人教版七年级数学下册三元一次方程组(基础) 典型例题(考点)讲解+练习(含答案).doc

合集下载

初一数学下册知识点《解三元一次方程组》经典50例及解析

初一数学下册知识点《解三元一次方程组》经典50例及解析
初一数学下册知识点《解三元一次方程组》经典 50 例及
解析
副标题
题号 得分




总分
一、选择题(本大题共 16 小题,共 48.0 分) 1. 若(2x-4)2+(x+y)2+|4z-y|=0,则 x+y+z 等于( )
A. -
B.
C. 2
【答案】A 【解析】解:∵(2x-4)2+(x+y)2+|4z-y|=0,
A. 3
B. 2
C. 1
D. 无法确定
【答案】A
【解析】解:由题意将
代入方程组得:

①+②+③得:a+2b+2b+3c+c+3a=2+3+7, 即 4a+4b+4c=4(a+b+c)=12, 则 a+b+c=3. 故选 A. 由题意,可将 x,y 及 z 的值代入方程组得到关于 a,b,c 的方程组,将方程组中三个方 程左右两边相加,变形后即可求出 a+b+c 的值. 此题考查了三元一次方程组的解,以及解三元一次方程组,方程组的解为能使方程组中
4. 对于三元一次方程组,我们一般是先消去一个未知数,转化为二元一次方程组求
解.那么在解三元一次方程组
时,下列没行实现这一转化的是
()
A.
B.
C.
D.
【答案】A 【解析】解:因为解三元一次方程组的步骤先消去一个未知数,得到一个二元一次方程 组, 所以没行实现这一转化的是 A 选项,仍旧是三个未知数, 故选:A. 根据解三元一次方程组的步骤先消去一个未知数,得到一个二元一次方程组,从而得出 答案. 本题考查了三元一次方程组的解法,把“三元”转化为“二元”、把“二元”转化为 “一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题 转化为简单问题的思想方法.解三元一次方程组的关键是消元.

人教版数学七年级下《三元一次方程组的解法》课堂练习题含答案

人教版数学七年级下《三元一次方程组的解法》课堂练习题含答案

*8.4 三元一次方程组的解法基础题知识点1 解三元一次方程组1.下列是三元一次方程组的是(D )A .⎩⎪⎨⎪⎧2x =5x 2+y =7x +y +z =6B .⎩⎪⎨⎪⎧3x -y +z =-2x -2y +z =9y =-3 C .⎩⎪⎨⎪⎧x +y -z =7xyz =1x -3y =4 D .⎩⎪⎨⎪⎧x +y =2y +z =1x +z =92.观察方程组⎩⎪⎨⎪⎧3x -y +2z =3,2x +y -4z =11,7x +y -5z =1的系数特点,若要使求解简便,消元的方法应选取(B )A .先消去xB .先消去yC .先消去zD .以上说法都不对3.将三元一次方程组⎩⎪⎨⎪⎧5x +4y +z =0, ①3x +y -4z =11, ②x +y +z =-2 ③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是(A )A .⎩⎪⎨⎪⎧4x +3y =27x +5y =3B .⎩⎪⎨⎪⎧4x +3y =223x +17y =11 C .⎩⎪⎨⎪⎧3x +4y =27x +5y =3 D .⎩⎪⎨⎪⎧3x +4y =223x +17y =11 4.已知方程组⎩⎪⎨⎪⎧x +2y =k ,2x +y =1的解满足x +y =3,则k 的值为(B ) A .10 B .8 C .2 D .-85.由方程组⎩⎪⎨⎪⎧2x +y =7,2y +z =8,2z +x =9,可以得到x +y +z 的值等于(A )A .8B .9C .10D .116.解下列三元一次方程组:(1)⎩⎪⎨⎪⎧2x +y =4,①x +3z =1,②x +y +z =7;③解:由①,得y =4-2x.④由②得z =1-x 3.⑤ 把④,⑤代入③,得x +4-2x +1-x 3=7. 解得x =-2.∴y =8,z =1.∴原方程组的解为⎩⎪⎨⎪⎧x =-2,y =8,z =1.(2)⎩⎪⎨⎪⎧x +z -3=0,①2x -y +2z =2,②x -y -z =-3.③解:②-③,得x +3z =5.④解由①,④组成的方程组,得⎩⎪⎨⎪⎧x =2,z =1. 将⎩⎪⎨⎪⎧x =2,z =1代入③,得y =4. ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =4,z =1.知识点2 三元一次方程组的简单应用7.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14.则这个三位数是275.8.已知-a x +y -z b 5c x +z -y 与a 11b y +z -x c 是同类项,则x =6,y =8,z =3.9.(镇江校级期末)已知y =ax 2+bx +c ,当x =1时,y =3;当x =-1时,y =1;当x =0时,y =1.求a ,b ,c 的值.解:∵y =ax 2+bx +c ,当x =1时,y =3;当x =-1时,y =1;当x =0时,y =1,∴代入,得⎩⎪⎨⎪⎧a +b +c =3,①a -b +c =1,②c =1,③把③代入①和②,得⎩⎪⎨⎪⎧a +b =2,a -b =0. 解得a =1,b =1,即a =1,b =1,c =1.10.2016里约奥运会,中国运动员获得金、银、铜牌共70枚,位列奖牌榜第三.其中金牌比银牌多8枚,铜牌比银牌的总数的2倍少10枚.问金、银、铜牌各多少枚?解:设金牌x 枚,银牌y 枚,铜牌z 枚,则⎩⎪⎨⎪⎧x +y +z =70,x -y =8,2y -z =10,解得⎩⎪⎨⎪⎧x =26,y =18,z =26.答:金牌26枚,银牌18枚,铜牌26枚.中档题11.三元一次方程组⎩⎪⎨⎪⎧x +y =-1,x +z =0,y +z =1的解是(D )A .⎩⎪⎨⎪⎧x =-1y =1z =0B .⎩⎪⎨⎪⎧x =1y =0z =-1C .⎩⎪⎨⎪⎧x =0y =1z =-1D .⎩⎪⎨⎪⎧x =-1y =0z =112.(淄博中考)如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是(C )A .2B .7C .8D .1513.如图1,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图2,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与2个砝码C 的质量相等.14.解方程组:(1)⎩⎪⎨⎪⎧x -2y +z =0,①3x +y -2z =0,②7x +6y +7z =100;③解:①+②×2,得7x -3z =0.④①×3+③,得10x +10z =100,即x +z =10.⑤解由④,⑤组成的方程组,得⎩⎪⎨⎪⎧x =3,z =7. 将⎩⎪⎨⎪⎧x =3,z =7代入①,得y =5.∴原方程组的解是⎩⎪⎨⎪⎧x =3,y =5,z =7.(2)⎩⎪⎨⎪⎧x ∶y =1∶5,①y ∶z =2∶3,②x +y +z =27.③解:由①,得y =5x.④由②,得z =32y =152x.⑤ 把④,⑤代入③,得x +5x +152x =27.解得x =2. ∴y =10,z =15.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =10,z =15.15.若||x +2y -5+(2y +3z -13)2+3z +x -10=0,试求x ,y ,z 的值. 解:由题意,得⎩⎪⎨⎪⎧x +2y -5=0,2y +3z -13=0,3z +x -10=0.解得⎩⎪⎨⎪⎧x =1,y =2,z =3.16.小明从家到学校的路程为3.3千米,其中有一段上坡路、平路和下坡路.如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米,那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?解:设去学校时上坡路是x 千米,平路是y 千米,下坡路是z 千米.依题意得⎩⎪⎨⎪⎧x +y +z =3.3,x 3+y 4+z 5=1,z 3+y 4+x 5=4460,解得⎩⎪⎨⎪⎧x =2.25,y =0.8,z =0.25. 答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.综合题17.(贵州中考)为确保信息安全,在传输时往往需加密,发送方发出一组密码a ,b ,c 时,则接收方对应收到的密码为A ,B ,C.双方约定:A =2a -b ,B =2b ,C =b +c ,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?解:(1)由题意得⎩⎪⎨⎪⎧A =2×2-3,B =2×3,C =3+5,解得A =1,B =6,C =8.答:接收方收到的密码是1,6,8.(2)由题意得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11.解得⎩⎪⎨⎪⎧a =3,b =4,c =7.答:发送方发出的密码是3,4,7.。

