高数典型例题解析

合集下载

高等数学试题详解及答案

高等数学试题详解及答案

高等数学试题详解及答案一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. πD. -1答案:B3. 函数F(x)=∫(0 to x) t^2 dt的不定积分是:A. (1/3)x^3 + CB. (1/2)x^2 + CC. x^3 + CD. x^2 + C答案:A4. 无穷小量α与无穷小量β,若α是β的高阶无穷小,则:A. α/β→0B. α/β→∞C. α/β→1D. α/β→常数答案:A5. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. -2B. 0C. 2D. 1答案:C二、填空题(每题3分,共15分)1. 若函数f(x)的二阶导数为f''(x)=6x,那么f'(x)=______。

答案:3x^2 + C2. 函数y=e^x的反函数是______。

答案:ln(x)3. 定积分∫(0 to 1) x dx的值是______。

答案:1/24. 函数y=ln(x)的导数是______。

答案:1/x5. 曲线y=x^2在点(1,1)处的法线方程是______。

答案:y=-x+2三、解答题(每题10分,共30分)1. 求函数f(x)=x^3-3x^2+2x的极值点。

答案:首先求导数f'(x)=3x^2-6x+2,令f'(x)=0,解得x=1或x=2/3。

通过二阶导数f''(x)=6x-6,可以判断x=1为极大值点,x=2/3为极小值点。

2. 计算定积分∫(0 to π/2) sin(x) dx。

答案:根据积分公式,∫sin(x) dx = -cos(x) + C,所以∫(0 toπ/2) sin(x) dx = [-cos(x)](0 to π/2) = -cos(π/2) + cos(0)= 1。

高中数学典型例题解析(第七章平面解析几何

高中数学典型例题解析(第七章平面解析几何

[例1]求过点的直线,使它与抛物线仅有一个交点.错解:设所求的过点的直线为,则它与抛物线的交点为,消去得整理得直线与抛物线仅有一个交点,解得所求直线为正解:①当所求直线斜率不存在时,即直线垂直轴,因为过点,所以即轴,它正好与抛物线相切.②当所求直线斜率为零时,直线为y = 1平行轴,它正好与抛物线只有一个交点.③一般地,设所求的过点的直线为,则,令解得k = ,∴所求直线为综上,满足条件的直线为:[例2]已知曲线C:与直线L:仅有一个公共点,求m的范围.错解:曲线C:可化为①,联立,得:,由Δ=0,得.错因:方程①与原方程并不等价,应加上.正解:原方程的对应曲线应为椭圆的上半部分.(如图),结合图形易求得m的范围为.[例3]已知双曲线,过P(1,1)能否作一条直线L与双曲线交于A、B两点,且P为AB中点.(2)设过P的直线方程为,代入并整理得:∴,又∵∴正解:接以上过程,考虑隐含条件“Δ>0”,当k=2时代入方程可知Δ<0,故这样的直线不存在.[例4]已知A、B是圆与x轴的两个交点,CD是垂直于AB的动弦,直线AC和DB相交于点P,问是否存在两个定点E、F, 使| | PE |-| PF | | 为定值?若存在,求出E、F的坐标;若不存在,请说明理由.设P ( x, y ), C ( ) , 则 D (),由A、C、P三点共线得①由D、B、P三点共线得②①×②得③又, ∴,代入③得,即点P在双曲线上,故由双曲线定义知,存在两个定点E (-, 0 )、F (, 0 )(即此双曲线的焦点),使| | PE |-| PF | | = 2 (即此双曲线的实轴长为定值).[例5]已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1 与该椭圆相交于P 和Q,且OP⊥OQ,|PQ|=,求椭圆的方程.解:设所求椭圆的方程为=1.,③设方程③的两个根分别为、,则直线y=x+1和椭圆的交点为P(,+1),Q(,+1)由题设OP⊥OQ,|OP|=,可得或(1)或(2)或=1 ,或 =1.[例6]已知椭圆C1:=1,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点。

高级数学题解析

高级数学题解析

高级数学题解析数学作为一门精深的学科,其内涵十分丰富。

其中,高级数学更是让人望而生畏的存在。

高级数学所涉及的各种题型,其解析往往需要结合多种技巧和理论知识才能得出正确答案。

今天我们就来对几个高级数学题进行深度解析,希望给大家带来一些启发和帮助。

一、微分方程题解析微分方程是高级数学中的重要内容之一,其应用广泛而深远。

解微分方程的过程中,需要用到积分、导数等基本概念和理论。

以求解一阶线性常微分方程为例,假设给定的微分方程为dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数。

