三元一次方程组测试题
人教版九年级下册数学《第27章相似》单元测试题(含答案解析)

春人教版九年级下册数学第27章相似单元测试题一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣32.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:33.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.85.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm27.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:2510.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m二.填空题(共8小题)11.若=,则=.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为.13.已知==,且a+b﹣2c=6,则a的值.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.15.如图,在△ABC中,DE∥BC,=,则=.16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=时,△ABC∽△DEF.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′,B′;点A到原点O的距离是.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.春人教版九年级下册数学第27章相似单元测试题参考答案与试题解析一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣3【分析】先利用x:y:z=1:2:3,y=2x,z=3x,然后消去y与z得到关于x的一元一次方程,再解一次方程即可.【解答】解:∵x:y:z=1:2:3,∴y=2x,z=3x,∴2x+2x﹣9x=﹣15,∴x=3.故选:C.【点评】本题考查了解三元一次方程组:利用代入消元或加减消元把解三元一次方程组的问题转化为解二元一次方程组的问题.2.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:3【分析】由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.【解答】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.【点评】此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个【分析】(1)作出图形,过点A作AD⊥BC于点D,然后求出AD的长度,再在Rt△ACD中,利用锐角的正弦值求出∠C的度数即可;(2)作出图形,根据圆的半径为5,圆心到AB的距离为3作出到直线AB的距离为2的直线,与圆的交点的个数即为所求;(3)根据半圆的圆心角等于180°解答;(4)因为AP是较长的线段还是较短的线段不明确,所以分两种情况讨论求解.【解答】解:(1)如图,过点A作AD⊥BC于点D,∵AB=6,∠B=45°,∴AD=AB sin45°=6×=3,又∵AC=,∴sin∠C===,∴∠C=60°,故本小题正确;(2)如图所示,到直线AB的距离为2的点有3个,故本小题正确;(3)∵半圆的圆心角为180°,∴圆心角是180°的扇形是一个半圆加一条直径,故本小题错误;(4)①若AP是较长线段,则AP2=AB•BP,即AP2=1×(1﹣AP),AP2+AP﹣1=0,解得AP=,②若AP是较短的线段,则AP=1﹣=,故本小题错误.综上所述,正确的命题有(1)(2)共2个.故选:B.【点评】本题考查了黄金分割,垂径定理,圆心角、弧、弦的关系,解直角三角形,作出图形,利用数形结合的思想求解比较关键.4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.8【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.【点评】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.5.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似【分析】根据三角形、矩形相似的判定方法逐个分析,确定正确答案即可.【解答】解:A、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故A不正确;B、等腰三角形的角度不一定相等,各边也不一定对应成比例,故B不正确;C、两个等腰直角三角形的对应相等,所以两个等腰直角三角形相似,故C正确;D、两个矩形对应角相等,但对应边的比不一定相等,故D不正确;故选:C.【点评】本题考查了相似图形的知识,解题的关键是了解对应角相等,对应边的比相等的图形相似,难度不大.6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm2【分析】设大六边形的面积为xcm2,根据相似多边形的性质列出比例式,计算即可.【解答】解:设大六边形的面积为xcm2,则小六边形的面积为(x﹣28)cm2,∵两个六边形相似,∴=()2,解得,x=64,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:25【分析】根据平行四边形的性质可得出CD∥AB,进而可得出△DEF∽△BAF,根据相似三角形的性质结合DE:EC=3:2,即可得出△DEF与△BAF的面积之比,此题得解.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.二.填空题(共8小题)11.若=,则=.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得=﹣=﹣2=,∴=,故答案为:.【点评】本题考查了比例的性质,利用了分比性质,用x表示y,是解题关键.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为 4.5.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后,利用比例的性质可计算出DE的长.【解答】解:∵l1∥l2∥l3,∴=,即,∴BE=3,∴DE=3+1.5=4.5.故答案为:4.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.13.已知==,且a+b﹣2c=6,则a的值10.【分析】设===k,表示出a,b,c,代入a+b﹣3c=求出k的值,即可确定出a的值.【解答】解:设===k,则有a=5k,b=6k,c=4k,代入a+b﹣2c=得:5k+6k﹣8k=6,解得:k=2,则a=10,故答案为:10【点评】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:∵∠ABC=∠ADB=90°,∠C=∠ABD,∴△ACB∽△ABD,∴,∴AD==cm,故答案为:【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.15.如图,在△ABC中,DE∥BC,=,则=.【分析】由DE∥BC可得出∠ADE=∠B、∠AED=∠C,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出的值.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理证出△ADE∽△ABC是解题的关键16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=76°时,△ABC∽△DEF.【分析】利用两对角相等的三角形相似即可作出判断.【解答】解:∵△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B =34°,∠D=70°,∴∠B=∠E=34°,∴∠C=∠F=76°,故答案为:76°【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′(m,m),B′(n,n);点A到原点O的距离是m.【分析】由于在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,则把点A和点B的坐标都乘以即可得到点A′和点B′的坐标,再利用两点间的距离公式计算点A到原点O的距离.【解答】解:∵A(m,m),B(2n,n),而位似中心为原点,相似比为,∴A′(m,m),B′(n,n);点A到原点O的距离==m.故答案为(m,m),(n,n);m.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是6.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出AB的长度,此题得解.【解答】解:根据题意,可知:△ABO∽△DCO,∴=,即=3,∴AB=6.故答案为:6.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出AB的长度是解题的关键.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.【分析】设=k,于是得到x=2k,y=3k,z=4k,代入代数式即可得到结论.【解答】解:∵,∴设=k,∴x=2k,y=3k,z=4k,∴(1)==;(2)∵x﹣2y+4z=24,∴2k﹣6k+16k=24,∴k=2,∴x+y+z=2k+3k+4k=9k=18.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【分析】(1)根据矩形的性质和线段的和差关系得到CD,EF,BC,CF,再代入数据即可求得各线段的比;(2)根据成比例线段的定义写一组即可求解.【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.【点评】本题考查了矩形的性质,比例线段,解决问题的关键是得到CD,EF,BC,CF的值.21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=【分析】先证△BDC∽△B′D′C′得∠ACB=∠A′C′B′,结合∠A=∠A′可证△ABC∽△A'B'C',再利用相似三角形的性质可得答案.【解答】解:∵BD是AC边上的高、B'D'是A'C'的高,∴∠BDC=∠B′D′C′=90°,∴△BDC和△B′D′C′均为直角三角形,∵=,∴△BDC∽△B′D′C′,∴∠ACB=∠A′C′B′,∵∠A=∠A′,∴△ABC∽△A'B'C',∵BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,∴=.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定定理及相似三角形的对应边的比、对应高的比、对应中线的比、对应角平分线的比和周长的比都等于相似比、面积比等于相似比的平方的性质.22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.【分析】(1)证明△DAE∽△BAD,根据相似三角形的性质证明;(2)根据三角形的外角的性质、等腰三角形的性质证明;(3)证明△ADC∽△DEB,根据相似三角形的性质求出BE,代入(1)的结论计算即可.【解答】(1)证明:∵∠ADE=∠C,∠DAE=∠BAD,∴△DAE∽△BAD,∴=,即AD2=AE•AB;(2)∠ADC=∠DAE+∠B,∠BED=∠DAE+∠ADE,∵AB=AC,∴∠B=∠C,∴∠ADC=∠BED;(3)∵∠ADC=∠BED,∠B=∠C,∴△ADC∽△DEB,∴=,即=,解得,BE=2.4,由(1)得,AD2=AE•AB=13,则AD=.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.【分析】由同旁内角互补两直线平行得到AB与CD平行,再利用两直线平行内错角相等,以及对顶角相等得到三角形相似,由相似得比例求出所求即可.【解答】解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴,在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1,在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=,∴==.