人教版数学七年级下册-《三元一次方程组的解法》例题与讲解

人教版数学七年级下册-《三元一次方程组的解法》例题与讲解

三元一次方程组的解法 例题与讲解1.三元一次方程及三元一次方程组 (1)三元一次方程:含有三个未知数,并且含未知数的项的次数都是1的方程叫做三元一次方程.(2)三元一次方程组:①定义:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组.如:⎩⎨⎧ x +y =1,y +z =3,x -2z =5,⎩⎨⎧x +3y +2z =2,3x +2y -4z =3,2x -y =7等都是三元一次方程组.②拓展理解:a.构成三元一次方程组中的每一个方程都必须是一次方程;b.三元一次方程组中的每个方程不一定都含有三个未知数,但方程组中一定要有三个未知数.【例1】 下列方程组中是三元一次方程组的是( ).A.⎩⎨⎧x 2-y =1,y +z =0,xz =2B.⎩⎪⎨⎪⎧1x +y =1,1y +z =2,1z +x =6C.⎩⎨⎧a +b +c +d =1,a -c =2,b -d =3D.⎩⎨⎧m +n =18,n +t =12,t +m =0解析:A ,B 选项中有的方程不是三元一次方程,C 中含有四个未知数,只有D 符合三元一次概念内涵,故选D.答案:D2.三元一次方程组的解(1)三元一次方程的解:使三元一次方程左右两边相等的三个未知数的值,叫做三元一次方程的解.和二元一次方程一样,一个三元一次方程也有无数个解.(2)三元一次方程组的解:组成三元一次方程组的三个方程的公共解,叫做三元一次方程组的解.它也是三个数.(3)检验方法:同二元一次方程和二元一次方程组的检验方法一样,代入检验,左、右两边相等即是方程的解.释疑点 检验三元一次方程组的解三元一次方程组的解是三个数,将这三个数代入每一个方程检验,只有这些数满足方程组中的每一个方程,这些数才是这个方程组的解.【例2】 判断⎩⎨⎧x =2,y =-3,z =-3是不是方程组⎩⎨⎧x +y -2z =5,2x -y +z =4,2x +y -3z =10的解.答:__________(填是或不是).解析:把⎩⎨⎧x =2,y =-3,z =-3代入方程组的三个方程中检验,能使三个方程的左右两边都相等,所以是方程组的解.答案:是3.三元一次方程组的解法(1)解法思想:解三元一次方程组的基本思路是消元,其方法有代入消元法和加减消元法两种,通过消元将三元一次方程组转化为二元一次方程组或一元一次方程.(2)步骤:①观察方程组中每个方程的特点,确定消去的未知数;②利用加减消元法或代入消元法,消去一个未知数,得到二元一次方程组;③解二元一次方程组,求出两个未知数的值;④将所得的两个未知数的值代入原三元一次方程组中的某个方程,求出第三个未知数的值;⑤写出三元一次方程组的解.(3)注意点:①三元一次方程组的解法多种多样,只要逐步消元,解出每一个未知数即可;②解三元一次方程组时,每一个方程都至少要用到一次,否则解出的结果也不正确.【例3】 解方程组⎩⎨⎧ x +3y +2z =2,3x +2y -4z =3,2x -y =7.①②③分析:观察方程组中每个方程的特征可知,方程③不含有字母z ,而①,②中的未知数z 的系数成倍数关系,故可用加减消元法消去字母z ,然后将所得的方程与③组合成二元一次方程组,求这个方程组的解,即可得到原方程组的解.解:①×2+②,得5x +8y =7,④ 解③,④组成的方程组 ⎩⎨⎧2x -y =7,5x +8y =7.解这个方程组,得⎩⎨⎧x =3,y =-1.把x =3,y =-1代入①,得z =1,所以原方程组的解为⎩⎨⎧x =3,y =-1,z =1.4.运用三元一次方程组解实际问题(1)方法步骤:①审题:弄清题意及题目中的数量关系; ②设:设三个未知数;③列:找出实际问题中的已知数和未知数,分析它们之间的数量关系,用式子表示,列出三个方程,组成三元一次方程组;④解:解这个方程组,并检验解是否符合实际; ⑤答:回答说明实际问题的答案. 析规律 列三元一次方程组同二元一次方程组的实际应用相类似,运用三元一次方程组解决实际问题要设三个未知数,寻找三个等量关系,列出三个一次方程,组成三元一次方程组.【例4】 某个三位数是它各位数字和的27倍,已知百位数字与个位数字之和比十位数字大1,再把这个三位数的百位数字与个位数字交换位置,得到一个新的三位数,新三位数比原三位数大99,求原来的三位数.解:设百位数字为a 、十位数字为b ,个位数字为c ,则这个三位数为100a +10b +c ,由题意,得⎩⎨⎧a +c =b +1,27a +b +c =100a +10b +c ,100a +10b +c +99=100c +10b +a .化简,得⎩⎨⎧a -b +c =1,-73a +17b +26c =0,a -c =-1.解这个方程组,得⎩⎨⎧a =2,b =4,c =3.答:原来的三位数是243.。