我们可以采用积分因子法进行求解。

首先,我们求出微分方程的积分因子μ(x)。

积分因子的定义为μ(x) =e^(∫p(x)dx)。

将积分因子乘以原方程两边,然后利用乘积法则和恰当导数的定义,可以将原方程两边化为d(μ(x)y)/dx = μ(x)q(x)。

再次对等式两边进行积分,即可得到μ(x)y = ∫μ(x)q(x)dx + C,其中C为常数。

最后,将积分得到的表达式除以μ(x),即可求得y的解。

二、矩阵题解析矩阵是高级数学中另一个重要的概念,其在线性代数、微积分等领域都有广泛的应用。

解矩阵题涉及到对矩阵的各种运算和性质的理解和应用。

以求解线性方程组为例,我们可以利用矩阵的逆矩阵来求解。

设线性方程组为AX = B,其中A是一个已知的n阶方阵,X和B是未知向量。

首先,我们求出系数矩阵A的逆矩阵A^-1。

然后,将方程组两边都左乘A^-1,得到X = A^-1B,即可求得方程组的解。

需要注意的是,矩阵A必须满足可逆的条件,即其行列式不为0。

三、级数题解析级数是高级数学中的重要概念,其在数学和物理等领域都有着广泛的应用。

解级数题需要用到级数的概念、性质和收敛判定等理论知识。

以求解无穷级数为例,我们可以采用判别法来判断级数的收敛性和求和。

设给定的级数为∑(n=1,∞)an,其中an是给定的数列。

我们可以根据其通项an 的性质和收敛判定定理来判断级数的收敛性。

高数真题详解及答案解析

高数真题详解及答案解析

高数真题详解及答案解析一、引言高等数学是大多数理工科学生的必修课程,也是考验他们数学能力和逻辑思维能力的一门重要学科。

为了帮助广大学生更好地应对高数考试,本文将选取一道高数真题进行详解,并提供答案解析,希望对同学们的学习有所帮助。

二、题目解析我们选取了一道经典高数题目,来分析其背后的思路和解题方法。

题目:设函数f(x)满足f'(x)=x^2-2x+3,且f(1)=5,求f(2)的值。

解析:首先,我们看到题目中给出了函数f(x)的导数f'(x),我们可以利用导数的性质来求函数f(x)。

根据导数的定义,我们知道f'(x)就是函数f(x)在点x处的斜率,也就是函数图像在该点的切线斜率。

因此,我们可以通过对导数进行积分来求得原函数f(x)。

根据题目给出的导函数f'(x)=x^2-2x+3,我们将其积分,得到:∫f'(x)dx = ∫(x^2-2x+3)dx即f(x) = ∫(x^2-2x+3)dx对右侧的积分进行计算:f(x) = (1/3)x^3 - x^2 + 3x + C其中C为常数,由于我们已经给出了f(1)=5,代入原函数方程可以求得C的值:5 = (1/3)(1)^3 - (1)^2 + 3(1) + CC = 5 - 1/3 + 3 - 3C = 14/3因此,原函数为:f(x) = (1/3)x^3 - x^2 + 3x + 14/3三、答案解析根据题目要求,我们需要求解f(2)的值。

代入原函数方程,可以得到:f(2) = (1/3)(2)^3 - (2)^2 + 3(2) + 14/3= 8/3 - 4 + 6 + 14/3= 22/3因此,f(2)的值为22/3。

四、总结与展望通过这道高数真题的详解,我们可以看到高数题目求解的思路和方法。

首先,需要根据题目提供的条件和方程,利用导数的性质进行运算。

其次,根据已知条件进行求解,得到待求解的结果。

高数的学习需要掌握基本的数学知识和解题技巧,不断进行练习和思考。

高数极限真题及答案解析

高数极限真题及答案解析

高数极限真题及答案解析引言:高等数学是大多数理工科学生必修的一门课程,其中极限是数学中的重要概念之一。

作为基础与应用数学的桥梁,掌握高数极限的理论和解题方法对学生的学习和发展至关重要。

本文将介绍几道经典的高数极限真题,并对它们的答案进行详细解析,帮助读者深入理解高数极限的概念和运用。

第一道题目:求极限:lim(x→2) (3x² - 7x + 2)解析:对于这道题目,我们可以使用极限的性质,将其分解为更简单的形式。

首先,我们将3x² - 7x + 2因式分解为(x - 2)(3x - 1)。

然后,我们可以得到:lim(x→2) (x - 2)(3x - 1) = lim(x→2) (x - 2) ×lim(x→2) (3x - 1)将极限运算分解为两个单独的极限,便于计算。