【点评】此题考查了相似三角形的性质与判定,以及平行线的性质,能利用相似三角形的性质将未知线段的比转化为已知线段的比是解本题的关键.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).【分析】延长OA到A′使OA′=2OA,同样作出点B′、C′,从而得到满足条件的△A′B′C′;反向延长OA到A″使OA″=2OA,同样作出点B″、C″,从而得到满足条件的△A″B″C″.【解答】解:如图所示:△A′B′C′和△A″B″C″.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点E为AB的中点,∴CE=AE=AB=,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点评】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.【分析】(1)由∠BCD=∠GFD=90°、∠BGC=∠FGD可证得△BGC∽△DGF,即可知,根据AB=BC即可得证;(2)连接BD,由△BGC∽△DGF知,即,根据∠BGD=∠CGF可证△BGD∽△CGF得∠BDG=∠CFG,再由即可得证.【解答】证明:(1)∵四边形ABCD是正方形∴∠BCD=∠ADC=90°,AB=BC,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG,∵AB=BC,∴DG•AB=DF•BG;(2)如图,连接BD、CF,∵△BGC∽△DGF,∴,∴,又∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴,∴∠CFG=45°.【点评】本题主要考查相似三角形的判定和性质及正方形的性质,解题的关键是熟练掌握相似三角形的判定和性质.。
七年级数学(下)《第八章 二元一次方程组》单元检测卷含答案

七年级数学(下)《第八章二元一次方程组》单元检测卷(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.如果a3x b y与-a2y b x+1是同类项,则( )A. B. C. D.2.若方程6kx﹣2y=8有一组解,则k的值等于()A. ﹣B.C.D. ﹣3.下列哪组数是二元一次方程组的解( )A. B. C. D.4.方程组的解满足方程x+y+a=0,那么a的值是( )A. 0B. -2C. 1D. -15.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A. 10g,40gB. 15g,35gC. 20g,30gD. 30g,20g6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A.5510{424x yx y y-==+B.5510{424x yx y-=-=C.5510{424x yx x y-=-=D.5105{424x yx y+=-=7.方程组的解是()A. B. C. D.8.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和商是5,余数是1,则这样的两位数()A. 不存在B. 是唯一的C. 有两个D. 有无数解9.二元一次方程中非负整数解的个数是()A. 1个B. 2个C. 3个D. 4个10.已知关于,的方程组,给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④,间的数量关系是x+y=4-a,其中正确的是()A. ②③B. ①②③C. ①③D. ①③④二、填空题(共10小题,每题3分,共30分)11.请你写出一个二元一次方程组,使它的解为,这个方程组是_________.【答案】等12.已知方程组,则__________.13.若方程组,则的值是_____.14.用加减消元法解方程组由①×2-②得 _____.15.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了____张,乙种票买了____张.16.已知{x my n==和{x ny m==是方程2x-3y=1的解,则代数式2635mn--的值为______.17.已知方程320{6320x y zx y z+-=++=,则x:y:z=________18.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为__________________.19.若关于的二元一次方程组的解满足,则____.20.若()25210a b a b +++-+=,则()2017b a -=_______________.三、解答题(共60分)21.(8分)解方程组: (1)(2)⎪⎩⎪⎨⎧=-+=+-=+321236z -y x z y x z y x22.(5分)若x 2y 1=⎧⎨=⎩ 是二元一次方程组3ax by 52ax by 2⎧+=⎪⎨⎪-=⎩ 的解,求a 2b +的值.23.(5分)已知二元一次方程:①x +y =4;②2x -y =2;③x -2y =1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.24.(8分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?(1)根据题意,甲和乙两同学分别列出了如下不完整的方程组:甲:⎪⎩⎪⎨⎧=+++=+.___101121,__%%yx y x 乙:⎩⎨⎧=+=+.____1012___,%y %x y x 根据甲、乙两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组:甲:x 表示 ,y 表示 ; 乙:x 表示 ,y 表示(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解答过程,就甲或乙的思路写出一种即可)25.(8分)某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共40s .求火车的速度和长度. (1)写出题目中的两个等量关系; (2)给出上述问题的完整解答过程.26.(8分)某景点的门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?27.(8分)小文在甲、乙两家超市发现他看中的篮球的单价相同,书包单价也相同,一个篮球和三个书包的总费用是400元.两个篮球和一个书包的总费用也是400元.(1)求小文看中的篮球和书包单价各是多少元?(2)某一天小文上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市乙全场购物满100元返30元购物券(不足100元不返券,购物券全场通用),如果他只能在同一家超市购买他看中的篮球和书包各一个,应选择哪一家超市购买更省钱?28.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.参考答案(测试时间:90分钟满分:120分)一、选择题(共10小题,每题3分,共30分)1.如果a3x b y与-a2y b x+1是同类项,则( )A. B. C. D.【答案】D2.若方程6kx﹣2y=8有一组解,则k的值等于()A. ﹣B.C.D. ﹣【答案】D【解析】把代入6kx﹣2y=8得:-18k-4=8,∴k= .故选D.3.下列哪组数是二元一次方程组的解( )A. B. C. D.【答案】C【解析】,把②代入①得:x+4x=10,即x=2,把x=2代入②得:y=4,则方程组的解为.故选C.4.方程组的解满足方程x+y+a=0,那么a的值是( )A. 0B. -2C. 1D. -1【解析】,解得,所以a=-x-y=-2+3=1,故选C. 学科#网5.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A. 10g,40gB. 15g,35gC. 20g,30gD. 30g,20g【答案】C6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A.5510{424x yx y y-==+B.5510{424x yx y-=-=C.5510{424x yx x y-=-=D.5105{424x yx y+=-=【答案】A【解析】根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x-5y=10;如果乙先跑2秒,甲跑4秒就可以追上乙,得方程4x=4y+2y.联立方程组,故选A.7.方程组的解是()A. B. C. D.8.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和商是5,余数是1,则这样的两位数()A. 不存在B. 是唯一的C. 有两个D. 有无数解【答案】B【解析】设这个两位数的十位数字为x,个位上的数字为y,根据题意得:解得:,所以这个两位数为56.故选:B.9.二元一次方程中非负整数解的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】∵在方程中,当时,;当时,;当时,;当时,;∴方程的非整数解有3个.故选C.10.已知关于,的方程组,给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④,间的数量关系是x+y=4-a,其中正确的是()A. ②③B. ①②③C. ①③D. ①③④【答案】C二、填空题(共10小题,每题3分,共30分)11.请你写出一个二元一次方程组,使它的解为,这个方程组是_________.【答案】等【解析】∵,,∴这个方程组可以是:(答案不唯一).12.已知方程组,则__________.【答案】5【解析】,解得,所以故填5.13.若方程组,则的值是_____.【答案】24【解析】将方程组中得两个方程看作整体代入得:3(x+y)-(3x-5y)=3×7-(-3)=24.故答案为:24.学%科网14.用加减消元法解方程组由①×2-②得 _____.【答案】2x=-3.【解析】①×2﹣②得:6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得:2x=﹣3.故答案为:2x=﹣3.15.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了____张,乙种票买了____张.【答案】 20 1516.已知{x m y n ==和{ x n y m ==是方程2x -3y =1的解,则代数式2635m n --的值为______. 【答案】1【解析】将{x m y n ==和{ x n y m ==代入方程2x ﹣3y =1,得: 231{ 231m n n m -=-= ,解得: 1{ 1m n =-=-,则26263535m n ---=---=1.故答案为:1. 17.已知方程320{6320x y z x y z +-=++= ,则x :y :z=________【答案】﹣7:12:3 【解析】320{6320x y z x y z +-=++=①②,①×2+②得:12x+7y=0,12x =-7y ,所以x :y=-7:12, ①×2-②得:y-4z=0,y=4z,所以y:z=4:1=12:3, 所以x:y:z=-7:12:3, 故答案为:-7:12:3.18.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.【答案】83{74x yx y-=+=19.若关于的二元一次方程组的解满足,则____.【答案】3 【解析】,①−②×2得,y=−k −1;将y=−k −1代入②得,x=2k , ∵x+y=2, ∴2k −k −1=2, 解得k=3.故答案为:3.20.若()25210a b a b +++-+=,则()2017b a -=_______________.【答案】-1 【解析】52{{213a b a a b b +=-=-⇒-=-=-则()2017b a -=-1三、解答题(共60分)21.(8分)解方程组: (1)(2)⎪⎩⎪⎨⎧=-+=+-=+321236z -y x z y x z y x【答案】(1)⎩⎨⎧=-=124y x ;(2)⎪⎪⎩⎪⎪⎨⎧-=-==3173310z y x【解析】考点:1、一元二次方程组;2、三元一次方程组.22.(5分)若x2y1=⎧⎨=⎩是二元一次方程组3ax by52ax by2⎧+=⎪⎨⎪-=⎩的解,求a2b+的值.【答案】3 【解析】试题分析:根据方程组解的定义,将x2y1=⎧⎨=⎩代入3ax by52ax by2⎧+=⎪⎨⎪-=⎩得到关于a,b的二元一次方程组,二式相减即可求得a2b+的值.