七年级数学(下)第八章《三元一次方程组的解法》练习题含答案

七年级数学(下)第八章《三元一次方程组的解法》练习题含答案

七年级数学(下)第八章《三元一次方程组的解法》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中是三元一次方程组的是A.212x yy zxz⎧-=⎪+=⎨⎪=⎩B.111216yxzyxz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩C.123a b c da cb d+++=⎧⎪-=⎨⎪-=⎩D.1812m nn tt m+=⎧⎪+=⎨⎪+=⎩【答案】D2.解方程组3423126①②③x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩时,第一次消去未知数的最佳方法是A.加减法消去x,将①-③×3与②-③×2 B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个【答案】C【解析】观察所给方程组,可以发现z的系数最简单,故可通过加减法消去z,故选C.3.已知方程组2334823x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=-⎩①②③,若消去z,得二元一次方程组不正确的为A.531153x yx y+=⎧⎨-=⎩B.53115+719x yx y+=⎧⎨=⎩C.535+719x yx y-=⎧⎨=⎩D.5+35+719x yx y=⎧⎨=⎩【答案】D【解析】在方程组2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③中,①+②得5311x y +=④,①×2+③得53x y -=⑤,②×2-③得5719x y +=⑥,所以由④与⑤可以组成A ,由④与⑥可以组成B ,由⑤与⑥可以组成C ,故选D .4.三元一次方程组32522x y x y z z -⎧=++==⎪⎨⎪⎩的解是A .112x y z ===⎧⎪⎨⎪⎩B .112x y z ⎧==-=⎪⎨⎪⎩C .112x y z ⎧=-==⎪⎨⎪⎩D .112x y z ⎧=-=-=⎪⎨⎪⎩【答案】B【解析】32522①②x y x y z z -=⎧⎪++=⎨⎪=⎩,把z =2代入②得:x +y =0③,①+③×2得:5x =5,即x =1,把x =1代入③得:y =-1,则方程组的解为112x y z =⎧⎪=-⎨⎪=⎩,故选B .5.已知方程组35223x y k x y k +=+⎧⎨+=⎩,x 与y 的值之和等于2,则k 的值为A .4B .4-C .3D .3-【答案】A【解析】35223x y k x y k +=+⎧⎨+=⎩①②,①×2-②×3得:y =2(k +2)-3k =-k +4,把y =-k +4代入②得:x =2k -6,又x 与y 的值之和等于2,所以x +y =-k +4+2k -6=2,解得k =4,故选A .6.三元一次方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩的解的个数为A .无数多个B .1C .2D .0【答案】A【解析】在方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩①②③中,③-②得6x y -=④,即①与④相同,所以方程组有无数个解.故选A.7.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2∶3,三种球共41个,则篮球的个数为A.21 B.12 C.8 D.35【答案】A【解析】设篮球有x个,排球有y个,足球有z个,根据题得232341y xz yx y z-=⎧⎪=⎨⎪++=⎩∶∶,解得21128xyz=⎧⎪=⎨⎪=⎩,所以篮球有21个.故选A.8.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有A.2种B.3种C.4种D.5种【答案】B9.已知方程组35204522x yx y zax by z-=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by zx y z cx y-+=⎧⎪++=⎨⎪+=-⎩有相同的解,则a、b、c的值为A.231abc=-⎧⎪=-⎨⎪=⎩B.231abc=-⎧⎪=⎨⎪=⎩C.231abc=⎧⎪=-⎨⎪=-⎩D.231abc=⎧⎪=⎨⎪=-⎩【答案】D【解析】解方程组3520234x yx y zx y-=⎧⎪+-=⎨⎪+=-⎩,解得12xyz=⎧⎪=-⎨⎪=⎩,代入可得方程组41022281a ba bc-=-⎧⎪+=⎨⎪-=⎩,解得231abc=⎧⎪=⎨⎪=-⎩,故选D.二、填空题:请将答案填在题中横线上. 10.若x +y +z ≠0且222y z x y z xk x z y+++===,则k =__________. 【答案】3 【解析】∵222y z x y z x k x z y+++===,∴2y z kx +=,2x y kz +=,2z x ky +=,∴2y z ++2x +2y z x kx ky kz ++=++,即3()()x y z k x y z ++=++,又∵0x y z ++≠,∴3k =,故答案为:3.11.在等式y =ax 2+bx +c 中,当x =1时,y =-2;当x =-1时,y =20;当32x =与13x =时,y 的值相等,则a =__________,b =__________,c =__________. 【答案】6;-11;3【解析】根据题意,可得方程组29311429320①②③a b c a b c a b c a b c ++=-⎧⎪⎪++=++⎨⎪⎪-+=⎩,由②得11a +6b =0④,③-①得-2b =22,解得b =-11,将b =-11代入④得a =6,再将a =6,b =-11代入①得c =3.故原方程组的解为6113a b c =⎧⎪=-⎨⎪=⎩,故答案为:6;-11;3.12.已知方程组237x y y z z x +=⎧⎪+=⎨⎪+=⎩,则x +y +z =__________.【答案】6【解析】将三个方程相加,得2x +2y +2z =12,所以x +y +z =6,故答案为:6.13.如图,表中各行、各列及两条对角线上三个数的和都相等,则a +b +c +d +e +f 值是__________ .【答案】21【解析】由题意得4-1+a =d +3+a ,解得d =0,∵4+b +0=b +3+c ,解得c =1,又∵4-1+a =a +1+f ,解得f =2,∴a =6,b =5,e =7,则a +b +c +d +e +f =6+5+1+0+7+2=21.故答案为:21. 三、解答题:解答应写出文字说明、证明过程或演算步骤.14.解方程组2923103243①②③x y z x y z x y z -+=⎧⎪++=⎨⎪+-=-⎩.所以原三元一次方程组的解为322x y z =⎧⎪=-⎨⎪=⎩.15.有三个数,第一个数的3倍比第二个数的5倍小90,而第一个数的4倍与第二个数的6倍之差等于第三个数的20倍的相反数,同时,第三个数比4大1.求这三个数. 【解析】设第一个数为x ,第二个数为y ,第三个数为z ,由题意得:3590462041x y x y z z -=-⎧⎪-=-⎨⎪-=⎩,解得20305x y z =⎧⎪=⎨⎪=⎩, 答:这三个数依次是20,30,5.16.已知方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式437x y -=成立.(1)求原方程组的解;(2)求代数式221m m -+的值.【解析】(1)根据题意得,734521x y x y m +=⎧⎨-=-⎩①②,+①②,得1111x =,解得1x =,把1x =代入①得,1y =-,∴原方程组的解为11x y =⎧⎨=-⎩.(2)将1x =,1y =-代入521x y m -=-,得8m =, 将8m =代入2221828149m m -+=-⨯+=. ∴代数式221m m -+的值为49.17.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?【解析】设种植水稻x 公顷,棉花y 公顷,蔬菜为z 公顷,由题意得26748530051x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,解得:152016x y z =⎧⎪=⎨⎪=⎩,答:种植水稻15公顷,棉花20公顷,蔬菜为16公顷.。

人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案) (34)

人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案) (34)

