数方程题型和方法归纳.doc

极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。
方法如下:x cos(1) 极坐标方程y sin直角坐标方程2x 2y 2或x 2y2tany ( xx(2) 参数 方程消参(代 入法、加 减法、 sin 2+cos21等)直角坐 标方程圆、椭圆 、直线的参数方程(3) 参数方程 直角坐标方程 (普通方程 ) 极坐标方程1、已知直线 l 的参数方程为x1 1 t( t 为2y3 3t参数)以坐标原点 O 为极点,以 x 轴正半轴为极轴,建立极坐标系,曲线 C 的方程为sin3 cos 2.(Ⅰ)求曲线 C 的直角坐标方程;(Ⅱ)写出直线 l 与曲线 C 交点的一个极坐标 .题型二:三个常用的参数方程及其应用(1)圆(x a)2( y b)2r 2的参数方程是:( 为参数)x a r cosy b r sinx2y2(2)椭圆a2b21(a0, b0, a b) 的参数方程是:x a cos,( 为参数 )y b sin(3)过定点P( x0, y0)倾斜角为的直线l的标准x x0 t cos参数方程为:y y0 ,( t为参数 )t sin对( 3)注意:P点所对应的参数为 t 0 0 ,记直线l 上任意两点A, B 所对应的参数分别为 t1 ,t2,则①AB t1t2,②PA PA t1t2 t1 t2 ,t1 t2 0,t1 t 2 , t1 t2 0③PA PA t1t2t 1t22、在直角坐标系xoy中,曲线C的参数方程为x a cost( t 为参数, a 0 )以坐标原点 O y 2sin t为极点,以 x 轴正半轴为极轴,建立极坐标系,已知直线的极坐标方程为4 .l cos2 2(Ⅰ)设 P 是曲线 C 上的一个动点,当 a2时,求点 P 到直线 l 的距离的最小值;(Ⅱ)若曲线 C 上的所有点均在直线 l 的右下方,求 a 的取值范围.x 12cos3、已知曲线C1:y 4sin(参数R ),以坐标原点 O 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线 C2的极坐标方程为3,点 Q 的极坐标为 (4 2, ) .cos( ) 43(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点 Q 的直角坐标;(2)设P为曲线C1上的点,求PQ中点M到曲线 C2上的点的距离的最小值.x 1 1 t4、已知直线 l :2( t 为参数),曲线 C 1 : y3t2xcos( 为参数) .y sin( 1)设 l 与 C 1相交于两点 A, B ,求 | AB |;( 2)若把曲线 C 1上各点的横坐标压缩为原来的 1倍,纵坐标压缩为原来的 22曲线 C 2,设点 P 是曲线 C 2上的一个动点,求它到直线 l 的距离的最小值 .5、在平面直角坐标系xOy 中,已知曲线C :x 3 cos( 为参数),在以坐标原点 O 为极 y sin点,以 x 轴正半轴为极轴建立的极坐标系 中,直线 l 的极坐标方程为2 )1.cos(24( 1)求曲线 C 的普通方程和直线 l 的直角坐标方程;( 2)过点 M ( 1,0) 且与直线 l 平行的直线 l 1交 C(3倍,得到于 A, B 两点,求弦AB 的长.6、面直角坐标系中,曲线 C 的参数方程为x=5 cosα,(α为参数).以坐标原点O y=sin α为极点, x 轴正半轴为极轴建立极坐标系,π直线 l 的极坐标方程为ρcos(θ+4)= 2.l 与 C交于 A、B 两点.(Ⅰ)求曲线 C 的普通方程及直线l 的直角坐标方程;(Ⅱ)设点 P(0,-2),求:①| PA| +| PB| ,1 1②PA PB ,③PA PB,④ AB题型三:过极点射线极坐标方程的应用出现形如:(1)射线OP: 6 (0);(1)直线OP: 6(R )7、在直角坐标系xOy中,圆C的方程为( x3) 2 ( y 1)2 9,以O为极点, x 轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线OP:6(R)与圆 C 交于点 M 、N,求线段 MN 的长.8、在直角坐标系xOy中,圆C的参数方程为x 5cosy( 为参数),以坐标原点为极点,x 6 5sin轴正半轴为极轴建立极坐标系(1)求圆C的极坐标方程;(2)直线l的极坐标方程为足 tan 0 5 , l 与C交于A, B两点,求2 .0,其中0满AB的值.9、在直角坐标系xOy中,直线l经过点P( 1,0),其倾斜角为,以原点 O 为极点,以x轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线 C 的极坐标方程为 2 6 cos 5 0 .