此时,我们可以得到:lim(x→2) (x - 2) = 2 - 2 = 0lim(x→2) (3x - 1) = 3(2) - 1 = 5因此,原极限的结果为0 × 5 = 0。

第二道题目:求极限:lim(x→∞) (2x² - 5x) / (3x² + 4)解析:对于这道题目,我们需要考虑的是当自变量趋向于无穷大时的极限情况。

首先,我们可以使用同除法的原则,将分子和分母同时除以x²,得到:lim(x→∞) (2x² - 5x) / (3x² + 4) = lim(x→∞) (2 -5/x) / (3 + 4/x²)随着x趋向于无穷大,5/x和4/x²的值都趋近于0,因此我们可以得到:lim(x→∞) (2 - 5/x) / (3 + 4/x²) = 2/3所以,原极限的结果为2/3。

第三道题目:求极限:lim(x→0) (sin²x) / x解析:对于这道题目,我们可以使用极限的定义,即lim(x→a) f(x) = L。

高等数学(2)第11章重积分典型例题解析

高等数学(2)第11章重积分典型例题解析

高等数学(2)第11章重积分典型例题解析例1 填空(1)根据二重积分的几何意义,⎰⎰--Dy x y x d d R222= 。

(其中{}222),(Ry x y x D ≤+=)(2)累次积分⎰⎰x xy y x f x d ),(d 10交换积分次序后,得到的积分为 。

(3)已知积分区域D x y x y =≤+≤{(,),}111,二重积分f x y x y D(,)d d ⎰⎰在直角坐标系下化为累次积分的结果是 。

解(1)由二重积分的几何意义,⎰⎰--Dy x y x d d R222表示球心在圆点,半径为R 的上半球体的体积,故为332R π。

应该填写:332R π。

(2)由已知的累次积分,得积分区域为⎩⎨⎧≤≤≤≤xy x x 10,若变换积分次序,即先积x 后积y ,则积分变量y 的上、下限必须是常量,而积分变量x 的积分上、下限必须是常量或是y 的函数,因此积分区域应表为⎩⎨⎧≤≤≤≤102y y x y ,于是交换后的积分为⎰⎰yyx y x f y 2d ),(d 10。

应该填写:⎰⎰y yx y x f y 2d ),(d 10。

(3)由已知的积分区域为D x y x y =≤+≤{(,),}111可知区域D 满足联立不等式组⎩⎨⎧≤+≤-≤≤-11111y x ,即而解得⎩⎨⎧≤≤-≤≤-0211y x ,因为两个积分变量的上、下限都是常量,所以可随意选择积分的顺序,若先积x 后积y ,则应填⎰⎰--0211d ),(d x y x f y ,反之应填d d x f x y y (,)--⎰⎰2011。

应该填写:d d x f x y y (,)--⎰⎰2011或⎰⎰--0211d ),(d x y x f y例2 单项选择 (1)二重积分xx y x y 2d d 1422≤+≤⎰⎰可表达为累次积分( )。

A. d d θθπr r 321202cos ⎰⎰; B.r r 321202d d cos θθπ⎰⎰;C.d d 2x x y xx ----⎰⎰442222; D.d d 2y x x yy ----⎰⎰111122(2)由曲面z x y =--422和z =0及柱面x y221+=所围的体积是( )。

高等数学教材题目大全及解析

高等数学教材题目大全及解析

高等数学教材题目大全及解析第一部分:微积分1. 极限与连续题目:计算极限 $$\lim_{x\to 2}\frac{x^2-4}{x-2}$$ 并给出解析。

解析:首先观察分式的形式,可以看出分子是一个二次函数,分母是线性函数,而且在极限的点$x=2$处,分母为零。

这暗示我们可能要利用因式分解来化简分式。

$$\lim_{x\to 2}\frac{x^2-4}{x-2} = \lim_{x\to 2}\frac{(x+2)(x-2)}{x-2}$$当$x$接近2时,分子和分母都接近于0,因此我们可以将$(x+2)$和$(x-2)$都约去,最终得到:$$\lim_{x\to 2}\frac{x^2-4}{x-2} = \lim_{x\to 2}(x+2) = 4$$因此,该极限的解析为4。