人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案)阅读下列解方程组的过程:解方程组:123x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③由①+②+③,得2(x +y +z )=6,即x +y +z =3.④ 由④-①,得z =2;由④-②,得x =1;由④-③,得y =0.则原方程组的解为102x y z =⎧⎪=⎨⎪=⎩按上述方法解方程组:215216217x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩【答案】345x y z =⎧⎪=⎨⎪=⎩【解析】【分析】三个方程相加可得x+y+z=12,然后用减法进行计算即可得答案.【详解】215216217x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩①②③, ①+②+③得:4x+4y+4z+48,即x+y+z=12④,①-④得:x=3,②-④得:y=4,③-④得:z=5,∴方程组的解为:45y z ⎪=⎨⎪=⎩. 【点睛】本题考查解三元一次方程组,三个方程相加求出x+y+z 的值是解题关键.32.解方程组:6321234x y z x y z x y z ++=⎧⎪-+=⎨⎪--=-⎩【答案】312x y z =⎧⎪=⎨⎪=⎩【解析】【分析】先把三元一次方程组化为二元一次方程组,然后再通过消元、移项、系数化为1,求出二元一次方程组的解,从而求出三元一次方程组的解【详解】6321234x y z x y z x y z ++=⎧⎪-+=⎨⎪--=-⎩①②③ ①+②得:4x+3z=18④,①+③得:2x-2z=2,即x-z=1⑤,④+⑤×3得7x=21,解得:x=3,把x=3代入⑤得:z=2,把x=3,z=2代入①得:y=1,∴方程组的解为12y z ⎪=⎨⎪=⎩. 【点睛】本题考查解三元一次方程组,解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,将“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.33.解方程组:(1)1310224x y x y ⎧+=⎪⎨⎪-=⎩; (2)64239318a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩【答案】(1)32x x =⎧⎨=⎩ ;(2)123a b c =⎧⎪=-⎨⎪=⎩. 【解析】【分析】(1)利用加减消元法进行求解即可;(2)先消去c ,得到关于a 、b 的二元一次方程组,解二元一次方程组求得a 、b 的值,继而求得c 的值即可.【详解】 (1)1310224x y x y ⎧+=⎪⎨⎪-=⎩①②, ①×2+②,得8x=24,解得:x=3,把x=3代入②,得6-y=4,解得;y=2,所以方程组的解为2x ⎨=⎩; (2)64239318a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩①②③, ②-①,得3a+3b=-3④,③-①,得8a-2b=12⑤,④÷3+⑤÷2,得5a=5,解得a=1,把a=1代入④,得3+3b=-3,解得b=-2,把a=1,b=-2代入①,得1+2+c=6,解得c=3,所以方程组的解为123a b c =⎧⎪=-⎨⎪=⎩. 【点睛】本题考查了解二元一次方程组,解三元一次方程组,熟练掌握和灵活运用加减消元法、代入消元法是解题此类问题的关键.34.根据下面的等式,求出妈妈买回来的鱼、鸭、鸡各花了多少钱. 鸡+鸭+鱼=35.4元,鸡+鱼=20.4元,鸭+鱼=21.4元.【答案】妈妈买回来的鱼、鸭、鸡分别花了6.4元,15元,14元.【解析】【分析】设买鱼花了x 元,买鸭花了y 元,买鸡花了z 元,根据题意列出三元一次方程组,即可求解.设买鱼花了x 元,买鸭花了y 元,买鸡花了z 元.由题意列出方程组得35.4,20.4,21.4.x y z x z y x ++=⎧⎪+=⎨⎪+=⎩解得 6.41514.x y z =⎧⎪=⎨⎪=⎩,, 答:妈妈买回来的鱼、鸭、鸡分别花了6.4元,15元,14元.【点睛】此题主要考查三元一次方程的应用,解题的关键是根据题意找到等量关系列出方程.35.已知方程4360x y z --=与方程330x y z --=有相同的解,求::x y z .【答案】()3:2:3-【解析】【分析】联立两方程组成方程组,把z 看做已知数表示出x 与y ,即可求出x :y :z 的值.【详解】联立得:43633x y z x y z -=⎧⎨-=⎩①②, ①-①得:33x z =,即x z =,把x z =代入①得:23y z =-, 则()2::::3:2:33x y z z z z ⎛⎫=-=- ⎪⎝⎭.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.36.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?【答案】应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z,再利用共花费346元,分别得出x,y,z的取值范围,进而得出z的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有5x+7y+10z=346,y=2z.易知0<x≤69,0<y≤49,0<z≤34,∴5x+14z+10z=346,5x+24z=346,即346245zx-= .∵x,y,z均为正整数,346-24z≥0,即0<z≤14 ∴z只能取14,9和4.①当z为14时,346242,228.445zx y z x y z-====++=。

数学人教版七年级下册三元一次方程组解法精讲

数学人教版七年级下册三元一次方程组解法精讲

8.4 三元一次方程组的解法第()课时总()教时备课人:备课时间:上课时间:解得8,2,2. xyz===⎧⎪⎨⎪⎩教师对学生的想法给予肯定并总结解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.即活动2 例题解析例1解三元一次方程组347, 239,? 5978. x zx y zx y z+=++=-⎧+⎪⎪⎩=⎨①②③(让学生独立分析、解题,方法不唯一,可分别让学生演板后比较) 解:②×3+③,得11x+10z=35.④①与④组成方程组347,111035.x zx z+=+=⎧⎨⎩解得5,2.xz==-⎧⎨⎩把x=5,z=-2代入②,得y=1 3 .因此,三元一次方程组的解为5,1,32. xyz===-⎧⎪⎪⎨⎪⎪⎩此方程组的特点是①中不含y,而②③中y的系数为整数倍关系,因此用加减法从②③中消去y后,再与①组成关于x和z的二元一次方程组的解法最合理.反之用代入法运算较繁琐.例2在等式y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60,求a,b,c的值.(师生一起分析,列出方程组后交由学生求解)。

人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案) (50)

人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案) (50)