(Ⅰ)若直线l 与曲线 C 有公共点,求的取值范围;(Ⅱ)设 M ( x, y) 为曲线C上任意一点,求x y 的取值范围.10、在直角坐标系中xOy 中,已知曲线 E 经过点 P 1, 2 3,其参数方程为x a cos (为参3 y2 sin数),以原点 O 为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA OB,求证:为定值,并求出这个定值.1 2 1 2OA OB11、在平面直角坐标系 xOy 中,曲线 C 1和C2的2x cos , 参数方程分别是x 4t( t 是参数)和y 1 siny 4t( 为参数) .以原点 O 为极点, x 轴的正半轴为极轴建立极坐标系 .( 1)求曲线 C 1的普通方程和曲线 C 2的极坐标方程;(2)射线 OM :( [6 , 4 ])与曲线 C 1的交点为 O ,P,与曲线C2的交点为 O , Q ,求 |OP| |OQ |的最 大值 .。
(完整版)极坐标与参数方程知识点、题型总结(最新整理)

(完整版)极坐标与参数⽅程知识点、题型总结(最新整理)极坐标与参数⽅程知识点、题型总结⼀、伸缩变换:点是平⾯直⾓坐标系中的任意⼀点,在变换),(y x P 的作⽤下,点对应到点,称伸缩变换>?='>?=').0(,y y 0),(x,x :µµλλ?),(y x P ),(y x P '''⼀、1、极坐标定义:M 是平⾯上⼀点,表⽰OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极⾓;⼀般地,,。
,点P 的直⾓坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直⾓坐标极坐标 2、极坐标直⾓坐标?cos sin x y ρθρθ=??=??222tan (0)x y y x xρθ?=+??=≠?3、求直线和圆的极坐标⽅程:⽅法⼀、先求出直⾓坐标⽅程,再把它化为极坐标⽅程⽅法⼆、(1)若直线过点M(ρ0,θ0),且极轴到此直线的⾓为α,则它的⽅程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆⼼为M (ρ0,θ0),半径为r 的圆⽅程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0⼆、参数⽅程:(⼀).参数⽅程的概念:在平⾯直⾓坐标系中,如果曲线上任意⼀点的坐标都是某个变数的函数并且对于的每⼀个允许值,由这个⽅程所确y x ,t ?==),(),(t g y t f x t 定的点都在这条曲线上,那么这个⽅程就叫做这条曲线的参数⽅程,联系变数),(y x M 的变数叫做参变数,简称参数。
相对于参数⽅程⽽⾔,直接给出点的坐标间关系的y x ,t ⽅程叫做普通⽅程。
(⼆).常见曲线的参数⽅程如下:直线的标准参数⽅程1、过定点(x 0,y 0),倾⾓为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的⼏何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t|(2)直线上对应的参数是。
最新极坐标与参数方程基础知识附重点题型

高中数学回归课本校本教材24(一)基础知识 参数极坐标1.极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。
2.常见的曲线的极坐标方程(1)直线过点M 00(,)ρθ,倾斜角为α常见的等量关系:正弦定理sin sin OP OMOMP OPM=∠∠,0OMP παθ∠=-+OPM αθ∠=-;(2)圆心P 00(,)ρθ半径为R 的极坐标方程的等量关系:勾股定理或余弦定理;(3)圆锥曲线极坐标:1cos epe ρθ=-,当1e >时,方程表示双曲线;当1e =时,方程表示抛物线;当01e <<时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。
