高等数学典型例题

合集下载

高等数学同济版 第八章 习题

高等数学同济版 第八章 习题

z Fy . y Fz
19
(3)
F ( x, y,u,v) 0 G( x, y,u,v) 0
隐函数存在定理 3 设F ( x, y, u,v)、G( x, y, u,v) 在
点P( x0 , y0 , u0 ,v0 )的某一邻域内有对各个变量的连续 偏导数,且F ( x0 , y0 , u0 , v0 ) 0,G( x0 , y0 , u0 ,v0 )
1、区域
(1)邻域
设P0 ( x0 , y0 )是xoy 平面上的一个点, 是某 一正数,与点P0 ( x0 , y0 )距离小于 的点P( x, y) 的全体,称为点P0 的 邻域,记为U ( P0 , ) ,
U(P0, ) P | PP0 |
( x, y) | ( x x0 )2 ( y y0 )2 .
3
2、多元函数概念
定义 设D是平面上的一个点集,如果对于每个
点 P( x. y) D,变量 z按照一定的法则总有确定 的值和它对应,则称 z是变量 x, y的二元函数, 记为z f ( x, y)(或记为z f (P)).
类似地可定义三元及三元以上函数.
当n 2时,n 元函数统称为多元函数.
v v( x, y),它们满足条件u0 u( x0 , y0 ) ,v0 v
( x0 , y0 ),并有
Fx Fv
u 1 (F ,G) Gx Gv , x J ( x,v) Fu Fv
Gu Gv
21
v 1 (F ,G) Fu Fx Fu Fv x J (u, x) Gu Gx Gu Gv u 1 (F ,G) Fy Fv Fu Fv , y J ( y,v) Gy Gv Gu Gv v 1 (F ,G) Fu Fy Fu Fv . y J (u, y) Gu Gy Gu Gv

高等数学各章知识要点及典型例题与习题详细精解

高等数学各章知识要点及典型例题与习题详细精解

第一章 函数、极限、连续第1节 函数★基本内容学习一 基本概念和性质1函数的定义设有两个变量x 和y ,变量x 的变域为D ,如果对于D 中的每一个x 值,按照一定的法则,变量y 有一个确定的值与之对应,则称变量y 为变量x 的函数,记作:()y f x =。

2函数概念的两要素①定义域:自变量x 的变化范围②对应关系:给定x 值,求y 值的方法。

3函数的三种表示方法①显式:形如()y f x =的称作显式,它最直观,也是初等函数一般采用的形式。

②隐式:有时有些关系用显式无法完全表达,这时要用到隐式,形如(,)0F x y =,如椭圆函数22221x y a b+=。

③参数式:形如平抛运动的轨迹方程212x vt y gt =⎧⎪⎨=⎪⎩称作参数式。

参数式将两个变量的问题转化为一个变量的问题,从而使很多难以处理的问题简化。

4函数的四个基本性质①奇偶性:设函数()f x 在对称区间X 上有定义,如果对于x X ∀∈恒有()()f x f x =- (或)()()f x f x =--,则称()f x 为偶函数(或()f x 奇函数)。

注:偶函数()f x 图形关于y 轴对称,奇函数()f x 的图形关于坐标原点对称。

②有界性:设函数()f x 在区间X 上有定义,如果0M ∃>,使得对一切x X ∈,恒有:()f x M ≤,则称()f x 在区间X 上有界;若不存在这样的0M >,则称()f x 在区间X 上无界.注:函数()f x 有无界是相对于某个区间而言的。

③周期性:设函数()f x 在区间X 上有定义,若存在一个与x 无关的正数T ,使对任一x X ∈,恒有()()f x T f x += 则称()f x 是以T 为周期的周期函数,把满足上式的最小正数T 称为函数()f x 的周期。

④单调性:设函数()f x 在区间X 上有定义,如果对1212,,x x X x x ∀∈<,恒有:()()12f x f x ≤(或()()12f x f x ≥)则称()f x 在区间X上是单调增加(或单调减少)的;如果对于1212,,x x X x x ∀∈<,恒有:()()12f x f x < (或()()12f x f x >)则称()f x 在区间X上是严格单调增加(或严格单调减少)的。

(完整word版)高等数学经典方法与典型例题归纳

(完整word版)高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试2014年山东专升本暑期精讲班核心讲义高职高专类高等数学经典方法及典型例题归纳—经管类专业:会计学、工商管理、国际经济与贸易、电子商务—理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自动化、交通运输、计算机科学与技术、土木工程2013年5月17日星期五曲天尧编写一、求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