试题解析:把x2y1=⎧⎨=⎩代入方程组3ax by52ax by2⎧+=⎪⎨⎪-=⎩得:3a b5(1)2a b2(2)+=⎧⎨-=⎩,(1)-(2),得a+2b=3.考点:1.方程组的解;2.求代数式的值;3.整体思想的应用.23.(5分)已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.【答案】22xy=⎧⎨=⎩(答案不唯一)【解析】考点:解二元一次方程组.24.(8分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%.该专业户去年实际生产小麦、玉米各多少吨?(1)根据题意,甲和乙两同学分别列出了如下不完整的方程组:甲:⎪⎩⎪⎨⎧=+++=+.___101121,__%%yx y x 乙:⎩⎨⎧=+=+.____1012___,%y %x y x 根据甲、乙两位同学所列的方程组,请你分别指出未知数x ,y 表示的意义,然后在上面的横线上分别补全甲、乙两位同学所列的方程组:甲:x 表示 ,y 表示 ; 乙:x 表示 ,y 表示(2)求该专业户去年实际生产小麦、玉米各多少吨?(写出完整的解答过程,就甲或乙的思路写出一种即可)【答案】(1)20,18;18,20-18;甲:x 表示该专业户去年实际生产小麦吨数,y 表示该专业户去年实际生产玉米吨数;乙:x表示原计划生产小麦吨数,y表示原计划生产玉米吨数;(2)小麦11.2吨,玉米8.8吨. 【解析】试题分析:小麦超产12%,玉米超产10%都是相对于计划来说的,所以不能设直接未知数,而应设原计划生考点:二元一次方程组的应用.25.(8分)某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.【答案】(1)火车1min行驶的路程等于桥长与火车长的和,火车40s行驶的路程等于桥长与火车长的差;(2)200米、20米/秒.【解析】试题分析:通过理解题意可知本题存在两个等量关系,即整列火车过桥通过的路程=桥长+车长,整列火车在桥上通过的路程=桥长-车长,根据这两个等量关系可列出方程组.试题解析:(1)火车1min行驶的路程等于桥长与火车长的和,火车40s行驶的路程等于桥长与火车长的差;(2)设火车的速度为xm/s,火车的长度为ym,根据题意得601000,401000.x yx y=+⎧⎨=-⎩解得20,200.xy=⎧⎨=⎩,火车的长度为200米,速度为20米/秒.考点:二元一次方程组的应用.26.(8分)某景点的门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【答案】(1)一班48名,二班55名;(2)节省302元.学……科%网【解析】考点:二元一次方程组的应用.27.(8分)小文在甲、乙两家超市发现他看中的篮球的单价相同,书包单价也相同,一个篮球和三个书包的总费用是400元.两个篮球和一个书包的总费用也是400元.(1)求小文看中的篮球和书包单价各是多少元?(2)某一天小文上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市乙全场购物满100元返30元购物券(不足100元不返券,购物券全场通用),如果他只能在同一家超市购买他看中的篮球和书包各一个,应选择哪一家超市购买更省钱?【答案】(1)篮球单价为160元,书包单价为80元;(2)乙【解析】试题分析:(1)设篮球的单价为x元,书包的单价为y元,根据“一个篮球和三个书包的总费用是400元,两个篮球和一个书包的总费用也是400元”即可列方程组求解;考点:二元一次方程组的应用28.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【答案】(1)3,4;(2)有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆;(3)方案三,940.【解析】试题分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”,“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出方程,组成方程组求出即可;(2)由题意得出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.试题解析:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:210211x yx y+=⎧⎨+=⎩,解方程组,得:34xy=⎧⎨=⎩,故1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;考点:1.二元一次方程组的应用;2.二元一次方程的应用.。
【3套试卷】人教版数学七年级下册第八章《二元一次方程组》能力检测卷

人教版数学七年级下册第八章《二元一次方程组》能力检测卷一、选择题(每小题3分,共30分)1. 二元一次方程组6,32x y x y ì+=ïïíï-=-ïî的解是 ( ) A. 5,1x y ì=ïïíï=ïî B. 4,2x y ì=ïïíï=ïî C. 5,1x y ì=-ïïíï=-ïî D. 4,2x y ì=-ïïíï=-ïî 2. 用加减法解方程组231,328x y x y ì+=ïïíï-=ïî时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形结果:①691,648;x y x y ì+=ïïíï-=ïî②461,968;x y x y ì+=ïïíï-=ïî③693,6416;x y x y ì+=ïïíï-+=-ïî④462,9624.x y x y ì+=ïïíï-=ïî其中变形正 确的是 ( )A. ①②B. ③④C. ①③D. ②④3. 三元一次方程组216,236x y z x y z ì++=ïïíï==ïî的解是 ( ) A. 1,3,5x y z ì=ïïï=íïï=ïïî B.6,3,2x y z ì=ïïï=íïï=ïïî C. 6,4,2x y z ì=ïïï=íïï=ïïî D. 4,5,6x y z ì=ïïï=íïï=ïïî 4. 如果方程x +2y =-4,2x -y =7,y -kx +9=0有公共解,则k 的值是 ( ) A. -3 B. 3 C. 6 D. -65. 若3,2x y ì=-ïïíï=ïî是12x y x y a q q b ìïïíïïî+=,-=-的解,则α,β之间的关系是 ( ) A. β-9α=1 B. 9α+4β=1 C. 3α+2β=1 D. 4β-9α+1=06. 已知2,1x y ì=ïïíï=ïî是二元一次方程组71mx ny nx my ìïïíïïî+=,-=的值为 ( ) A. 3 B. 8 C. 2 D. 27. 已 知 方 程 组23133530.9a b a b ìïïíïïî-=,+=的解是8.31.2a b ìïïíïïî=,=,则方程组22311332()()()(51)30.9x y x y ìïïíïïî+--=,++-=的解是 ( )A. 6.32.2x y ìïïíïïî=,=B. 8.31.2x y ìïïíïïî=,=C. 10.32.2x y ìïïíïïî=,=D. 10.30.2x y ìïïíïïî=,= 8. 一次考试中共有选择题、填空题和解答题三类题型,满分100分.某同学答对了选择题和填空题,而解答题只得了一半分,他的成绩是80分,则试卷中解答题的分值为 ( )A. 30分B. 40分C. 50分D. 60分 9. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了n 人,并进行统计分析,结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这n 人中,吸烟者患肺癌的人数为x ,不吸烟者患肝癌的人数为y ,根据题意,下面列出的方程组正确的是 ( )A. 222.50.5x y x y n ìïïí创ïïî-=,%+%= B. 222.5%0.5%x y x y n +=ìïïïíïïïî-=, C. 222.50.5x y x y n ìïïí创ïïî+=,%-%= D. 222.5%0.5%x y x y n -=ìïïïíïïïî-=, 10. 有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需 ( )A. 50元B. 100元C. 150元D. 200元二、填空题(每题3分,共24分) 11. 下列方程:①2x -3y =1;②8x +6y =3;③x 2-y 2=4;④5(x +y )=7(x +y );⑤2x 2=3;⑥x +9y=4. 其中是二元一次方程的是 .(填序号) 12. 已知二元一次方程3x -2y +1=0,用含x 的式子表示y ,则y = .13. 已知x ,y 满足方程组2524x y x y ìïïíïïî+=,+=,则x -y 的值为 .14. 如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°.设∠ABD 和∠DBC 的度数分别为x °,y °,那么可以求出这两个角的度数的方程组是..15. 若-14x 2y 3a +b 与4x a -2b y 6是同类项,则a = ,b = . 16. 若点P (x ,y )在第一象限内,且点P 到两坐标轴的距离相等,并满足2x -y =4,则x ,y 的值分别是 .17. 甲、乙两人分别匀速地从相距30km 的A ,B 两地同时相向而行,经过3小时后相距3km ,再经过2小时,甲到B 地所剩路程是乙到A 地所剩路程的2倍,则甲、乙两人的速度分别是 .18. 水果市场批发一种水果,价格如下表.若某水果商店两次共购进50千克这种水果,并且共付264元钱,则两次购进水果的数量分别是 .三、解答题(共66分) 19. (8分)解方程组:(1) 425x y x y ìïïíïïî-=,+=; (2) 12343314312x y x y ìïïïïïíïïïïï++--î=,-=.20. (8分)一个被滴上墨水的方程如下278.x y x y ìïïíïïî■+■=,■-=小刚回忆说:“这个方程组的解是32x y ìïïíïïî=,=-,而我求出的解是22x y ìïïíïïî=-,=,经检验后发现,我的错误是由于看错了第二个方程中的x的系数所致.”请你根据小刚的回忆,把方程组复原出来.21. (9分)已知关于x,y的二元一次方程y=kx+b的解有34xyìïïíïïî=,=和12.xyìïïíïïî=-,=(1)求k,b的值;(2)当x=2时,求y的值;(3)当x为何值时,y=3?22. (9分)对于实数x,y,规定一种运算:x△y=ax+by(a,b是常数).已知2△3=11,5△(-3)=10.(1)求a,b的值;(2)计算(-2)△3 5 .23. (10分)某工程队承包了全长3150米的公路施工任务,甲、乙两个组分别从东、西两端同时施工.已知甲组比乙组平均每天多施工6米,经过5天施工,两组共完成了450米.(1)求甲、乙两个组平均每天各施工多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多施工4米,乙组平均每天能比原来多施工6米.按此施工进度,能够比原来少用多少天完成任务?24. (10分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤. 妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元.”爸爸:“报纸上说了萝卜的单价上涨了 50%,排骨的单价上涨了20%.”小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求出今天萝卜、排骨的单价(单位:元/斤).25. (12分)在直角坐标系中,已知点A ,B 的坐标是(a ,0),(b ,0),a 、b 满足方程组253211a b a b ìïïíïïî+=-,-=-,C 为y 轴正半轴上一点,且S △ABC =6. (1)求A ,B ,C 三点的坐标.(2)是否存在点P (t ,t ),使S △P AB =13S △ABC ? 若存在,请求出P 点坐标;若不存在,请说明理由.参考答案1. B2. B3. C4. B5. B6. C7. A8. B9. B 10. C 11. ①④12.312x + 13. 114. 90215.x y x y ìïïíïïî+=,=- 15. 2 0 16. 4和417. 4km/h ,5km/h 或513km/h ,523km/h 18. 14千克和36千克19. 解:(1) 31.x y ìïïíïïî=,=- (2) 22.x y ìïïíïïî=,= 20. 