人教版七年级数学下册第八章第四节三元一次方程组的解法复习试题(含答案)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需元.【答案】(1)x的值为800,y的值为3.(2)至少要卖334件.(3)150.【解析】【分析】(1)通过理解题意可知此题存在两个等量关系,即小丽的基本工资+提成=1400元,小华的基本工资+提成=1250元,列方程组求解即可;(2)根据小丽基本工资+每件提成×件数=1800元,求得件数即可;(3)理解题意可知,计算出甲、乙、丙各购买4件共多少钱即可.【详解】(1)设营业员的基本工资为x元,买一件的奖励为y元.由题意得20014001501250 x yx y+=⎧⎨+=⎩解得8003 xy=⎧⎨=⎩即x的值为800,y的值为3.(2)设小丽当月要卖服装z件,由题意得:800+3z=1800解得,z=333.3由题意得,z为正整数,在z>333中最小正整数是334.答:小丽当月至少要卖334件.(3)设一件甲为x元,一件乙为y元,一件丙为z元.则可列3231523285 x y zx y z++=⎧⎨++=⎩将两等式相加得4x+4y+4z=600,则x+y+z=150答:购买一件甲、一件乙、一件丙共需150元.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;第三问的难点就在于思考的方向对不对,实际上,方向对了,做起来就方便多了.92.已知方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩的解使代数式x -2y +3z 的值等于-10,求a 的值.【答案】a =-53. 【解析】【分析】根据题意,用含a 的代数式表示出方程组的解23x a y a z a =⎧⎪=⎨⎪=⎩将方程组的解代入x -2y +3z=-10中即可求解.【详解】解法1:②-②,得z -x =2a.②②+②,得2z =6a ,z =3a.把z =3a 分别代入②和②,得y =2a ,x =a.②23x a y a z a =⎧⎪=⎨⎪=⎩将其代入x -2y +3z =-10,得a -2×2a +3×3a =-10,解得a =-53. 解法2(技巧解法):②+②+②,得2(x +y +z)=12a ,即x +y +z =6a.②②-②,得z =3a ;②-②,得x =a ;②-②,得y =2a.②23x a y a z a =⎧⎪=⎨⎪=⎩以下同解法1.【点睛】本题考查了三元一次方程组的求解与一次方程的计算,中等难度,解法1求出方程组的解是解题关键,解法2认真观察找到方程组与x+y+z的关系是解题关键.93.为确保信息安全,信息需加密传输,发送方由明文―→密文(加密),接收方由密文―→明文(解密).已知加密规则为明文x,y,z对应密文2x+3y,3x+4y,3z.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,请你求出解密得到的明文.【答案】解密得到的明文是3,2,9.【解析】【分析】根据题意表示出方程组,求解三元一次方程组即可解题.【详解】依题意,得23123417327x yx yz+=⎧⎪+=⎨⎪=⎩解得329xyz=⎧⎪=⎨⎪=⎩答:解密得到的明文是3,2,9.【点睛】本题考查了三元一次方程组的实际应用,属于简单题,正确表示出方程组,求解方程组是解题关键.94.某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树的株数是甲、丙两组的和的14,甲组植树的株数恰是乙组与丙组的和,问每组各植树多少株?【答案】甲、乙、丙三个小组分别植树25棵、10棵和15棵.【解析】【分析】根据题意表示出方程组,求解三元一次方程组即可解题.【详解】设甲、乙、丙三个小组分别植树x棵、y棵和z棵.根据题意,得501()4x y zy x z x y z++=⎧⎪⎪=+⎨⎪=+⎪⎩解得251015 xyz=⎧⎪=⎨⎪=⎩答:甲、乙、丙三个小组分别植树25棵、10棵和15棵.【点睛】本题考查了三元一次方程组的实际应用,属于简单题,正确表示出方程组,求解方程组是解题关键.95.解下列方程组:(1)2333215x y zx y zx y z+-=⎧⎪-+=-⎨⎪--=⎩;(2)2362125x y zx y zx y z++=⎧⎪-+=-⎨⎪+-=⎩.【答案】(1)32xyz=⎧⎪=-⎨⎪=-⎩;(2)211xyz=⎧⎪=⎨⎪=-⎩.【解析】【分析】根据三元一次方程求解方法即可解题,见详解.(1)233 3215x y zx y zx y z+-=⎧⎪-+=-⎨⎪--=⎩,①+③,得3x-4z=8.④②-③,得2x+3z=-6⑤联立④⑤,得348236x zx z-=⎧⎨+=-⎩解得2xz=⎧⎨=-⎩把x=0,z=-2代入③,得y=-3.所以原方程组的解是32 xyz=⎧⎪=-⎨⎪=-⎩(2)2362125 x y zx y zx y z++=⎧⎪-+=-⎨⎪+-=⎩③+①,得3x+5y=11.④③×2+②,得3x+3y=9.⑤④-⑤,得2y=2,解得y=1.将y=1代入⑤,得3x=6,解得x=2. 将x=2,y=1代入①,得z=-1.所以原方程组的解为211 xyz=⎧⎪=⎨⎪=-⎩【点睛】本题考查求解三元一次方程组,中等难度,熟悉解题方法是解题关键.96.已知方程组23{32x yx y m+=-=的解也满足方程x+y=1,求m的值.【解析】【分析】由方程组2332x y x y m +=⎧⎨-=⎩与方程x+y=1的解相同,然后将它与另外两个方程联立,组成一个关于x 、y 、m 的三元一次方程组,解此方程组即可求出x ,y ,m 的值即可.【详解】∵方程组2332x y x y m +=⎧⎨-=⎩的解也满足方程x +y =1, ∴23321x y x y m x y +=⎧⎪-=⎨⎪+=⎩, 解得218x y m =⎧⎪=-⎨⎪=⎩,∴m =8. 【点睛】本题考查了二元一次方程的解及三元一次方程组的解法.解题的关键是联立成三元一次方程组.97.解下列方程(组): (1)123123x x +--= (2)5325273193218x y x y z x y z +=⎧⎪+-=⎨⎪+-=⎩【答案】(1)x =79;(2)503x y z =⎧⎪=⎨⎪=-⎩. 【解析】【分析】(1)根据解一元一次方程组的方法可以解答此方程;(2)根据解三元一次方程组的方法可以解答此方程.【详解】(1)123123x x +--= 方程两边同乘以6,得3(x+1)-2(2-3x )=6,去括号,得3x+3-4+6x=6,移项及合并同类项,得9x=7,系数化为1,得 x=79; (2)5325273193218x y x y z x y z +⎧⎪+-⎨⎪+-⎩=①=②=③ ③×3-②,得7x-y=35④①+④×3,得26x=130,解得,x=5,将x=5代入①,得y=0,将x=5,y=0代入③,得z=-3,∴原方程组的解是503x y z ⎧⎪⎨⎪-⎩===. 【点睛】本题考查解一元一次方程、解三元一次方程组,熟练掌握加减消元法是解答本题的关键.98.解三元一次方程组:126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩【答案】1097x y z =⎧⎪=⎨⎪=⎩【解析】【分析】由题意通过消元、移项将三元一次方程组化为二元一次方程组,然后再根据二元一次方程组的解法,求出其解,从而求出三元一次方程组的解.【详解】1? 26?218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩①②③ 将方程①+②得:2x +z =27…④将方程②+③得:3x +2z =44…⑤将④×3﹣⑤×2得:z =7将z 值代入⑤得:x =10把x=10代入①得:y=9,∴三元一次方程组的解为1097xyz=⎧⎪=⎨⎪=⎩.【点睛】本题考查了三元一次方程的解法.通过消元,先把三元一次方程化为二元一次方程组,然后求解即可.99.解方程组:(1)32 3813 x y x y=+⎧⎨-=⎩(2)1229 310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩.【答案】(1)12xy=-⎧⎨=-⎩;(2)185235195xyz⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.【解析】【分析】(1)先把二元一次方程组转化成一元一次方程,求出方程的解,再求出x 即可;(2)把三元一次方程组转化成二元一次方程组,求出方程组的解,再求出z即可.【详解】(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.【点睛】本题考查了解三元一次方程组和解二元一次方程组,能够消元是解此题的关键.掌握把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.100.甲、乙、丙三人共解出100道数学题,每人都解对其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题,试问:难题多还是容易题多?(多的比少的)多几道题?【答案】难题多20道【解析】【分析】本题有三个未知数:难题个数、容易题个数、正好两人解出的题(中等难度的题)的个数,有两个等量关系:(1)难度题个数+容易题个数+中等难度题个数=100.(2)难题个数+容易题个数×3+中等难度题个数×2=60×3.【详解】设难题x 道,容易题y 道,中等难度题z 道,则有10032180x y z x y z ++=⎧⎨++=⎩①②, 由①×2-②,得20x y -=.所以难题比容易题多20题.【点睛】本题考查三元一次方程组的应用.有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知敷辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求”.。

七年级数学-三元一次方程组的解法练习含解析 (2)

七年级数学-三元一次方程组的解法练习含解析 (2)