高等数学 曲线积分与曲面积分习题课 非常有用

高等数学 曲线积分与曲面积分习题课 非常有用

+
∂Q ∂y
+
∂R ∂z
)dv
=
∫∫ Σ
Pdydz
+
Qdzdx
+
Rdxdy
高斯公式
4.曲面积分与曲线积分的联系
∫∫
Σ
∂R ( ∂y

∂Q )dydz
∂z
+
∂P (
∂z

∂R )dzdx
∂x
+
∂Q (
∂x

∂P ∂y
)dxdy
= ∫ Pdx + Qdy + Rdz Γ
斯托克斯公式
高等数学十
Green公式,Guass公式,Stokes公式之1144//228★8
f2 x
+
f
2 y
)dσ
D
∫+ f ( x, y)ds L
o
y
x
D L
高等数学十
2222//228★8
2
2
例 3 求柱面 x 3 + y 3 = 1在球面 x2 + y2 + z2 = 1内
的侧面积.
解 由对称性
∫ S = 8 zds L ∫= 1 − x2 − y2ds L
Q
2
L: x3 +
2
y3
系Σ
Σ

∫∫ f (x, y,z)ds
Σ
∫∫R(x, y,z)dxdy
Σ
= ∫∫ f[x, y,z(x, y)] 1+ zx2 + z2ydxdy = ±∫∫R[x, y,z(x, y)]dxdy
Dxy
Dxy
算 一代,二换,三投(与侧无关) 一代,二投,三定向 (与侧有关)

零点定理高等数学例题

零点定理高等数学例题

零点定理高等数学例题零点定理是高等数学中非常重要的一条定理,该定理有着广泛的应用。

这篇文章主要介绍关于零点定理高等数学例题的一些基本知识和应用。

首先,我们来了解一下零点定理的定义。

零点定理就是如果一个连续函数f(x)在区间[a,b]上取到两个不同的符号,那么在这个区间内至少有一个零点。

接下来我们结合一些例题来加深理解。

例题一:证明函数f(x)=x^3-5x^2+3x+15在区间[1,4]内有且仅有一个零点。

解:首先,我们需要判断f(x)在区间[1,4]的取值。

我们可以使用寻找函数极值点法:f'(x)=3x^2-10x+3f'(1)=-4<0,f'(2)>0,f'(4)<0由于导数在区间[1,2]上大于0,在区间[2,4]上小于0,所以f(x)在点x=2处取得极值。

设f(2)=k,则轮换成(x,0)、(2,-k)两个点,可以得出f(x)=(x-2)(x-a)(x-b)其中a、b均在[1,4]中,即f(x)在[1,4]中至少存在三个零点,与题目不符合。

因此,我们可以得出结论:函数f(x)=x^3-5x^2+3x+15在区间[1,4]内有且仅有一个零点。

例题二:证明函数f(x)=(x+1)(x+2)(x-3)在区间[0,2]和[-3,0]不存在零点。

解:由于f(x)是一个三次函数,因此存在三个零点。

我们可以用反证法来证明。

首先,我们假设f(x)在区间[0,2]存在至少一个零点,即存在一个x0∈[0,2],使得f(x0)=0。

由于f(x)是一个连续函数,而且区间[0,2]上f(x)的取值为正负负,所以根据零点定理,在区间[0,2]上f(x)至少存在一个零点,且零点个数为奇数,矛盾!因此,f(x)在区间[0,2]不存在零点。

同理,我们可以证明f(x)在区间[-3,0]也不存在零点。

综上所述,这两道例题都依据了零点定理,通过张贴轮换和反证法的方式来证明结论的正确性。

高等数学数列极限收敛60道典型例题分步骤详解

高等数学数列极限收敛60道典型例题分步骤详解

高等数学数列极限收敛60道典型例题分步骤详解数列收敛,换言之就是数列极限存在,此类问题历来都是高数考试的重点和难点,也是倍受命题老师青睐的“宠儿”。

数列收敛题型大致可分为两大类:第一类,数列的一般项(也称“通项”)已知;第二类,数列的一般项(通项)未知,尤其是由递推公式60道数列收敛典型例题,每道题都给出了详细的解题步骤。