极坐标方程324cos ρθ=-表示的曲线是 双曲线3.参数方程:(1)圆222()()x a x b r -+-=的参数方程:cos ,sin x a r x b r θθ-=-= (2)椭圆22221x y a b+=的参数方程:cos ,sin x a x b θθ==(3)直线过点M 00(,)x y ,倾斜角为α的参数方程:00tan y y x x α-=-即00cos sin x x y y t θθ--==, 即00cos sin x x t y y t αα=+⎧⎨=+⎩注:0c o s x x t θ-=,0sin y y tθ-=据锐角三角函数定义,T 几何意义是有向线段MP 的数量00000()00.t l M M x y M M M M M M t M M t ><其中表示直线上以定点为起点,任意一点,为终点的有向线段的数量,当点在的上方时,;当点在的下方时,;如:将参数方程222sin (sin x y θθθ⎧=+⎪⎨=⎪⎩为参数)化为普通方程为2(23)y x x =-≤≤ 将2sin y θ=代入22sin x θ=+即可,但是20sin 1θ≤≤;4. 极坐标和直角坐标互化公式:cos sin x y ρθρθ=⎧⎨=⎩ 或222tan (0)xy yx xρθ⎧=+⎪⎨=≠⎪⎩,θ的象限由点(x,y)所在象限确定. (1)它们互化的条件则是:极点与原点重合,极轴与x 轴正半轴重合.(2)将点(,)ρθ变成直角坐标(cos ,sin )ρθρθ,也可以根据几何意义和三角函数的定义获得。
极坐标及参数方程知识点及高考题汇编DOC.doc

极坐标及参数方程知识点及例题一、极坐标知识点1.极坐标系的概念:在平面内取一个定点 O,从 O 引一条射线 Ox,选定一个单位长度以及计算角度的正方向 (通常取逆时针方向为正方向 ),这样就建立了一个极坐标系, O 点叫做极点,射线 Ox 叫做极轴①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可 .2.点 M 的极坐标:设 M 是平面内一点,极点 O 与点 M 的距离| OM |叫做点 M 的极径,记为;以极轴Ox 为始边,射线OM 为终边的xOM 叫做点M 的极角,记为。
有序数对(,) 叫做点M 的极坐标,记为M ( ,) .极坐标( , )与( , 2k )(k Z) 表示同一个点。
极点O 的坐标为(0, )( R ) .3.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与 x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式2 x2 y 2 , x cos ,y sin , tan y( x 0) x4.曲线的极坐标方程:1.直线的极坐标方程:若直线过点M ( 0 , 0 ) ,且极轴到此直线的角为,则它的方程为:sin()0 sin(0)几个特殊位置的直线的极坐标方程( 1)直线过极点(2)直线过点M(a,0)且垂直于极轴(3)直线过M (b,) 且平2 行于极轴方程:( 1)(R )或写成及(2)cos a(3)ρsinθ=b2.圆的极坐标方程: 若圆心为 M ( 0 , 0 ) ,半径为 r 的圆方程为:22 0 cos()2 r 2几个特殊位置的圆的极坐标方程( 1)当圆心位于极点, r 为半径 (2)当圆心位于 C (a,0) (a>0),a 为半径 ( 3) 当圆心位于 C(a,) (a 0) , a 为半径2 方程: (1) r (2)2acos (3)2asin5.在极坐标系中, (0) 表示以极点为起点的一条射线;(R)表示过极点的一条直线 .极坐标方程典型例题考点一 极坐标与直角坐标的互化1.点 M 的直角坐标是 ( 1, 3) ,则点 M 的极坐标为( )A . (2,)B . (2,)C .(2,2)D . (2, 2k),( k Z) 33332.点 2, 2 的极坐标为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学回归课本校本教材24(一)基础知识 参数极坐标 1.极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。