解:设方程组为278ax by cx y ìïïíïïî+=,-=,依题意得32237282()22()a b c a b ´ìïïïíïïïïî´+-=,--=,-+=,解得452.a b c ìïïïíïïïïî=,=,=-∴原方程组为452278.x y x y ìïïíïïî+=,--= 21. 解:(1)k =12,b =52. (2)把x =2代入y =12x +52,得y =72.(3)当x =1时,y =3.22. 解:(1)依题意,得23115310a b a b ìïïíïïî+=,-=,解得35.3a b ìïïïíïïïî=,=(2)(-2)△35=3×(-2)+53×35=-6+1=-5. 23. 解:(1)设甲组平均每天施工x 米,乙组平均每天施工y 米. 依题意得:()65450x y x y ìïïíïïî-=,+=,解得4842.x y ìïïíïïî=,= (2)设剩下工程用a 天完成,依题意得[(48+4)+(42+6)]·a =3150-450,a =27. 设剩下工程按原来进度需6天完成,依题意,(48+42)·b =3150-450,b =30. 故b -a =30-27=3. 答:能够比原来少用3天.24. 解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,依题意得:323631502120())45(x y x y 创ìïïíïïî+=,+%++%=,解得215.x y ìïïíïïî=,=∴萝卜的单价是(1+50%)x =(1+50%)×2=3(元/斤),排骨的单价是(1+20%)y =(1+20%)×15=18(元/斤).人教版七年级数学下册第八章 二元一次方程组复习检测试题一、选择题1.下列各式,属于二元一次方程的个数有( ) ①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .42.如果方程组⎩⎪⎨⎪⎧x +y =★,2x +y =16的解为⎩⎪⎨⎪⎧x =6,y =■,那么被“★”“■”遮住的两个数分别是( ) A .10,4 B .4,10 C .3,10 D .10,33.已知二元一次方程30x y +=的一个解是x ay b=⎧⎨=⎩,其中0a ≠,那么( )A.0ba> B.0ba= C.0ba< D.以上都不对4.若满足方程组的x 与y 互为相反数,则m 的值为( ) A .1B .﹣1C .﹣11D .115今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是踢负场数的整数倍,则小虎足球队踢负场数的情况有( ) A .2种 B .3种C .4种D .5 种6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( )A.12a b =⎧⎨=⎩B.46a b =-⎧⎨=-⎩ C.62a b =-⎧⎨=⎩D.142a b =⎧⎨=⎩7.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.⎩⎪⎨⎪⎧x -y =320x +10y =36B.⎩⎪⎨⎪⎧x +y =320x +10y =36 C.⎩⎪⎨⎪⎧y -x =320x +10y =36 D.⎩⎪⎨⎪⎧x +y =310x +20y =368.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩9.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店()A、赔8元B、赚32元C、不赔不赚D、赚8元10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题1.将方程3y﹣x=2变形成用含y的代数式表示x,则x=.2.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有____种购买方案.3.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.4.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.三、解答题1.解方程组:2.定义一个非零常数的运算,规定:a*b=ax+by,例如:2*3=2x+3y,若1*1=8,4*3=27,求x、y的值.3.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.4.某工厂第一季度生产甲、乙两种机器共550台,经市场调查决定调整两种机器的产量,计划第二季度生产这两种机器共536台,其中甲种机器产量要比第一季度增产12%,乙种机器产量要比第一季度减产20%.该厂第一季度生产甲、乙两种机器各多少台?5.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?6.某超市第一次用4600元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍少40件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润?(3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多280元,则第二次乙商品是按原价打几折销售的?参考答案一.选择题1.B. 2.A.3.B.4.D.5.B.6.B.7.B.8.B.9.C.10.A.二.填空题1.3y﹣2 2.两 3. k=1.4..三.解答题1.解:原方程组可整理得:,②﹣①得:2x=4,解得:x=2,把x=2代入①得:2﹣2y=﹣3,解得:y=,即原方程组的解为:.2.解:∵a*b=ax+by∴1*1=8,即为x+y=8,4*3=27 即为4x+3y=27;解方程组①×3﹣②,得﹣x=﹣3,解得x=3,将x=3代入①,得y=5.3.解:(1)根据题意得:,解得:a=2,b=﹣3,(2)方程组为,解得.4.解:设某工厂第一季度生产甲种机器x台,乙种机器y台,由题意得:,解得:.答:该工厂第一季度生产甲种机器300台,乙种机器250台.5.解:(1)设两个年级参加春游学生人数之和为a人,若a>200,则a=14700÷70=210(人).若100<a≤200,则a=14700÷80=183(不合题意,舍去).则两个年级参加春游学生人数之和等于210人,超过200人.(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,则①当100<x≤200时,得,解得.②当x>200时,得,解得(不合题意,舍去).则七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.6.解:(1)设第一次购进甲种商品x件,购进乙种商品y件,根据题意得:,解得.答:该超市第一次购进甲种商品100件,购进乙种商品80件.(2)(28﹣22)×100+(40﹣30)×80=1400(元).答:该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得1400元.(3)设第二次乙种商品是按原价打m折销售的,根据题意得:(28﹣22)×100×2+(40×﹣30)×80=1400+280,解得:m=9.答:第二次乙商品是按原价打九折销售.人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =43.方程组的解为( )A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .B .C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。
人教版数学七年级下学期《期中检测题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- 2. 若代数式31x -的值为4-,则的值为( )A. 1B.C. 53-D. 353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b > C. 22a b -<- D. 22a b > 5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -= 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++= D. x y 50{x y 90=-+=8. 《九章算术》是中国传统数学重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ 9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2- B. 2 C. D. 110. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大 B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关 二、填空题(共24分)11. 若2x =-是方程520x k +=解,则k =__________.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则的取值范围是____________. 三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值. 20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- [答案]D[解析][分析]的值不大于3-就是的值小于或等于3-,据此解答即可.[详解]解:的值不大于3-,用不等式表示的范围是:3a ≤-.故选:D .[点睛]本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则的值为( )A. 1B. C. 53- D. 35[答案]B[解析]分析]根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值.[详解]解:由题意,得314x -=-,解得1x =-;故选B .[点睛]本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( ) A. 14x y =⎧⎨=⎩ B. 07x y =⎧⎨=⎩ C. 32x y =⎧⎨=-⎩ D. 1.53.5x y =⎧⎨=⎩[答案]D[解析][分析]把各选项中的x 、y 的值逐一代入计算即得答案.[详解]解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意; D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .[点睛]本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键. 4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B. 22a b >C. 22a b -<-D. 22a b > [答案]D[解析][分析]根据不等式的性质逐项判断即可.[详解]解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意; B 、在不等式a b >两边同时除以2,得22a b >,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意;D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意.故选:D .[点睛]本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键.5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+ [答案]A[解析][分析]根据去分母的方法:原方程两边同时乘以6可得答案.[详解]解:原方程两边同时乘以6,得:()()18336221x x x +-=-+.故选:A .[点睛]本题考查了一元一次方程解法,属于基本题型,熟练掌握去分母的方法是解本题的关键.6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=[答案]D[解析][分析]由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.[详解]解:根据题意可列方程为:0.618x -=.故选:D .