网友们请注意,本文60个例题中如果用方括号标明年份的,均为当年考研真题。

第一类数列的一般项(通项)已知1.【2008真题】设解:原式. 具体求解过程如下(运用“两边夹”定理):2.✧解法(一)原式✧解法(二)原式=3.✧解法(一)分子有理化(分母视为“1”)原式✧解法(二)利用等价无穷小替换原式【注:】4.✧解法(一)✧解法(二)原式【注:, 】5.解:本题求极限,推荐“两边夹定理”。

解题过程如下:令显然可知,当因此,根据“两边夹定理”得到6.解:本题求极限推荐“两边夹定理”.令7.解原式=8.解原式=】9.解法(一)利用公式原式】==1✧.原式=】==110.解:原式。

正确的解法如下:原式==【注:】==11.✧解法(一)利用等价无穷小替换原式=】==✧解法(二)利用中值定理,注意求导公式原式【注:】=12.【2002真题】,✧解法(一)利用等无穷小替换✧原式===✧解法(二)利用“两边夹定理”,【注意:】原式=13.✧原式=【注:】=✧解法(二)利用等价无穷小替换原式=】14.解:此数列求极限推荐等价无穷小替换。

解法如下:原式==】=】15.✧解法(一)利用等价无穷小替换原式【注:】=【注:归结原则】✧【注:】16.解:本题求极限,“两边夹”定理、单调有界准则、定积分定义等方法似乎均不太“给力”,需将变量连续化,也就是将离散变量n替换为连续变量x,再运用包括洛必达法则在内的求解函数极限的方法.详细过程如下:17.✧解法(一)利用导数定义原式===【注:的指数部分,正是按定义所求的函数在处的导数.】【】=✧解法(二)拉格郎日中值定理,注意求导公式原式=====【注:=【注:本题推荐中值定理。

高等数学(2)第11章重积分典型例题解析

高等数学(2)第11章重积分典型例题解析例1 填空(1)根据二重积分的几何意义,⎰⎰--Dy x y x d d R222= 。

(其中{}222),(Ry x y x D ≤+=)(2)累次积分⎰⎰x xy y x f x d ),(d 10交换积分次序后,得到的积分为 。

(3)已知积分区域D x y x y =≤+≤{(,),}111,二重积分f x y x y D(,)d d ⎰⎰在直角坐标系下化为累次积分的结果是 。

解(1)由二重积分的几何意义,⎰⎰--Dy x y x d d R222表示球心在圆点,半径为R 的上半球体的体积,故为332R π。

应该填写:332R π。

(2)由已知的累次积分,得积分区域为⎩⎨⎧≤≤≤≤xy x x 10,若变换积分次序,即先积x 后积y ,则积分变量y 的上、下限必须是常量,而积分变量x 的积分上、下限必须是常量或是y 的函数,因此积分区域应表为⎩⎨⎧≤≤≤≤102y y x y ,于是交换后的积分为⎰⎰yyx y x f y 2d ),(d 10。

应该填写:⎰⎰y yx y x f y 2d ),(d 10。

(3)由已知的积分区域为D x y x y =≤+≤{(,),}111可知区域D 满足联立不等式组⎩⎨⎧≤+≤-≤≤-11111y x ,即而解得⎩⎨⎧≤≤-≤≤-0211y x ,因为两个积分变量的上、下限都是常量,所以可随意选择积分的顺序,若先积x 后积y ,则应填⎰⎰--0211d ),(d x y x f y ,反之应填d d x f x y y (,)--⎰⎰2011。

应该填写:d d x f x y y (,)--⎰⎰2011或⎰⎰--0211d ),(d x y x f y例2 单项选择 (1)二重积分xx y x y 2d d 1422≤+≤⎰⎰可表达为累次积分( )。

A. d d θθπr r 321202cos ⎰⎰; B.r r 321202d d cos θθπ⎰⎰;C.d d 2x x y xx ----⎰⎰442222; D.d d 2y x x yy ----⎰⎰111122(2)由曲面z x y =--422和z =0及柱面x y221+=所围的体积是( )。

高等数学第一章-习题


x x0
x
无穷大: 绝对值无限增大的变量称为无穷大.
记作 lim f ( x) (或 lim f ( x) ).
x x0
x
无穷小与无穷大的关系
在同一过程中,无穷大的倒数为无穷小;恒不为 零的无穷小的倒数为无穷大.
无穷小的运算性质
定理1 在同一过程中,有限个无穷小的代数和 仍是无穷小. 定理2 有界函数与无穷小的乘积是无穷小. 推论1 在同一过程中,有极限的变量与无穷小的 乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.