2.常见的曲线的极坐标方程(1)直线过点M 00(,)ρθ,倾斜角为α常见的等量关系:正弦定理sin sin OP OMOMP OPM=∠∠,0OMP παθ∠=-+OPM αθ∠=-;(2)圆心P 00(,)ρθ半径为R 的极坐标方程的等量关系:勾股定理或余弦定理;(3)圆锥曲线极坐标:1cos epe ρθ=-,当1e >时,方程表示双曲线;当1e =时,方程表示抛物线;当01e <<时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。
极坐标方程324cos ρθ=-表示的曲线是 双曲线3.参数方程:(1)圆222()()x a x b r -+-=的参数方程:cos ,sin x a r x b r θθ-=-= (2)椭圆22221x y a b+=的参数方程:cos ,sin x a x b θθ==(3)直线过点M 00(,)x y ,倾斜角为α的参数方程:00tan y y x x α-=-即00cos sin x x y y t θθ--==, 即00cos sin x x t y y t αα=+⎧⎨=+⎩注:0cos x x t θ-=,0sin y y tθ-=据锐角三角函数定义,T 几何意义是有向线段MP u u u r 的数量00000()00.t l M M x y M M M M M M t M M t ><u u u u u u r其中表示直线上以定点为起点,任意一点,为终点的有向线段的数量,当点在的上方时,;当点在的下方时,;如:将参数方程222sin (sin x y θθθ⎧=+⎪⎨=⎪⎩为参数)化为普通方程为2(23)y x x =-≤≤ 将2sin y θ=代入22sin x θ=+即可,但是20sin 1θ≤≤;4. 极坐标和直角坐标互化公式:cos sin x y ρθρθ=⎧⎨=⎩ 或222tan (0)x y yx xρθ⎧=+⎪⎨=≠⎪⎩,θ的象限由点(x,y)所在象限确定. (1)它们互化的条件则是:极点与原点重合,极轴与x 轴正半轴重合.(2)将点(,)ρθ变成直角坐标(cos ,sin )ρθρθ,也可以根据几何意义和三角函数的定义获得。
5. 极坐标的几个注意点:(1)极坐标和直角坐标转化的必要条件是具有共同的坐标原点(极点) 如:已知圆C 的参数方程为32cos 2sin x y θθ⎧=⎪⎨=⎪⎩ (θ为参数),若P 是圆C 与y 轴正半轴的交点,以圆心C 为极点,x 轴的正半轴为极轴建立极坐标系,求过点P 的圆C 的切线的极坐标方程。
5cos()26πρθ-= 如:已知抛物线24y x =,以焦点F 为极点,x 轴的正半轴为极轴建立极坐标系,求抛物线的极坐标方程。
即21cos ρθ=-。
(2)对极坐标中的极径和参数方程中的参数的几何意义认识不足()()222420()21x pt y px p t y pt y t x t ⎧==>⎨=⎩=抛物线的参数方程为:为参数.由于,因此参数的几何意义是抛物线上的点与抛物线的顶点连线的斜率的倒数.如:已知椭圆的长轴长为6,焦距1242F F =,过椭圆左焦点F 1作一直线,交椭圆于两点M 、N ,设21(0)F FM ααπ∠=≤<,当α为何值时,MN 与椭圆短轴长相等?566ππα=或(3)直角坐标和极坐标一般不要混合使用:如:已知某曲线的极坐标方程为222sin()204πρρθ-+-=。
(1)将上述曲线方程化为普通方程;(2)若点(,)P x y 是该曲线上任意点,求x y +的取值范围。
[222,222]-+ (二)基本计算1.求点的极坐标:有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;如:点M 的直角坐标是(1,3)-,则点M 的极坐标为 2(2,)3π 提示:2(2,2),3k k Z ππ+∈都是点M 的极坐标. 2. 求曲线轨迹的方程步骤: (1)建立坐标系;(2)在曲线上取一点P (,)ρθ;(3)写出等式;(4)根据,ρθ几何意义用,ρθ表示上述等式,并化简(注意:,x y ρθ≠≠);(5)验证。