[点睛]本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+= B. x y 50{x y 180=++= C. x y 50{x y 90=++= D. x y 50{x y 90=-+= [答案]C[解析] [详解]根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C . 考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ [答案]A[解析][分析]设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.[详解]解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2-B. 2C.D. 1[答案]C[解析][分析]先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值. [详解]x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②, ①-②得:y=m+2③,把③代入②得:x=m-3,∵x+y=-3,∴m-3+m+2=-3,∴m=-1.故选C .[点睛]本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关[答案]D[解析][分析]方程组中的两个方程相加,再两边同时除以2即可进行判断. [详解]解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-, ∴代数式x y -的值与的大小无关.故选:D .[点睛]本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.[答案]5[解析][分析]将2x =-代入方程520x k +=即可求算.[详解]解:∵2x =-是方程520x k +=的解,2x =-代入方程:∴1020k -+=,解得:5k =故答案为:5[点睛]本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.[答案]523x - [解析][分析]移项,把x 看做已知数求出y 即可.[详解]解:二元一次方程235x y +=,移项得:352y x =-, 即:523x y, 故答案为:523x -; [点睛]此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. [答案]1m <[解析][分析]根据不等式的性质可得10m -<,解不等式即得答案.[详解]解:由题意得:10m -<,解得:1m <.故答案为:1m <.[点睛]本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________.[答案]5[解析][分析]由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.[详解]解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.[点睛]本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键. 15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.[答案]314x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解答即可.[详解]解:对457x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z++=,即8x y z++=④,④-①,得z=4, ④-②,得x=3, ④-③,得y=1,∴方程组的解是:314xyz=⎧⎪=⎨⎪=⎩.故答案为:314 xyz=⎧⎪=⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24xx m-≤⎧⎨<⎩无解,则的取值范围是____________.[答案]2m≤-[解析][分析]先求出不等式的解集,再根据无解得出m的取值范围.[详解]解:24xx m-≤⎧⎨<⎩①②由①得:2x≥-由②得:x m<∵不等式组无解,没有公共部分∴2m≤-故答案为:2m≤-[点睛]本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.[答案]2x =-[解析][分析]根据解一元一次方程的方法和步骤解答即可.[详解]解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.[点睛]本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.[答案]0x <,图见解析[解析][分析]分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.[详解]解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:[点睛]本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.[答案]a=5,b=-2[分析]将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.[详解]解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2[点睛]本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.[答案]这个两位数为45.[解析][分析]要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x ,则十位数字是9﹣x ,则原数是10(9﹣x )+x ,新数是10x +(9﹣x ),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.[详解]解:设原两位数的个位数字是x ,则十位数字是9﹣x .根据题意得:10x +(9-x )=10(9﹣x )+x +9解得:x =5,则9﹣x =4,答:这个两位数为45.[点睛]本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. [答案]16[解析]根据题意列出x 和y 的方程组,然后进行求解,将解代入另外的两个方程求出a 和b 的值,进而即可求解.[详解]解方程组5325x y x y +=⎧⎨-=⎩,得12x y =⎧⎨=-⎩. 把12x y =⎧⎨=-⎩代入5451ax y x by +=⎧⎨+=⎩,得142a b =⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?[答案](1)购进甲种商品800件,购进乙种商品200件;(2)334;[解析][分析](1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.[详解]解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000,解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.[答案](1)31k b =-⎧⎨=⎩;(2)7≤m <13 [解析][分析](1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式最大整数解是k =-3,来得到m 的取值范围. [详解]解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.[点睛]主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b .(1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. [答案](1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 [解析][分析] (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. [详解]解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+左边=49149 942336n n n-+--+=右边=49149 942336n n n-++--=+∴左边=右边∴当(),m n是“相伴数对”时,91,4m n⎛⎫⎪⎝+⎭-也是“相伴数对”[点睛]本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.[答案](1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B 种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[解析][分析](1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C 彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.[详解]解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B 种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[点睛]此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。
沪教版数学六年级(下)一课一练及单元测试卷和参考答案

数学六年级(下)一课一练及单元测试卷目录第五章有理数3 5.1有理数的意义(1) 3 5.2 数轴(1) 7 5.3 绝对值(1) 11 5.4有理数的加法(1) 15 5.5有理数的减法(1) 19 5.6 有理数的乘法(1) 23 5.7 有理数的除法(1) 27 5.8 有理数的乘方(1) 31 5.9 有理数的混合运算(1) 35 5.10 科学记数法(1) 39六年级(下)数学第五章有理数单元测试卷一43第六章一次方程(组)和一次不等式(组)6.1 列方程(1) 47 6.2 方程的解(1) 51 6.3 一元一次方程及其解法(1) 55 6.4 一元一次方程的应用(1) 59 6.5 不等式及其性质(1) 63 6.6 一元一次不等式的解法(1) 67 6.7 一元一次不等式组(1) 716.8 二元一次方程(1) 75 6.9 二元一次方程组及其解法(1) 79 6.10 三元一次方程组及其解法(1) 83 6.11一次方程组的应用(1) 87 第六章一次方程(组)和一次不等式(组)单元测试卷一93第七章线段与角的画法7.1 线段的大小的比较(1) 97 7.2 画线段的和、差、倍(1) 101 7.3 角的概念与表示(1) 105 7.4 角的大小的比较画相等的角(1) 109 7.5 画角的和、差、倍(1) 113 7.6 余角、补角(1) 117 六年级(下)数学第七章线段和角的画法单元测试卷一121第八章长方体的再认识8.1 长方体的元素(1) 125 8.2 长方体直观图的画法(1) 127 8.3 长方体中棱与棱位置关系的认识(1) 129 8.4 长方体中棱与平面位置关系的认识(1) 131 8.5 长方体中平面与平面位置关系的认识(1) 133 六年级(下)数学第八章长方体的再认识单元测试卷一137 参考答案 141数学六年级(下)第五章有理数5.1有理数的意义(1)一、填空题1、在1、﹣1.2、﹣2.5、0、、、3.14中,负数有个。
重庆市2020年中考数学试题A卷(解析版)