七年级数学-三元一次方程组的解法练习含解析一.选择题(共3小题)1.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出2.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于()A.﹣B.C.2 D.﹣23.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元二.填空题(共15小题)4.已知:,则x+y+z=.5.三元一次方程组的解是.6.如果x,y互为相反数,且满足|a﹣2y﹣3|+(5x+9)2=0,那么a=.7.三元一次方程组的解是.8.已知x=﹣1时,3ax5﹣2bx3+cx2﹣2=10,其中a:b:c=2:3:6,那么=.9.如果方程组的解是方程2x﹣3y+a=5的解,那么a的值是.10.若关于x的方程组的解满足x=y,则k=.11.已知y=ax2+bx+c,且当x=1时,y=5;当x=﹣2时,y=14;当x=﹣3时,y=25,则a =,b=,c=.当x=4时,y=.12.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需元.13.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积为.14.有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙1件共需33元,则此人购甲、乙、丙各一件共需元.15.7公斤桃子的价钱等于1公斤苹果和2公斤梨的价钱;7公斤苹果的价钱等于10公斤梨和1公斤桃子的价钱,则购买12公斤苹果所需的钱可以购买梨公斤.16.现有甲、乙、丙三种东西,若购买甲3件、乙5件、丙1件共需32元;若购买甲4件、乙7件、丙1件共需40元,则要购买甲、乙、丙各1件共需元.17.某公司董事会拨出总额为40万元款项作为奖励金,全部用于奖励本年度做出突出贡献的一、二、三等奖的职工.原来设定:一等奖每人5万元,二等奖每人3万元,三等奖每人2万元;后因考虑到一等奖的职工科技创新已给公司带来巨大的经济效益,现在改为:一等奖每人15万元,二等奖每人4方元,三等奖每人1万元,那么该公司本年度获得一、二、三等奖的职工共人.18.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买只.三.解答题(共14小题)19.二元一次方程组的解x,y的值相等,求k.20.在y=ax2+bx+c中,当x=0时,y=﹣7;x=1时,y=﹣9;x=﹣1时,y=﹣3,求a、b、c 的值.21.已知关于x,y的方程组的解满足3x+2y=19,求m的值.22.已知关于x,y的二元一次方程组的解x与y的值互为相反数,试求m的值.23.已知:4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),求的值.24.解方程组.25.已知方程组的解x、y的和为12,求n的值.26.自习课上,数学老师为了检验小明同学对方程组这部分内容的掌握情况,给他出了这样一道练习:“当m为何值时,方程组的解x、y互为相反数.”这下可把平时学习不认真的小明给难住了,聪明的同学,你能帮小明求出m的值吗?27.若关于x、y的二元一次方程租的解x、y互为相反数,求m的值.28.m为何值时,方程组的解x,y满足x﹣y=2,并求出此方程组的解.29.解三元一次方程组:.30.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?31.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5 (1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?32.把数字1,2,3,…,9分别填入右图的9个圈内,要求三角形ABC和三角形DEF的每条边上三个圈内数位之和等于18.(1)给出符合要求的填法;(2)共有多少种不同填法?证明你的结论.人教新版七年级下学期《8.4 三元一次方程组的解法》2020年同步练习卷参考答案与试题解析一.选择题(共3小题)1.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.2.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于()A.﹣B.C.2 D.﹣2【分析】利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z的值.【解答】解:∵(2x﹣4)2+(x+y)2+|4z﹣y|=0,∴,解得:,则x+y+z=2﹣2﹣=﹣.故选:A.【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.3.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元【分析】设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,建立三元一次方程组,两个方程相减,即可求得x+y+z的值.【解答】解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,②﹣①得x+y+z=1.05(元).故选:B.【点评】解答此题的关键是根据题意列出方程组,同时还要有整体思想.二.填空题(共15小题)4.已知:,则x+y+z= 6 .【分析】三个式子左右两边分别相加即可求解.【解答】解:三个式子相加得:2(x+y+z)=12,则x+y+z=6.故答案是:6.【点评】本题考查了三元一次方程组的解法,理解三个方程的左边相加所得结果与x+y+z的关系是关键.5.三元一次方程组的解是.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:x﹣z=2④,③+④得:2x=8,即x=4,把x=4代入④得:z=2,把z=2代入②得:y=3,则方程组的解为,故答案为:【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.6.如果x,y互为相反数,且满足|a﹣2y﹣3|+(5x+9)2=0,那么a=.【分析】根据非负数的性质可得出两个关于x、y的方程,再联立x=﹣y组成方程组,可求得a的值.【解答】解:根据题意得,解得.即a=.【点评】初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.7.三元一次方程组的解是.【分析】用代入法或加减消元法求出方程组的解即可.【解答】解:(1)+(2)得3a+2b=15,(1)﹣(3)得b=5,代入3a+2b=15得a=,把a=,b=5代入(1),得c=.故本题答案为:.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.8.已知x=﹣1时,3ax5﹣2bx3+cx2﹣2=10,其中a:b:c=2:3:6,那么=.【分析】先将x=﹣1代入3ax5﹣2bx3+cx2﹣2=10,得到一个关于a、b、c的方程,然后设a =2y,则b=3y,c=6y,代入即可求出y的值,继而求出a、b、c的值,最后代入即可求出答案.【解答】解:将x=﹣1代入3ax5﹣2bx3+cx2﹣2=10,得﹣3a+2b+c=12,设a=2y,则b=3y,c=6y,代入可得y=2,即a=4,b=6,c=12,代入===.故答案为:.【点评】本题考查了三元一次方程组解法,解题的关键是弄清题意,分别用y来表示a、b、c 的值.9.如果方程组的解是方程2x﹣3y+a=5的解,那么a的值是﹣10 .【分析】本题实际上是一道关于三元一次方程组的题目,将题目中的二元一次方程组和三元一次方程列为三元一次方程组来解答即可.【解答】解:由题意得把(1)代入(2)得:2(y+5)﹣y=5,(4)解得y=﹣5;(5)将(5)代入(1),解得x=0;(6)把(5)(6)代入(3),解得a=﹣10.【点评】理解清楚题意,运用三元一次方程组的知识,解出a的数值.10.若关于x的方程组的解满足x=y,则k=.【分析】理解清楚题意,运用三元一次方程组的知识,列出三元一次方程组,先用k表示出x 的值,再代入原方程,求得k的值.【解答】解:由题意得,把③代入②得x=,代入①得k=﹣.故本题答案为:.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.11.已知y=ax2+bx+c,且当x=1时,y=5;当x=﹣2时,y=14;当x=﹣3时,y=25,则a=2 ,b=﹣1 ,c= 4 .当x=4时,y=32 .【分析】根据题意,把x,y的值代入y=ax2+bx+c中,得到关于a、b、c的三元一次方程组,即可求得a、b、c的值.【解答】解:据题意得,解得,∴当x=4时,y=32.故本题答案为:4;32.【点评】本题实质考查了三元一次方程组的建立和解法.此题提高了学生的计算能力.12.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需105 元.【分析】设购买甲、乙、丙各一件分别需要x,y,z元,列出方程组,消去z后,得到x+3y的值,再代入①,即可求得x+y+z的值,也即购买甲、乙、丙各一件的共需钱数.【解答】解:设购买甲、乙、丙各一件分别需要x,y,z元,由题意得,②﹣①得x+3y=105,代入①得x+y+2(x+3y)+z=315,即x+y+z+2×105=315,∴x+y+z=315﹣210=105.故答案为:105.【点评】本题考查了三元一次方程组的实际应用,解答此题的关键是首先根据题意列出方程组,再整体求解.13.