如:长为2a 的线段,其端点在Ox 轴和Oy 轴正方向上滑动,从原点作这条线段的垂线,垂足为M ,求点M 的轨迹的极坐标方程(Ox 轴为极轴),再化为直角坐标方程.解:设点M 的极坐标为(,)ρθ,则OBM AOM θ∠=∠=,且||2sin OA a θ=,||cos 2sin cos sin2OA a a ρθθθθ===,∴点M的轨迹的极坐标方程为sin 2(0)2a πρθθ=<<.由sin2a ρθ=可得322sin cos a ρρθθ=,∴3222()2x y axy +=其直角坐标方程为3222()2(0,0)x y axy x y +=>>. 3.求轨迹方程的常用方法:⑴直接法:直接通过建立x 、y 之间的关系,构成(,)0F x y =,是求轨迹最基本的方法. ⑵待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回方程⑶代入法(相关点法或转移法). 如:从极点作圆2cos a ρθ=的弦,求各弦中点的轨迹方程.解:设所求曲线上的动点M 的极坐标为(,)ρθ,圆2cos a ρθ=上的动点的极坐标为11(,)ρθ由题设可知,112θθρρ=⎧⎨=⎩,将其代入圆的方程得:cos ()22a ππρθθ=-≤≤.⑷定义法:如果能够确定动点轨迹满足某已知曲线定义,则可由曲线定义直接写出方程.⑸交轨法(参数法):当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.4.参数和极径的几何意义的运用:ρ表示OM 的长度;T 几何意义是有向线段MP u u u r的数量;如:已知过点(9,3)P 的直线l 与x 轴正半轴、y 轴正半轴分别交于A B 两点,则AB 最小值为 83提示:设9cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩倾斜角为α,则12AB t t =-或AB=12||||t t +,1293,cos t t α=-=-,则93()cos l αα=-+,29sin 3cos ()cos l αααα-'=-+ 339sin 3cos αα--=令()0l α'=,333tan (3)α=-=-所以,tan ,1503αα=-=o ,min 93()(150)83cos150l l α==-+=oo 注意:本题可以取倾斜角的补角为α 如 过抛物线28y x =的焦点F 作倾斜角为4π的直线,交抛物线于,A B 两点,求线段AB 的长度.解:对此抛物线有1,4e p ==,所以抛物线的极坐标方程为41cos ρθ=-,,A B 两点的极坐标分别为4π和54π,||4(1cos 4)4(22)FA π=-=+, ||4(1cos54)4(22)FB π=-=-,∴||||||16AB FA FB =+=.∴线段AB 的长度为16.5.参数方程的应用----求最值: 如:已知点(,)P x y 是圆222x y y +=上的动点,(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围。
[51,51]-++.(2)cos sin 10x y a a θθ++=+++≥ [21,)--+∞. 如:在椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值.解:设椭圆的参数方程为4cos 23sin x y θθ=⎧⎪⎨=⎪⎩,4cos 43sin 125d θθ--=4545cos 3sin 32cos()3553πθθθ=--=+- 当cos()13πθ+=,即53πθ=时,min 45d =,此时所求点为(2,3)-.C.选修4 – 4 参数方程与极坐标已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合。
若曲线C 1的方程为28sin 15ρρθ=-,曲线C 2的方程为,(x y ααα⎧=⎪⎨=⎪⎩为参数)。
(1)将C 1的方程化为直角坐标方程; (2)若C 2上的点Q 对应的参数为3=4πα,P 为C 1上的动点,求PQ 的最小值。
提示:(1)228150x y y +-+=. (2)当34απ=时,得(2,1)Q -,点Q 到1C所以PQ1-.在极坐标系中,求经过三点O (0,0),A (2,2π),B(4π)的圆的极坐标方程.解:设(,)P ρθ是所求圆上的任意一点,则cos()4OP OB θπ=-,故所求的圆的极坐标方程为)4ρθπ=-.已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若直线l 的极坐标方程为23)4sin(=-πθρ.(1)把直线l 的极坐标方程化为直角坐标系方程;(2)已知P 为椭圆1916:22=+y x C 上一点(已知曲线C 的参数方程为()4cos 3sin x y ααα=⎧⎨=⎩,为参数,)求P 到直线l 的距离的最大值.