重庆市2020年初中学业水平暨高中招生考试数学试题(A卷)一、选择题1. 下列各数中,最小的数是()A. -3B. 0C. 1D. 2【答案】A【解析】【分析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.-<<<,【详解】∵3012∴最小的数是-3,故选:A.【点睛】本题考查有理数的大小比较,属于基础应用题,只需熟练掌握有理数的大小比较法则,即可完成.2. 下列图形是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3. 在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 32610⨯B. 32.610⨯C. 42.610⨯D. 50.2610⨯【答案】C【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】42.62600010⨯=,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21【答案】B【解析】【分析】 根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数.【详解】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B .【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1+2+3+4+……+n .5. 如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A. 40°B. 50°C. 60°D. 70°【答案】D【解析】【分析】 根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.【详解】∵AB 是O 的切线 ∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.【点睛】本题考查切线的性质,由切线得到直角是解题的关键.6. 下列计算中,正确的是( ) A. 235= B. 2222+= C. 236= D. 2323=【答案】C【解析】【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:A 23B .22不是同类二次根式,不能合并,此选项计算错误;C 23236=⨯=D .32不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7. 解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A. 3(1)12x x +=-B. 2(1)13x x +=-C. 2(1)63x x +=-D. 3(1)62x x +=-【答案】D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质. 8. 如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )5 B. 2 C. 4 D. 25【答案】D【解析】【分析】 把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,而A (1,2),C (3,1),∴D (2,4),F (6,2),∴DF ()()222642--+5【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .9. 如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)A. 76.9mB. 82.1mC. 94.8mD. 112.6m【答案】B【解析】【分析】 构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .【详解】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt DEC 中,∵山坡CD 的坡度i =1:0.75, ∴DE EC =10.75=43, 设DE =4x ,则EC =3x ,由勾股定理可得CD =5x ,又CD =45,即5x =45,∴x =9,∴EC =3x =27,DE =4x =36=FB ,∴BE =BC +EC =60+27=87=DF ,在Rt ADF 中,AF =tan28°×DF ≈0.53×87≈46.11,∴AB =AF +FB =46.11+36≈82.1,【点睛】本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10. 若关于x的一元一次不等式结3132xxx a-⎧≤+⎪⎨⎪≤⎩的解集为x a≤;且关于y的分式方程34122y a yy y--+=--有正整数解,则所有满足条件的整数a的值之积是()A. 7B. -14C. 28D. -56【答案】A【解析】【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132x x-≤+,解得x≤7,∴不等式组整理的7x x a≤⎧⎨≤⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解且y≠2,得到a=1,7,1×7=7,故选:A.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11. 如图,三角形纸片ABC,点D是BC边上一点,连接AD,把ABD△沿着AD翻折,得到AED,DE 与AC交于点G,连接BE交AD于点F.若DG GE=,3AF=,2BF=,ADG的面积为2,则点F到BC的距离为( )5 25 C. 455 43 【答案】B【解析】【分析】 首先求出ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题. 【详解】解:∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4, 由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°, ∴12•(AF +DF )•BF =4, ∴12•(3+DF )•2=4, ∴DF =1,∴DB 22BF DF +2212+5设点F 到BD 的距离为h , 则12•BD •h =12•BF •DF , ∴h 25, 故选:B .【点睛】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.12. 如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE△的面积为18,则k的值为()A. 6B. 12C. 18D. 24 【答案】B【解析】【分析】先证明OB∥AE,得出S△ABE=S△OAE=18,设A的坐标为(a,ka),求出F点的坐标和E点的坐标,可得S△OAE=12×3a×ka=18,求解即可.【详解】解:如图,连接BD,∵四边形ABCD为矩形,O为对角线,∴AO=OD,∴∠ODA=∠OAD,又∵AD为∠DAE的平分线,∴∠OAD=∠EAD,∴∠EAD=∠ODA,∴OB∥AE,∵S△ABE=18,∴S△OAE=18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .【点睛】本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.二、填空题13. 计算:0(1)|2|π-+-=__________.【答案】3【解析】【分析】根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.【点睛】本题比较简单,考查含零指数幂的简单实数混合运算,熟记公式0(01)x x =≠是关键. 14. 如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.【答案】六【解析】【分析】n 边形的内角和可以表示成(n ﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n ,依题意,得:(n ﹣2)•180°=2×360°,解得n =6,故答案为:六.【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15. 现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.【答案】3 16【解析】【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=3 16.故答案为:3 16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16. 如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)【答案】4π-【解析】【分析】根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积. 【详解】由图可知,S 2ABCD S S =-阴影扇形, 224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2, ∴=22AC , ∵点O 是AC 的中点, ∴OA=2, ∴290(2)3602S ππ︒==︒扇形,∴S 2=4-ABCD S S π=-阴影扇形, 故答案为:4π-.【点睛】本题考查了求阴影部分面积,扇形面积公式,正方形的性质,解题的关键是观察图形得出S 2ABCD S S =-阴影扇形.17. A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.【答案】()4,160 【解析】 【分析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案. 【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇 点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160) 故答案为:(4,160).【点睛】本题考查了一次函数的实际应用,读懂函数图象是解题关键.18. 火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________. 【答案】18【解析】 【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案. 【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7, ∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a ,由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ , 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208ax a a a a ==++, 故答案为:18. 【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.三、解答题19. 计算:(1)2()(2)x y x x y ++-; (2)2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭. 【答案】(1)222x y +;(2)33m - 【解析】【分析】(1)利用完全平方公式和整式乘法展开后合并同类型即可; (2)先把分子分母因式分解,然后按顺序计算即可; 【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++-23(3)3(3)(3)m m m m +=⋅++- 33m =-【点睛】本题考查整式的运算和分式的混合运算,熟记运算法则是解题的关键.20. 为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息. 七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示: 年级 平均数 众数 中位数 8分及以上人数所占百分比七年级 7.5 a 7 45% 八年级7.58bc八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?【答案】(1)7a =,7.5b =,50%c =;(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)估计参加此次测试活动成绩合格的人数有1080人 【解析】 【分析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值;(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论; (3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7, ∴7a =,由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50% ∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高; (3)七年级合格人数:18人, 八年级合格人数:18人,18181200100%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.