2. 导数与微分题目:求函数$f(x) = x^3 + 2x^2 - 3x + 1$的导函数,并给出其解析。

解析:要求函数的导函数,我们需要对函数进行求导。

根据求导法则,我们可以逐项求导得到:$$\frac{d}{dx}(x^3 + 2x^2 - 3x + 1) = 3x^2 + 4x - 3$$因此,函数$f(x)$的导函数为$3x^2 + 4x - 3$。

3. 积分与定积分题目:计算定积分 $$\int_{0}^{2}\left(2xe^{x^2}+3\right)dx$$ 并给出解析。

解析:对于定积分,我们可以先求原函数,然后再代入上限和下限进行计算。

首先对被积函数的每一项进行积分得到:$$\int 2xe^{x^2}dx = e^{x^2} + C_1$$$$\int 3dx = 3x + C_2$$将两个结果相加得到原函数:$$F(x) = e^{x^2} + 3x + C$$根据上限和下限进行代入:$$\int_{0}^{2}\left(2xe^{x^2}+3\right)dx = F(2) - F(0) = (e^{4} + 6) - (e^{0} + 0) = e^{4} + 6$$因此,定积分的解析为$e^{4} + 6$。

高数题目及答案解析

高数题目及答案解析

高数题目及答案解析
1. 求函数$f(x)=2x-3\sin{x}$ 关于 x 的导函数
答案:$f'(x)=2+3\cos{x}$
解析:首先利用微积分的基本法则:对于单变量函数 $y=f(x)$ ,其关
于 x 的导函数为$f'(x)=\frac{d}{dx}f(x)=\frac{dy}{dx}$ ,即求导函数就相当于计算 $\frac{d}{dx}f(x)$ ,所以,把函数 $f(x)=2x-3\sin{x}$ 交给求导机,计算其对 x 的导数:
首先计算第一项 $2x$ 的导数:$\frac{d}{dx}2x=2$
接着计算第二项 $-3\sin{x}$ 的导数:$\frac{d}{dx}-3\sin{x}=-3\cos{x}$
根据微积分的基本法则,将两个分量的导数相加,得到函数 $f(x)=2x-
3\sin{x}$ 关于 x 的导函数:$f'(x)=2+3\cos{x}$
2. 求复变函数$z=x^2+y^2$ 的极坐标表达式
答案:$z=r^2$
解析:首先利用极坐标对直角坐标系中的点坐标进行改写的定义:
$x=r\cos\theta$ 、$y=r\sin\theta$ ,把函数 $z=x^2+y^2$ 带入上式,即可得到:$z=r^2 \cdot (\cos^2 \theta +\sin^2 \theta)= r^2$ 。

所以,复变函数$z=x^2+y^2$ 的极坐标表达式为:$z=r^2$ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章函数及其图形例1:().A. {x | x>3}B. {x | x<-2}C. {x |-2< x ≤1}D. {x | x≤1}注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。

例2:函数的定义域为().解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。

由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。

例3:下列各组函数中,表示相同函数的是()解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。

B中的函数是相同的。

因为对一切实数x都成立,故应选B。

C中的两个函数是不同的。

因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。

D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。

例4:设解:在令t=cosx-1,得又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有。

5:例f(2)没有定义。

注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。

例6:函数是()。

A.偶函数 B.有界函数 C.单调函数 D .周期函数解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。

由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。

事实上,对任意的x,由,可得,从而有。

可见,对于任意的x,有。

因此,所给函数是有界的,即应选择B。

例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。

A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定解:因为f(x+y)=f(x)+f(y),故f(0)= f(0+0)=f(0)+f(0)=2f(0),可知f(0)=0。

在f(x+y)=f(x)+f(y)中令y = -x,得0 = f(0) = f(x-x) = f[ x+(-x) ] = f(x)+f(-x)所以有f(-x) = - f(x),即f(x)为奇函数,故应选 A 。