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积为85 .【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF与S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y的值.【解答】解:设未知的三块面积分别为x,y,z(如图)则,即由①+②解得y=85故答案为85【点评】解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再根据方程组中系数特点,通过加减,得到y值,即为所求.14.有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙1件共需33元,则此人购甲、乙、丙各一件共需 6 元.【分析】设甲、乙、丙3种商品的单价分别是x元、y元、z元.由题意列方程组得:,然后求得x+y+z的值.【解答】解:设甲、乙、丙3种商品的单价分别是x元、y元、z元.由题意列方程组得由①×3﹣②×2得x+y+z=6故答案为6.【点评】根据系数特点,通过加减,得到一个整体,然后整体求解.15.7公斤桃子的价钱等于1公斤苹果和2公斤梨的价钱;7公斤苹果的价钱等于10公斤梨和1公斤桃子的价钱,则购买12公斤苹果所需的钱可以购买梨18 公斤.【分析】设苹果的价格为每千克x元,梨的价格为每千克y元,桃子的价格为每千克z元,建立方程组,求得x,y的关系即可.【解答】解:设苹果的价格为每千克x元,梨的价格为每千克y元,桃子的价格为每千克z 元.则根据题意列方程组,解方程组得12x=18y.∴买12千克苹果的钱可买18千克梨.故本题答案为:18.【点评】此题无法直接解出来,但通过关系式12x=18y可以轻松得出结论.16.现有甲、乙、丙三种东西,若购买甲3件、乙5件、丙1件共需32元;若购买甲4件、乙7件、丙1件共需40元,则要购买甲、乙、丙各1件共需16 元.【分析】设甲、乙、丙每件单价为x、y、z元,建立方程组,整体求得x+y+z的值.【解答】解:设甲、乙、丙每件单价为x、y、z元,根据题意列方程组得,②﹣①得:x+2y=8③,②+①得:7x+12y+2z=72④,④﹣③×5得:2x+2y+2z=32,∴x+y+z=16.故本题答案为:16.【点评】未知数共有三个,方程只有两个,无法直接解答,通过加减,将x+y+z看做一个整体来解.17.某公司董事会拨出总额为40万元款项作为奖励金,全部用于奖励本年度做出突出贡献的一、二、三等奖的职工.原来设定:一等奖每人5万元,二等奖每人3万元,三等奖每人2万元;后因考虑到一等奖的职工科技创新已给公司带来巨大的经济效益,现在改为:一等奖每人15万元,二等奖每人4方元,三等奖每人1万元,那么该公司本年度获得一、二、三等奖的职工共17 人.【分析】根据题中给出的条件列出两个三元一次方程,再根据X、Y、Z均为正整数,便可解得X+Y+Z的值.【解答】解:设该公司本年底获得一、二、三等奖的职工分别是X,Y,Z人.5X+3Y+2Z=40 (1)15X+4Y+Z=40 (2)(2)*2﹣(1)得5X+Y=8,由于X,Y,Z为正整数,0<5X<8,X=1,Y=3,从而得出Z=13.X+Y+Z=17该公司本年底获得一、二、三等奖的职工共17人.故答案为:17.【点评】本题主要考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,属于中档题.18.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买48 只.【分析】先设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z 元,能买C型W只根据题意列出方程组,求出方程组的解即可.【解答】解:设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z 元,能买C型W只,根据题意得:,解得:代入4x+18y+16z=Wz得:W=48.故答案为:48.【点评】本题主要考查了三元一次方程组的应用问题,解答此题的关键是列出方程组,用代入消元法或加减消元法求出方程组的解.三.解答题(共14小题)19.二元一次方程组的解x,y的值相等,求k.【分析】由于x=y,故把x=y代入第一个方程中,求得x的值,再代入第二个方程即可求得k的值.【解答】解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=1代入kx+(k﹣1)y=3中得:k+k﹣1=3,∴k=2【点评】由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.在y=ax2+bx+c中,当x=0时,y=﹣7;x=1时,y=﹣9;x=﹣1时,y=﹣3,求a、b、c 的值.【分析】将x、y的值分别代入y=ax2+bx+c,转化为关于a、b、c的方程,再根据解三元一次方程组的步骤,即可求出a、b、c的值.【解答】解:由题意得:,把c=0代入②、③得:,解得:a=1,b=﹣3,则a=1,b=﹣3,c=﹣7.【点评】此题考查了三元一次方程组的解,掌握解三元一次方程组的步骤是本题的关键,主要渗透了待定系数法求函数解析式的思想.21.已知关于x,y的方程组的解满足3x+2y=19,求m的值.【分析】先解关于x,y二元一次方程组,求得用m表示的x,y的值后,再代入3x+2y=19,建立关于m的方程,解出m的数值.【解答】解:,①+②得x=7m,①﹣②得y=﹣m,依题意得3×7m+2×(﹣m)=19,∴m=1.【点评】本题实质是解二元一次方程组,先用m表示的x,y的值后,再求解关于m的方程,解方程组关键是消元.22.已知关于x,y的二元一次方程组的解x与y的值互为相反数,试求m的值.【分析】根据三元一次方程组解的概念,列出三元一次方程组解出x,y的值代入含有m的式子即求出m的值.【解答】解:由题意得,由③得:x=﹣y,④把④代入①得,y=﹣m﹣3,把④代入②得:x=,∴﹣m﹣3+=0,解得m=﹣10.【点评】本题的实质是考查三元一次方程组的解法.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.23.已知:4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),求的值.【分析】先由题意列出方程组,先用z表示出x,y的值,再代入所求代数式求值即可.【解答】解:由题意得,①﹣②×4得:﹣11y+22z=0,解得:y=2z,将y=2z代入①得:x=3z,即,代入得:原式==.【点评】将x、y都转化为关于z的代数式,即可将z消去,得原式的值.24.解方程组.【分析】利用加减法消掉一个未知数,将三元一次方程组转化为二元一次方程组,再进行解答.【解答】解:③+①得,3x+5y=11④,③×2+②得,3x+3y=9⑤,④﹣⑤得2y=2,y=1,将y=1代入⑤得,3x=6,x=2,将x=2,y=1代入①得,z=6﹣2×2﹣3×1=﹣1,∴方程组的解为.【点评】本题考查了解三元一次方程组,需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,得到由另外两个未知数组成的二元一次方程组.25.已知方程组的解x、y的和为12,求n的值.【分析】由题意列出方程组求解,用n表示出x,y的值代入x+y=12,求得n的值.【解答】解:由题意可得,解得,代入x+y=12,得n=14.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.26.自习课上,数学老师为了检验小明同学对方程组这部分内容的掌握情况,给他出了这样一道练习:“当m为何值时,方程组的解x、y互为相反数.”这下可把平时学习不认真的小明给难住了,聪明的同学,你能帮小明求出m的值吗?【分析】理解清楚题意,运用三元一次方程组的知识,解出m的数值.【解答】解:因为x、y互为相反数,所以方程组可变形为:,解得:.故m=2.【点评】解答此题关键是根据题列出方程组,再用代入法或加减消元法求解.27.若关于x、y的二元一次方程租的解x、y互为相反数,求m的值.【分析】利用x,y的关系代入方程组消元,从而求得m的值.【解答】解:将x=﹣y代入二元一次方程租可得关于y,m的二元一次方程组,解得m=23.【点评】考查了解二元一次方程的能力和对方程解的概念的理解.28.m为何值时,方程组的解x,y满足x﹣y=2,并求出此方程组的解.【分析】先用含m的代数式表示x,y,即解关于x,y的方程组,再代入x﹣y=2中可得m的值,进而求出方程组的解.【解答】解:解方程组得,∵x﹣y=2,∴﹣(﹣)=2,解得:m=1,∴方程组的解是.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.29.解三元一次方程组:.【分析】因为三个方程中z的系数相同或互为相反数,应用加减法来解.【解答】解:①+②得5x+2y=16④,③+②得3x+4y=18⑤,得方程组,解得,代入③得,2+3+z=6,∴z=1.∴方程组的解为.【点评】解三元一次方程组要注意以下几点:方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.30.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?【分析】首先种植水稻x公顷,棉花y公顷,蔬菜为z公顷,根据题意可得等量关系:①三种农作物的投入资金=67万元;②三种农作物所需要的人力=300名职工;③三种农作物的公顷数=51公顷,根据等量关系列出方程组即可.【解答】解:设种植水稻x公顷,棉花y公顷,蔬菜为z公顷,由题意得:,解得:,答:种植水稻15公顷,棉花20公顷,蔬菜为16公顷.【点评】此题主要考查了三元一次方程组的应用,关键是弄懂题意,抓住题目中的关键语句,找出等量关系,设出未知数,列出方程组.31.