原式
lim[1
tan
x
sin
x
1
]x3
x0
1 sin x
lim x0
tan x sin 1 sin x
x
1 x3
sin x(1 cos x) lim x0 (1 sin x)cos x
1 x3
lim
x0
sin x
x
1
cos x2
x
1
(1 sin x)cos
x
1 2
1
原式 e2 .
例3
(2)可去间断点 如果f ( x)在点x0处的极限存在,
但 lim x x0
f (x)
A
f ( x0 ),或f ( x)在点x0处无定
义则称点x0为函数f ( x)的可去间断点.
跳跃间断点与可去间断点统称为第一类间断点. 特点: 函数在点x0处的左, 右极限都存在.

y
y

可去型
跳跃型




0 x0
9、闭区间上连续函数的性质

大一高数求极限的例题

大一高数求极限的例题一、引言极限是大学高等数学中的重要概念,它是分析数学和微积分的基础。

在大一的高数课程中,学生常常会遇到求取极限的例题。

通过解答这些例题,不仅可以帮助学生理解极限的概念和性质,还可以提升他们的计算能力和思维逻辑能力。

本文将给出一些典型的大一高数求取极限的例题,以帮助读者更好地理解和掌握这一知识点。

二、例题一:求极限$\\lim_{x \\rightarrow 0}\\frac{\\sin{2x}}{x}$解析:我们可以利用极限的基本性质来求解该例题。

首先,我们注意到当$x$接近于0时,$\\sin{2x}$也随之接近于0,而分母$x$始终不会取0。

因此,我们可以将该极限转换为另一个形式:$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x}$。

接下来,我们可以继续变形,使用三角恒等式$\\sin{2x} =2\\sin{x}\\cos{x}$,将分子中的$\\sin{2x}$化简为$2\\sin{x}\\cos{x}$。

然后,我们可以进一步将极限变为$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x} = 2\\lim_{x\\rightarrow 0} \\frac{\\sin{x}}{x}\\lim_{x \\rightarrow0}\\cos{x}$。

其中,$\\lim_{x \\rightarrow 0}\\cos{x}$显然等于1。

而$\\lim_{x \\rightarrow 0} \\frac{\\sin{x}}{x}$则是一个常数,它的数值为1。

因此,最终的结果为$2 \\times 1 \\times 1 = 2$。

即$\\lim_{x \\rightarrow 0} \\frac{\\sin{2x}}{x} = 2$。

三、例题二:求极限$\\lim_{x \\rightarrow +\\infty} \\left(1 +\\frac{a}{x}\\right)^x$解析:为了求解该例题,我们可以利用极限的定义和性质。

高等数学第一章函数例题及答案

高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。

二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章函数及其图形例1:().A. {x | x>3}B. {x | x<-2}C. {x |-2< x ≤1}D. {x | x≤1}注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。

例2:函数的定义域为().解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。

由根式要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。

例3:下列各组函数中,表示相同函数的是()解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。

B中的函数是相同的。

因为对一切实数x都成立,故应选B。

C中的两个函数是不同的。

因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。

D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。

例4:设解:在令t=cosx-1,得又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有。

例5:f(2)没有定义。

注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。

例6:函数是()。

A.偶函数 B.有界函数 C.单调函数 D.周期函数解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。

由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。

事实上,对任意的x,由,可得,从而有。

可见,对于任意的x,有。

因此,所给函数是有界的,即应选择B。

例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。

A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定解:因为f(x+y)=f(x)+f(y),故f(0)= f(0+0)=f(0)+f(0)=2f(0),可知f(0)=0。

在f(x+y)=f(x)+f(y)中令y = -x,得0 = f(0) = f(x-x) = f[ x+(-x) ] = f(x)+f(-x)所以有f(-x) = - f(x),即f(x)为奇函数,故应选 A 。

例 8:函数的反函数是()。

A. B.C. D.解:于是,是所给函数的反函数,即应选C。

例 9:下列函数能复合成一个函数的是()。

A.B.C.D.解:在(A)、(B)中,均有u=g(x)≤0,不在f (u)的定义域,不能复合。

在(D)中,u=g(x)=3也不满足f(u)的定义域,也不能复合。

只有(C)中的定义域,可以复合成一个函数,故应选C。

例 10:函数可以看成哪些简单函数复合而成:解:,三个简单函数复合而成。

第二章极限与连续例1:下列数列中,收敛的数列是()A. B. C. D.解:(A)中数列为0,1,0,1,……其下标为奇数的项均为0,而下标为偶数的项均为1,即奇偶数项分别趋于不同的常数值,从而可知该数列没有极限,是发散的。