解:(1)直线l的极坐标方程sin 4ρθπ⎛⎫-= ⎪⎝⎭sin cos θθ-=即sin cos 6ρθρθ-=,所以直线l 的直角坐标方程为60x y -+=;(2)P 为椭圆221169x y C +=:上一点,设(4cos 3sin )P αα,,其中[02)α∈π,,则P 到直线l的距离d 4cos 5ϕ= 所以当cos()1αϕ+=时,d(图)在极坐标系中,圆C的方程为)4ρθπ=+,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为,12x t y t=⎧⎨=+⎩(t 为参数),判断直线l 和圆C 的位置关系.解:消去参数t ,得直线l 的直角坐标方程为21y x =+;)4πρθ=+即2(sin cos )ρθθ=+,两边同乘以ρ得22(sin cos )ρρθρθ=+,得⊙C 的直角坐标方程为:22(1)(1)2x x -+-=, 圆心C 到直线l的距离d ==<,所以直线l 和⊙C 相交. 已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是32,545x t y t⎧=-+⎪⎨⎪=⎩(t 为参数). (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值. 解:(1)曲线C 的极坐标方程可化为22sin ρρθ= 又222,cos ,sin x y x y ρρθρθ+===,所以曲线C 的直角坐标方程为2220x y y +-=(2)将直线l 的参数方程化为直角坐标方程,得4(2)3y x =--令0y =,得2x =,即M 点的坐标为(2,0).又曲线C 为圆,圆C 的圆心坐标为(1,0),半径1r =,则MC =所以1MN MC r +=≤()()()000000 10.1321121sin() 2.(,),(,).4.x A l x y A l d m l P Q m ρρρπρρθρθρθθθθθ-+===+=⎛==⎧ -=⇒⎨ =⎩ ==⎝:以极点为原点,极轴为轴的正半轴,建立直角坐标系,则点的直角坐标为直线的直角坐标方解程为因为到直线的距离,由得直线的方程为设所,则析以①()()()123123124sin ()4234cos (2)4224(0)212(4)2,0(0)242()t (a 2010)n Ox C C C C C C M N C C A B O AB MN ππρθθπππρθθθππρθπππθαρα=≤≤=≤≤<≤=≤≤=≥<<g 如图,在极坐标系中,已知曲线::;:或;:.求由曲线,,围成的区域的面积;设,,,射线,与曲线,分别交于,不同于极点两点.若线段的中点恰好落在直线上变,浙江 卷求式训练α的值.0220001()sin()221131()().()881642.sin()2441si 4n(44)2P l r Q x y Q πππρθθθρπρθ++--===-=-因为点,在直线上,所以②将①代入②,得,即.这就是点的轨迹方化为直角坐标方程为因此点的轨迹是以,为圆心,为程.半径的圆.()()22222111122 2.22(2)4422114246 4.422()2sin 2cos 2OSP A B S S S AB G ONG πππππππρρραϕραα=⨯⨯-⨯=-=⨯⨯--==⨯+⨯⨯-=-+∠===+弓形阴影部分由已知,所以,故所求面积设的中点解为,,,由题意知析:,,2sin cos sin sin 5522sin 2cos sin()sin sin 2sin cos sin()sin 2cos sin 3sin cos 0sin 0tan 3.ON OG OGN OGN ONG ϕϕααπαϕϕϕαααϕααααααα==∆=∠∠+=--+==++-=≠=在中,,即,所以,化简得,又因为,所以()()(6cos 3sin )()6,00,3C C G x y A B θθ:由动点在椭圆上运动,可设的坐标为,,点的坐标为,.依题意可知,,由重心坐标解析公式可知,()2222606cos 222cos cos 32033sin 1sin 1sin 3(2)114x x y y x y θθθθθθ++⎧-==+⎧⎪=⎪⎪⎨⎨++⎪⎪-===+⎩⎪⎩-++-=①,由此得,②①②,得即为所求.。