例 8:函数的反函数是()。

A.B.C.D.解:于是,是所给函数的反函数,即应选C。

例 9:下列函数能复合成一个函数的是()。

A.B.C.D.解:在(A)、(B)中,均有u=g(x)≤0,不在f (u)的定义域内,不能复合。

在(D)中,u=g(x)=3也不满足f(u)的定义域,也不能复合。

只有(C)中的定义域内,可以复合成一个函数,故应选C。

例 10:函数可以看成哪些简单函数复合而成:解:,三个简单函数复合而成。

第二章极限与连续例1:下列数列中,收敛的数列是()A. B. C. D.解:(A)中数列为0,1,0,1,……其下标为奇数的项均为0,而下标为偶数的项均为1,即奇偶数项分别趋于不同的常数值,从而可知该数列没有极限,是发散的。

由于,故(B)中数列发散。

由于正弦函数是一个周期为的周期函数,当时,并不能无限趋近于一个确定的值,因而(C )中数列也发散。

由于,故(D)中数列收敛。

例2:设,则a=( )A.0B.1C.3D.1/3解:假设=0,则所给极限为,其分子趋于∞,而分母趋于有限值3,所以极限为∞,不是1/5,因而≠0。

当≠0时,所给极限为,故应选C。

一般地,如果有理函数,其中、分别为n的k 次、l次多项式,那么,当时,当k=l 时,f (n)的极限为、的最高次项的系数之比;当k<l时,f (n)的极限为零;当k>l时,f (n)的极限为∞。

对于当x→∞(或+∞,-∞)时x的有理分式函数的极限,也有类似的结果。

例3.A. 0B. 1C. πD. n解利用重要极限,故应选C。

注:第一重要极限的本质是,这里的可以想象为一个空的筐子,里面可以填入任意以零为极限的表达式(三个填入的内容要相同)。

类似地,第二重要极限可以看作是,其中可以同时填入相同的任意趋于无穷大的表达式。

例4.求解法 1解法 2解法 3例5.A. 0B. 1C. 1/2D. 1/4解:由于,故应选D 。

例6.解:注意本题属于“∞-∞”型,是个未定式,不能简单地认为它等于0或认为是∞,对于此类问题一般需要将函数进行通分,然后设法进行化简,进而求出其极限值。

例7. 当x→0时,的()。

A. 同阶无穷小量B. 高阶无穷小量C. 低价无穷小量D. 较低阶的无穷小量解:由于可知是x的同阶无穷小量,所以应选A。

例8. 当等价的无穷小量是( )A. B. C. D.解:由于可知的高阶无穷小量,同时等价的无穷小量,所以选D。

例9. 下列变量在给定的变化过程中是无穷大量的是( )A. B.C. D.解:由于所以应选A.例10.要使函数在x=0处连续,f(0)应该补充定义的数值是( )A.1/2B.2C.1D.0解:要使函数f(x)在x=0处连续,必须有因此要令f(0)=1.故应选C 。

例11.设求k,使f(x)连续。

解:由于函数f(x)在(-∞,0)和(0,+∞)两区间内均由初等函数表示,而且在这两个区间内均有定义,因此在这两个区间内是连续的。

函数是否连续取决于它在x=0处是否连续。

要让f(x)在x=0处连续,必须由于=又由可知例12.证明方程在区间(1,2)内必有一根。

证:令,由于f(x)是初等函数,它在区间(-∞,+∞)上连续,另外f(1)=-1<1 ,f(2)=13>0, f(x)在[1,2]上连续,故由零点存在定理知,存在在区间(1,2)内必有一个根.第三章导数和微分例1:讨论函数例2:例3:分段函数处是否连续?是否可导?为什么?例4:例5:例6:例7:例8:例9:例10:例11:证明曲线xy=1 (x>0,y>0)上任一点处的切线与两坐标轴所围成的三角形的面积是一个常数.例12:例13:第四章中值定理与导数应用例1:下列各函数中,在区间[-1,1]上满足罗尔定理所有条件的是( )例2:例3:例4:例5:例6:下列极限中能用罗必达法则的有( )例7:例8:列表即(-∞,-2)及(0,+∞)为递增区间,(-2,-1)及(-1,0)为递减区间;当x=-2时取极大值f(-2)=-4,当x=0时取极小值f(0)=0例9:讨论曲线 y=x4-2x3+1的凹向与拐点解:yˊ=4x3-6x2y″=12x2-12x=12x(x-1)当x=0,x=1时 y″=0x=0与x=1把定义域(-∞,+∞)分成三个区间,列表即(-∞,0)及(1,+∞)上凹;(0,1)下凹,两个拐点(0,1)和(1,0)例10:例11:例12:例13:某种商品需求函数为第五章积分例1:若h(x)是g(x)的一个原函数,则下列表达式中正确的一个是()。