由于,故(B)中数列发散。

由于正弦函数是一个周期为的周期函数,当时,并不能无限趋近于一个确定的值,因而(C)中数列也发散。

由于,故(D)中数列收敛。

例2:设,则a=( )A.0B.1C.3D.1/3解:假设=0,则所给极限为,其分子趋于∞,而分母趋于有限值3,所以极限为∞,不是1/5,因而≠0。

当≠0时,所给极限为,故应选C。

一般地,如果有理函数,其中、分别为n的k次、l次多项式,那么,当时,当k=l时,f (n)的极限为、的最高次项的系数之比;当k<l时,f (n)的极限为零;当k>l时,f (n)的极限为∞。

对于当x→∞(或+∞,-∞)时x的有理分式函数的极限,也有类似的结果。

例3.A. 0B. 1C. πD. n解利用重要极限,故应选C。

注:第一重要极限的本质是,这里的可以想象为一个空的筐子,里面可以填入任意以零为极限的表达式(三个填入的容要相同)。

类似地,第二重要极限可以看作是,其中可以同时填入相同的任意趋于无穷大的表达式。

例4.求解法 1解法 2解法 3例5.A. 0B. 1C. 1/2D. 1/4解:由于,故应选D。

例6.解:注意本题属于“∞-∞”型,是个未定式,不能简单地认为它等于0或认为是∞,对于此类问题一般需要将函数进行通分,然后设法进行化简,进而求出其极限值。

例7. 当x→0时,的()。

A. 同阶无穷小量B. 高阶无穷小量C. 低价无穷小量D. 较低阶的无穷小量解:由于可知是x的同阶无穷小量,所以应选A。

例8. 当等价的无穷小量是( )A. B. C. D.解:由于可知的高阶无穷小量,同时等价的无穷小量,所以选D。

例9. 下列变量在给定的变化过程中是无穷大量的是( )A. B.C. D.解:由于所以应选A.例10.要使函数在x=0处连续,f(0)应该补充定义的数值是( ) A.1/2 B.2 C.1 D.0解:要使函数f(x)在x=0处连续,必须有因此要令f(0)=1.故应选C。

例11.设求k,使f(x)连续。

解:由于函数f(x)在(-∞,0)和(0,+∞)两区间均由初等函数表示,而且在这两个区间均有定义,因此在这两个区间是连续的。

函数是否连续取决于它在x=0处是否连续。

要让f(x)在x=0处连续,必须由于=又由可知例12.证明方程在区间(1,2)必有一根。

证:令,由于f(x)是初等函数,它在区间(-∞,+∞)上连续,另外f(1)=-1<1 ,f(2)=13>0, f(x)在[1,2]上连续,故由零点存在定理知,存在在区间(1,2)必有一个根.第三章导数和微分例1:讨论函数例2:例3:分段函数处是否连续?是否可导?为什么?例4:例5:例6:例7:例8:例9:例10:例11:证明曲线xy=1 (x>0,y>0)上任一点处的切线与两坐标轴所围成的三角形的面积是一个常数.例12:例13:第四章中值定理与导数应用例1:下列各函数中,在区间[-1,1]上满足罗尔定理所有条件的是( )例2:例3:例4:例5:例6:下列极限中能用罗必达法则的有( )例7:例8:列表即(-∞,-2)及(0,+∞)为递增区间,(-2,-1)及(-1,0)为递减区间;当x=-2时取极大值f(-2)=-4,当x=0时取极小值f(0)=0例9:讨论曲线 y=x4-2x3+1的凹向与拐点解:yˊ=4x3-6x2y″=12x2-12x=12x(x-1)当x=0,x=1时 y″=0x=0与x=1把定义域(-∞,+∞)分成三个区间,列表即(-∞,0)及(1,+∞)上凹;(0,1)下凹,两个拐点(0,1)和(1,0)例10:例11:例12:例13:某种商品需求函数为,求当P=4时的需求弹性。