【点睛】本题考查了平均数,众数,中位数,条形统计图等知识,熟练掌握平均数的求法,众数、中位数的概念是解决本题的关键.21. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠. (1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.【答案】(1)40ACB ∠=︒;(2)见解析 【解析】 【分析】(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可. (2)证明()AEOCFO AAS 可得结论.【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE , 40EAO,CA 平分DAE ∠,40DACEAO,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEOCFO,AOE COF ∠=∠,()AEOCFO AAS ,AE CF ∴=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握相关的知识点.22. 在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充..完整,并在图中补全..该函数图象;(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( )(3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).【答案】(1)95-,95;(2)①× ②√ ③√;(3)x <−1或−0.3<x <1.8.【解析】 【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断; (3)根据图象求解即可. 【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形; 故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3; 故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<± 26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x =≈,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23. 在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.【答案】(1)49不是“差一数”, 74是“差一数”,理由见解析;(2)314、329、344、359、374、389 【解析】 【分析】(1)直接根据“差一数”的定义计算判断即可;(2)解法一:根据“差一数”的定义可知被5除余4的数个位数字为4或9,被3除余2的数各位数字之和被3除余2,由此可依次求得大于300且小于400的所有“差一数”;解法二:根据题意可得:所求数加1能被15整除,据此可先求出大于300且小于400的能被15整除的数,进一步即得结果. 【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”, ∵745144÷=;743242÷=, ∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4, ∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399, ∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2, ∴这个数加1能被15整除,∵大于300且小于400的能被15整除的数为315、330、345、360、375、390, ∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.【点睛】此题主要考查了带余数的除法运算,第(2)题的解法一是用逐步增加条件的方法依此找到满足条件的所有数;解法二是正确得出这个数加1能被15整除,明确方法是关键.24. 为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收人将增加20%9a ,求a 的值. 【答案】(1)A 品种去年平均亩产量是400、B 品种去年平均亩产量是500千克;(2)10. 【解析】 【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案; (2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩.答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+⎪⎝⎭.令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1 所以a %=0.1,所以a =10, 答:a 的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.25. 如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.【答案】(1)241y x x =+-;(2)PAB △面积最大值为278;(3)存在,1234(12)(346)(346),(13)E E E E ---+----,,,,,,【解析】 【分析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解;(2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PAB B A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得1||2PAB B A S PF x x ∆=⋅- ()231412a a a =---+ ()2332a a =-- 23327228a ⎛⎫=-++ ⎪⎝⎭∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4);①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =-4±6,故点E (-3,-46)或(-3,-6);②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(346)--,,或(346)--,或(1,−3).∴存在,1234(12)(346)(346),(13)E E E E ---+----,,,,,, 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26. 如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:2CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.【答案】(1)证明见解析;(2)32BC =;(3)33CE +=【解析】【分析】 (1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)连接AF ,由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCE BCA ACE ∠=∠+∠=︒+︒=︒,然后根据现有条件说明在Rt DCE 中,22225DE CD CE CD BD CD =++=,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC 中,推出222218254AG CG AC CD CD --=,即可得出答案; (3)在△ABC 内取一点P ,连接AP 、BP 、CP ,将三角形ABP 绕点B 逆时针旋转60°得到△EBD,证明点P 位于线段CE 上,同理得到点P 位于线段BF 上,证明∠BPC=120°,进而得到120APB BPC CPA ∠=∠=∠=︒,设PD 为a ,得出3BD a =,3AD BD a =,得出3a m a +=,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =,∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE △中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒,∴AF DE ⊥,即Rt ADF 为等腰直角三角形,∴2AF DF AD ==, ∵CF DF =,∴CF AD =; (2)连接AF ,由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,∴454590DCE BCA ACE ∠=∠+∠=︒+︒=︒,在Rt DCE中,DE =,∵F 为DE 中点,∴12DF EF DE ===, 在四边形ADCE 中,有90DAE DCE ∠=∠=︒,180DAE DCE ∠+∠=︒,∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG中点,即CG 2CF =,∴AG =,即BC =;(3)如图1,在△ABC内取一点P,连接AP、BP、CP,将三角形ABP绕点B逆时针旋转60°得到△EBD,得到△BPD为等边三角形,所以PD=BP,∴AP+BP+CP=DE+DP+CP,++的值取得最小值时,点P位于线段CE上;∴当PA PB PC如图2,将三角形ACP绕点C顺时针旋转60°得到△FCG,得到△PCG为等边三角形,所以PC=GP,∴AP+BP+CP=GF+GP+BP,++的值取得最小值时,点P位于线段BF上;∴当PA PB PC综上所述:如图3,以AB、AC为边向外做等边三角形ABE和等边三角形ACF,连接CE、BF,则交点P为求作的点,∴△AEC≌△ABF,∴∠AEC=∠ABF,∴∠EPB=EAB=60°,∴∠BPC=120°,如图4,同理可得,120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PD 为a , ∴3BD a =, 又3AD BD a =, ∴3a m a +,(31)m a =31a =-又BD CE = ∴33CE +. 【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,灵活运用所学知识是解本题的关键.。
沪科版七年级数学上册第3章一次方程与方程组单元复习(第5单元)

第5单元知识点七:二元一次方程组的应用【典型例题】 1、某市举办中学生足球赛,规定胜一场得3分,平一场得1分。
市第二中学足球队比赛11场,没输过一场,共得27分。
问该队胜几场,平几场?2、某市举办中学生足球比赛,规定胜一场得3分,平一场得1分,输一场得0分;市第二中学足球队比赛11场,胜的场次是输的场次的3倍,共得21分。
试问该队胜几场,平几场,输几场?3、甲、乙两人相距4km,以各自的速度同时出发,如果同向而行,甲2h追上乙;如果相向而行,两人0.5h后相遇,试问两人的速度各是多少?4、玻璃厂熔炼玻璃液,原料是石英砂和长石粉混合而成,要求原料中含二氧化硅70%,根据化验,石英砂中含二氧化硅99%,长石粉中含二氧化硅67%,试问3.2t原料中,石英砂和长石粉各多少吨?5、某医院利用甲乙两种原料为病人配制营养品。
已知每克甲原料含0.6单位蛋白质和0.08单位铁质,每克乙原料含0.5单位蛋白质和0.04单位铁质,如果病人每餐需34单位蛋白质和4单位铁质,那么每餐甲乙两种原料各多少克恰好满足病人的需要?6、某商场向银行申请了甲、乙两种贷款,共计68万元。
每年应付利息3.82万元,甲种贷款年利率是6%,乙种贷款年利率是5%,试问这两种贷款的金额各是多少?7、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”问甲、乙现在各多少岁?8、某村18位农民筹集5万元资金,承包了一些低产田地。
根据市场调查,他们计划对种植作物的品种进行调整,改种蔬菜和荞麦,种这两种作物每公顷所需的人数和需投入的资金如下表:在现有的条件下,这18位农民应承包多少公顷田地,怎样安排种植才能使所有的农民都有工作,且资金正好够用?知识点八:三元一次方程组及其解法【知识要点】解三元一次方程组的基本思路是通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (21)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)已知甲、乙两种商品的原价和为200元。