解:因为各备选答案中的右端均含有积分常数C,故只须验证各备选答案中右端的导数是否等于其左端积分的被积函数。

事实上,由于g(x)未必可导,故可知(A)、(D)不正确;由题意h(x)是g(x)的一个原函数,即h'(x)=g(x),故(B)正确而(C)不正确,因此,应选(B)。

例2:例3:例4:例5:例6:例7:例8:例9:例10:例11:(图8-1) 例12:例13:例14:例15:例16:例17:例18:例19:例20:例21:例22:试判断下列广义积分的敛散性。

例23:试判断下列广义积分的敛散性。

例24:例25:例26:例27:例28:第六章无穷级数例1:例2:例3:例4:例5:例6:根据极限形式的比较审敛法,可知(B)中级数是收敛的;例7:例8:第一步,根据级数收敛必要性粗略观察是否有若有,则得出级数发散结论,否则进行下一步。

例9:判断交错级数的敛散性,若收敛,指出是条件收敛还是绝对收敛。

例10:例11:例12:例13:例14:第七章多元函数微积分例1.下列平面方程中,过点(1,1,-1)的方程是()(A) x+y+Z=0 (B)x+y+Z=1 (C)x+y-Z=1 (D)x+y-Z=0解:判断一个点是否在平面上,只需将点的坐标代入,看看是否满足相应的平面方程即可。

易见应选(B)。

例2.指出下列平面的特殊位置(1)x+2z=1;(2)x-2y=0;(3)x-2y+3z=0;(4)z-5=0.解:设平面方程为Ax+By+Cz+D=0(1)方程中y的系数为B=0,故该平面平行于o y轴(垂直于zox平面);(2)方程中z的系数C=0且D=0,故平面过oz轴;(3)方程中常数D=0,故该平面过原点;(4)方程中x的系数A=0 且y的系数B=0,故该平面垂直于oz轴(平行于xoy平面)。

例3.求过点(3,2,1)且平行于yoz平面的平面方程。

解:平行于yoz平面即垂直于ox轴,故可设所求平面方程为Ax+D=0,将已知点(3,2,1)的坐标代入上式,得D=-3A,从而所求方程为x-3=0。

注意:在求平面方程时,Ax+By+Cz+D=0中的四个待定常数不是完全独立的,计算时可用其中的一个表示其余的三个,然后通过化简得出所求结果。

例4.求点M(2,-3,1)分别关于xOy平面、Oy轴和原点的对称点。

解:点M关于xOy平面的对称点是第三个分量变号,即(2,-3,-1),关于Oy轴的对称点是第一,第三分量变号,即(-2,-3,-1),关于原点的对称点是三个分量都变号即(-2,3,-1)。

例5.求平面3x+2y-z-6=0分别在三条坐标轴上的截距。

解:将平面方程化为截距式方程,得因此该平面在Ox轴、Oy轴和Oz轴上的截距依次为2、3、和-6。

例6.求球面的球心坐标和半径。

解:对方程进行配方,化为一般形式的球面方程从而球心坐标为(3,-1,0),半径为。

例7.下列方程在空间直角坐标系中,表示施转抛物面的方程是()(A)(B)(C)(D)解:只能x=y=z=0,它表示空间直角坐标系中的原点。

是一次方程,D=0表示过原点的一个平面。

即表示绕z轴旋转张口朝z轴负方向的旋转抛物面。

表示双曲抛物面(马鞍面)故应选(C)例8.函数的定义域是()。

(A)(B)(C)(D)解:由函数的表达式知函数的定义域为即,故应选(C)。

例9.设(A)(B)(C)(D)解:由题设,故应选(A)。

例10.设在点处偏导数存在,则(A)(B)(C)(D)解:根据偏导数的定义,有故应选(C)。

例11.设证明证明:于是左注意,本例还可以利用二元函数隐函数来解偏导数:两边取对数代入左端即可得结论。

例12.设其中f为可微函数,则(A)(B) (C) (D)故应选(D)。

例13.设因此,例14.设例15.设z=z(x,y)是由方程确定的函数,求注意:在求隐函数的偏导数时,其结果中可以有变量度z的出现,结果表达式也常常不是惟一的,如本例用代入两个偏导还可以表示成例16.设(A )(B)(C )(D)解1:变量之间的关系图为故应选(A)证明:设变量之间的关系为例18.求函数的极值。

相关文档
最新文档