例14:第五章积分例1:若h(x)是g(x)的一个原函数,则下列表达式中正确的一个是()。

解:因为各备选答案中的右端均含有积分常数C,故只须验证各备选答案中右端的导数是否等于其左端积分的被积函数。

事实上,由于g(x)未必可导,故可知(A)、(D)不正确;由题意h(x)是g(x)的一个原函数,即h'(x)=g(x),故(B)正确而(C)不正确,因此,应选(B)。

例2:例3:例4:例5:例6:例7:例8:例9:例10:例11:(图8-1) 例12:例13:例14:例15:例16:例17:例18:例19:例20:例21:例22:试判断下列广义积分的敛散性。

例23:试判断下列广义积分的敛散性。

例24:例25:例26:例27:例28:第六章无穷级数例1:例2:例3:例4:例5:例6:根据极限形式的比较审敛法,可知(B)中级数是收敛的;例7:例8:第一步,根据级数收敛必要性粗略观察是否有若有,则得出级数发散结论,否则进行下一步。

例9:判断交错级数的敛散性,若收敛,指出是条件收敛还是绝对收敛。

例10:例11:例12:例13:例14:第七章多元函数微积分例1.下列平面方程中,过点(1,1,-1)的方程是()(A) x+y+Z=0 (B)x+y+Z=1 (C)x+y-Z=1 (D)x+y-Z=0解:判断一个点是否在平面上,只需将点的坐标代入,看看是否满足相应的平面方程即可。

易见应选(B)。

例2.指出下列平面的特殊位置(1)x+2z=1;(2)x-2y=0;(3)x-2y+3z=0;(4)z-5=0.解:设平面方程为 Ax+By+Cz+D=0(1)方程中y的系数为B=0,故该平面平行于oy轴(垂直于zox平面);(2)方程中z的系数C=0且D=0,故平面过oz轴;(3)方程中常数D=0,故该平面过原点;(4)方程中x的系数A=0 且y的系数B=0,故该平面垂直于oz轴(平行于xoy平面)。

例3.求过点(3,2,1)且平行于yoz平面的平面方程。

解:平行于yoz平面即垂直于ox轴,故可设所求平面方程为Ax+D=0,将已知点(3,2,1)的坐标代入上式,得D=-3A,从而所求方程为x-3=0。

注意:在求平面方程时,Ax+By+Cz+D=0中的四个待定常数不是完全独立的,计算时可用其中的一个表示其余的三个,然后通过化简得出所求结果。

例4.求点M(2,-3,1)分别关于xOy平面、Oy轴和原点的对称点。

解:点M关于xOy平面的对称点是第三个分量变号,即(2,-3,-1),关于Oy轴的对称点是第一,第三分量变号,即(-2,-3,-1),关于原点的对称点是三个分量都变号即(-2,3,-1)。

例5.求平面3x+2y-z-6=0分别在三条坐标轴上的截距。

解:将平面方程化为截距式方程,得因此该平面在Ox轴、Oy轴和Oz轴上的截距依次为2、3、和-6。

例6.求球面的球心坐标和半径。

解:对方程进行配方,化为一般形式的球面方程从而球心坐标为(3,-1,0),半径为。

例7.下列方程在空间直角坐标系中,表示施转抛物面的方程是()(A)(B)(C)(D)解:只能x=y=z=0,它表示空间直角坐标系中的原点。

是一次方程,D=0表示过原点的一个平面。

即表示绕z轴旋转口朝z轴负方向的旋转抛物面。

表示双曲抛物面(马鞍面)故应选(C)例8.函数的定义域是()。

(A)(B)(C)(D)解:由函数的表达式知函数的定义域为即,故应选(C)。

例9.设(A)(B)(C)(D)解:由题设,故应选(A)。

例10.设在点处偏导数存在,则(A)(B)(C)(D)解:根据偏导数的定义,有故应选(C)。

例11.设证明证明:于是左注意,本例还可以利用二元函数隐函数来解偏导数:两边取对数代入左端即可得结论。

例12.设其中f为可微函数,则(A)(B) (C) (D)故应选(D)。

例13.设因此,例14.设例15.设z=z(x,y)是由方程确定的函数,求注意:在求隐函数的偏导数时,其结果中可以有变量度z的出现,结果表达式也常常不是惟一的,如本例用代入两个偏导还可以表示成例16.设(A)(B)(C)(D)解1:变量之间的关系图为故应选(A)注意:这里解法2经过代入后变成了一个一元函数求导问题,简洁明了。

相关文档
最新文档