因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。
求甲、乙两种商品的原单价各是多少元。
【答案】甲、乙两种商品的原单价各是50元、150元.【解析】试题分析:设甲乙两种商品的单价,利用调整价格前后的价格关系,列方程组求解.试题解析:2000.9 1.1 1.05200x yx y+=⎧⎨+=⨯⎩,解得50150 xy=⎧⎨=⎩.答:甲、乙两种商品的原单价各是50元、150元.62.甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。
求A、B两人骑自行车的速度。
(只需列出方程即可)【答案】设甲的速度是x千米/小时,乙的速度是y千米/小时,2 303012 x yx y+=⎧⎪⎨-=⎪⎩【解析】试题分析:设甲的速度,乙的速度,利用甲乙速度关系和相遇时间关系列方程组,求解.试题解析:设甲的速度是x 千米/小时,乙的速度是y 千米/小时, 2303012x y x y +=⎧⎪⎨-=⎪⎩. 63.某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?【答案】体操队10人,排球队15人,篮球队12人【解析】试题分析:设体操队,排球队,篮球队,按照倍数关系列方程组,求解. 试题解析:设体操队人数是x ,排球队人数是y ,篮球队人数是z ,由题意得, 5:625342x y y x z x =⎧⎪=-⎨⎪+=⎩:, 解得101512x y z =⎧⎪=⎨⎪=⎩. 答:体操队人数是10,排球队15人,篮球队12人.点睛:列方程(组)的具体步骤是:⑴审题.弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么.⑵设元(未知数).①直接未知数②间接未知数(往往二者兼用).一般来说,未知数越多,方程越易列,但越难解.⑶用含未知数的代数式表示相关的量.⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程.一般地,未知数个数与方程个数是相同的.⑸解方程及检验.⑹答案.64.有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?【答案】两种债券各有150、250元.【解析】试题分析:设每种债券的价值,利用总金额和收益列二元一次方程组求解. 试题解析:设甲种债券x 元,乙种y 元,40010%12%45x y x y +=⎧⎨+=⎩, 解得150250x y =⎧⎨=⎩. 答:甲种债券150元,乙种债券250元.65.现有一种饮料,它有大、中、小3种包装,其中1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,三种包装的饮料每瓶各多少元?【答案】大包装饮料每瓶5元,中包装饮料每瓶3元,小包装饮料每瓶1.6元【解析】【试题分析】根据等量关系,列方程组即可.【试题解析】设大、中、小包装的饮料每瓶分别为x元、y元、z元,则20.20.49.6y zx y zx y z=-⎧⎪=++⎨⎪++=⎩,解得531.6xyz=⎧⎪=⎨⎪=⎩.答:大包装饮料每瓶5元,中包装饮料每瓶3元,小包装饮料每瓶1.6元.【方法点睛】这是一道三元一次方程组的应用题.找出等量关系是解决问题的关键.66.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类且定价为15元的图书.书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同,问学校获奖的同学有多少人?【答案】(1)签字笔和笔记本的单价分别是1.5元与3.5元;(2)学校获奖的同学有48人【解析】【试题分析】(1)可根据“1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元”列方程组并解方程组;(2)可根据“购买图书总数超过50本可以享受8折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同”列一元一次方程,并解方程即可.【试题解析】(1)设签字笔和笔记本的单价分别是x 元与y 元,由题意可得28.52313.5x y x y +=⎧⎨+=⎩,解得 1.53.5x y =⎧⎨=⎩答:签字笔和笔记本的单价分别是1.5元与3.5元(2)设学校获奖的同学有z 人,由题意可得()150.81215z z ⨯+=解得48z = 答:学校获奖的同学有48人.【方法点睛】本题目是一道二元一次方程组的实际应用题.主要是根据等量关系列方程组.67.已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行),某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:(1)现在该公司收购了140吨蔬菜,如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求15天刚好加工完140吨蔬菜,则应如何分配加工时间?【答案】(1)见解析;(2)10天进行精加工,5天进行粗加工.【解析】【分析】(1)按已知把已知表中的前两个数据都乘以140完成表格;而3中18天只能精加工6×18=108(吨),所以为()10845014010810051800⨯+-⨯=(元);(2)由题意列二元一次方程组求解.【详解】(1)当全部直接销售时140×100=14000(元);当全部粗加工后销售时250×140=35000(元);当尽量精加工,剩余部分直接销售时()18645014018610051800⨯⨯+-⨯⨯=(元);所以依次填:14000,35000,518000;(2)设应安排x 天进行精加工,y 天进行粗加工,根据题意得:18616140x y x y +=⎧⎨+=⎩,解得:105x y =⎧⎨=⎩, 答:应安排10天进行精加工,5天进行粗加工.68.为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.那么每个文具盒、每支钢笔各多少元?【答案】每个文具盒14元,每支钢笔15元【解析】【试题分析】设每个文具盒x 元,每支钢笔y 元,然后根据花费100元与57元分别列出方程组,解二元一次方程组即可.【试题解析】设每个文具盒x 元,每支钢笔y 元,则52100357x y x y +=⎧⎨+=⎩,解得1415x y =⎧⎨=⎩,所以每个文具盒14元,每支钢笔15元. 69.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元,求A 、B 两种型号的空调的购买价各是多少元?【答案】A 、B 两种型号的空调购买价分别为2120元、2320元【解析】试题分析:根据题意,设出A 、B 两种型号的空调购买价分别为x 元、y 元,然后根据“已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元”,列出方程求解即可.试题解析:设A 、B 两种型号的空调购买价分别为x 元、y 元,依题意得:2002311200y x x y -=⎧⎨+=⎩解得:21202320x y =⎧⎨=⎩答:A、B两种型号的空调购买价分别为2120元、2320元70.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?【答案】第一阶梯电价每度0.5元,第二阶梯电价每度0.6元【解析】试题分析:设第一阶梯电价每度x元,第二阶梯电价每度y元,根据两张收据中的用电量、金额列方程组求解即可.试题解析:设第一阶梯电价每度x元,第二阶梯电价每度y元,由题意可得:20020112 20065139x yx y+=⎧⎨+=⎩,解得0.50.6xy=⎧⎨=⎩.答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.点睛:本题关键设出两个未知数,根据已知条件列方程组求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步测试一
(一)填空题(每空2分,共26分):
1.已知二元一次方程12
13-+y x =0,用含y 的代数式表示x,则x=_____ ____;当y =-2时,x =___ ____.
2.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)⎪⎩
⎪⎨⎧-==27y 41x 这三组数值中, 是方程组x -3y=9的解,_____ _是方程2x +y=4的解, 是方程组⎩
⎨⎧=+=-4293y x y x 的解. 3.已知⎩⎨⎧=-=5
4y x ,是方程41x +2m y+7=0的解,则m=______ _. 4.若方程组⎩⎨⎧=-=+13
7by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a=__ ,b =_ . 5.已知等式y=kx+b,当x=2时,y =-2;当x=-
21时,y=3,则k=___ _,b=____ . 6.若0)2b c (4
1c 4b 3a 2=-+-+,则a ∶b ∶c=_________ . 7.当m=_______时,方程x+2y=2,2x +y=7,mx-y=0有公共解.
8.一个三位数,若百位上的数为x,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.
(二)选择题(每小题2分,共16分):
9.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩
⎪⎪⎨⎧=-=+0131y x y x ,(4)⎩⎨⎧=-=+0y 3y x x ,其中属于二元一次方程组的个数为( ) (A)1 (B )2 (C)3 (D)4
10.已知2 x b+5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )
(A )2 (B)-2 (C )1 (D )-1
11.已知方程组⎩⎨⎧-=-=+1242m ny x n y mx 的解是⎩⎨⎧-==1
1y x ,那么m 、n 的值为( ) (A)⎩⎨⎧-==11n m (B)⎩⎨⎧==12n m (C)⎩⎨⎧==23n m (D)⎩⎨⎧==13n m
12.三元一次方程组⎪⎩⎪⎨⎧=+=+=+65
1x z z y y x 的解是( )(A)⎪⎩⎪⎨⎧===501z y x (B)⎪⎩⎪⎨⎧===421z y x (C )⎪⎩⎪⎨⎧===401z y x (D)⎪⎩
⎪⎨⎧===014z y x
13.若方程组⎩
⎨⎧=+=-+14346)1(y x y a ax 的解x、y 的值相等,则a 的值为( ) (A )-4 (B )4 (C )2 (D )1
14.若关于x 、y 的方程组⎩⎨⎧=-=+k
y x k y x 73的解满足方程2x+3y =6,那么k的值为( )
(A)-23 (B )23 (C )-32 (D )-2
3 15.若方程y =kx +b当x 与y 互为相反数时,b 比k 少1,且x=
21,则k 、b 的值分别是( ) (A)2,1 (B)32,3
5 (C)-2,1 (D )31,-32 16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组……………………………( )
(A)⎩⎨⎧=-=+y x y x 3847 (B)⎩⎨⎧=++=x y x y 3847(C )⎩⎨⎧+=-=3847x y x y (D )⎩⎨⎧+=+=3
847x y x y (三)解下列方程组(每小题4分,共20分):
17.⎩⎨⎧-=-=-.557832y x y x 18.⎪⎪⎩⎪⎪⎨⎧=+=+.157655
45.04332y x y x
19.⎪⎩⎪⎨⎧=+=4
.1%40%2552y x y x 20.⎩⎨⎧-=++=+.b a y x b a y x 2127521257(a 、b 为非零常数)
21.
(四)解答题(每小题6分,共18分):
22.已知方程组⎩
⎨⎧+=+=+25332n y x n y x 的解x 、y 的和为12,求n 的值.
23.已知方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3
321123by ax y x 的解相同,求a2+2a b+b 2 的值.
24.已知代数式x2+ax+b 当x =1和x=-3时的值分别为0和14,求当x =3时代数式的值.
(五)列方程组解应用问题(每1小题10分,共20分):
25
26.A、B两地相距20千米,甲、乙两人分别从A、B两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A地还有2千米,求甲、乙两人的速度.。