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5 (1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?【分析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.【解答】解:(1)由题意得:,解得:A=1,B=6,C=8,答:接收方收到的密码是1、6、8;(2)由题意得:,解得:a=3,b=4,c=7,答:发送方发出的密码是3、4、7.【点评】此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.32.把数字1,2,3,…,9分别填入右图的9个圈内,要求三角形ABC和三角形DEF的每条边上三个圈内数位之和等于18.(1)给出符合要求的填法;(2)共有多少种不同填法?证明你的结论.【分析】(1)先确定D、E、F三处的数字之和应该是24,再进一步分析其它的数字;(2)把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.结合图形和已知条件得到方程组,进而求得y=24,再进一步分析即可.【解答】解:(1)右图给出了一个符合要求的填法;(2)共有6种不同填法把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.显然有x+y+z=1+2+…+9=45①,图中六条边,每条边上三个圈中之数的和为18,所以有z+3y+2x=6×18=108②,②﹣①,得x+2y=108﹣45=63③,把AB,BC,CA每一边上三个圈中的数的和相加,则可得2x+y=3×18=54④,联立③,④,解得x=15,y=24,继而解之z=6.在1,2,3,…,9中三个数之和为24的仅为7,8,9,所以在D,E,F三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中的数一旦确定,根据题目要求,其余六个圈内的数也随之确定,从而得结论,共有6种不同的填法.【点评】此题中要特别注意三角形的顶点的数字的重复使用,能够根据各边的数字之和列方程组求解.2020。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】三元一次方程组(基础)知识讲解责编:杜少波【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; 4.解这个方程组,求出未知数的值; 5.写出答案(包括单位名称). 要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去. (2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 【典型例题】类型一、三元一次方程及三元一次方程组的概念1.下列方程组中是三元一次方程组的是( )A .2102x y y z xz ⎧-=⎪+=⎨⎪=⎩ B .111216y x z yx z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C .123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D .18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次,故A 选项不是;B 选项中1x,1y ,1z不是整式,故B 选项不是;C 选项中有四个未知数,故C 选项不是;D 项符合三元一次方程组的定义.【总结升华】理解三元一次方程组的定义要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)一般地,如果三个一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.类型二、三元一次方程组的解法2.(2016春•枣阳市期末)在等式y=ax 2+bx+c 中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a ,b ,c 的值.【思路点拨】由“当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60”即可得出关于a 、b 、c 的三元一次方程组,解方程组即可得出结论. 【答案与解析】解:根据题意,得,②﹣①,得a+b=1④; ③﹣①,得4a+b=10 ⑤.④与⑤组成二元一次方程组,解这个方程组,得,把代入①,得c=﹣5.因此,即a ,b ,c 的值分别为3,﹣2,﹣5.【总结升华】本题考查了解三元一次方程组,解题的关键是得出关于a 、b 、c 的三元一次方程组.本题属于基础题,难度不大. 【:三元一次方程组 409145 例1】举一反三:【变式】解方程组:【答案】解:①+②得:5311x y +=④①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =,2y =将2y =代入⑤知:1x =将1x =,2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩【:三元一次方程组409145 例2(2)】3. 解方程组23520x y zx y z ⎧==⎪⎨⎪++=⎩①②【答案与解析】解法一:原方程可化为:253520x zy zx y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③由①③得:25x z =,35y z = ④ 将④代入②得:232055z z z ++=,得:10z = ⑤将⑤代入④中两式,得:2210455x z ==⨯=,3310655y z ==⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y zt ===,则2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=,2t =将2t =代入③得:2224x t ==⨯=,3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩【总结升华】对于这类特殊的方程组,可根据其方程组中方程的特点,采用一些特殊的解法(如设比例系数等)来解. 举一反三:【变式】(2015秋•德州校级月考)若三元一次方程组的解使ax+2y+z=0,则a 的值为( ) A .1 B .0 C .﹣2 D .4【答案】B .解:,①+②+③得:x+y+z=1④, 把①代入④得:z=﹣4, 把②代入④得:y=2, 把③代入④得:x=3,把x=3,y=2,z=﹣4代入方程得:3a+4﹣4=0, 解得:a=0.类型三、三元一次方程组的应用4. (2015春•黄陂区校级月考)购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需 元.【思路点拨】首先假设铅笔的单价是x 元,作业本的单价是y 元,圆珠笔的单价是z 元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【答案】5.【解析】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+y=1,④由②+①得17x+7y+2z=7,⑤由⑤﹣④×2﹣③得0=5﹣a,解得:a=5.【总结升华】本题考查了列三元一次不定方程组解实际问题的运用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x张、y张和z张.依题意,得24122926x y zx y zx y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③把③分别代入①和②,得21813232x zx z+=⎧⎪⎨+=⎪⎩④⑤⑤×2,得6x+z=46 ⑥⑥-④,得4x=28,x=7.把x=7代入③,得y=13.把x=7,y=13代入①,得z=4.∴方程组的解是7134xyz=⎧⎪=⎨⎪=⎩.答:面值为2元、l元和5角的人民币分别为7张、13张和4张.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个 B.1个 C.2个 D.3个7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a B.a小于-aC.a大于-a或a小于-a D.a不一定大于-a8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式C.加上同一个代数式 D.都加上19.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多 B.多了 C.少了 D.多少都可能10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多 B.减少 C.不变 D.增多、减少都有可能二、填空题(每题1分,共10分)1.19891990²-19891989²=______。

2.1-2+3-4+5-6+7-8+…+4999-5000=______。

3.当a=-0.2,b=0.04时,代数式 a²-b的值是______。

4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克。

三、解答题1.甲乙两人每年收入相等,甲每年储蓄全年收入的15,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。

相关文档
最新文档