等差数列求和公式的说课稿复习进程
《等差数列前n项和公式》说课稿

《等差数列前n项和公式》说课稿各位评委,大家好:我说课的课题是高中数学(人教B版)必修5第二章等差数列中“等差数列前n项和公式”的第一节内容,我将从教材分析、学情分析、教法分析、学法过程、教学过程五个方面来展开本节的说课内容。
一、设计思想在讲授式的教学中,课堂实施过于注重知识的机械传授,忽略了学生学习的主体性,也抑制了学生综合能力的提高和综合素质的发展。
当代学生观重视学生的自主发展,认为教育就应看到学生的未完成性,给学生创造发展的环境和机会。
本堂课以个性化的教学思想为指导进行设计。
采用探究活动为主的教学方法,借助教材或教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力。
因此,我在此堂课的教学中借助图形拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美。
二、教材分析1、教学内容:《等差数列前n项和》是现行教材高一上册第三章第三节“等差数列前n项和”的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。
2、地位与作用:数列是刻画离散现象的函数,是一种重要的数学模型。
高中数列研究的主要对象是等差、等比两个基本数列。
本节课的教学内容是等差数列的前n项和公式及其简单应用。
它与前面学过的等差数列的定义、通项公式、性质有着密切的联系;同时,又为后面学习等比数列前n项和、数列求和等内容作好准备。
因此,本节课既是本章的重点也是教材的重点。
与几何、函数等其他数学领域知识结合性强,是方程思想等诸多数学思想的学习载体,具有丰富的现实背景3.教学目标知识与技能目标:掌握等差数列的前n项和公式,并能运用公式解决简单的问题。
过程与方法目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,掌握倒序相加法。
情感与态度价值观:使学生获得发现的成就感,优化思维品质,提高代数的推理能力。
4.教学重点、难点重点:等差数列的前n项和公式。
等差数列求和说课稿

各位老师你们好!今天我要为大家讲的课题是:等差数列的前n项和一、教材分析(说教材):1.教材所处的地位和作用:《等差数列的前n项和》是高中数学人教版第一册第三章第三节内容在此之前学生已学习了集合、函数的概念、等差数列的概念、通项公式和它的一些性质等基础知识,这为过渡到本节的学习起着铺垫作用。
2.教育教学目标:根据上述分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:深刻理解等差数列求和公式的推导方法;熟记求和公式;能够应用求和公式并发现求和公式的函数本质;(2)能力目标:通过教学初步培养学生分析问题,解决实际问题的能力;初步培养学生运用知识、探索知识间联系的能力。
(3)情感目标:通过对等差数列求和公式的认识使学生感受到现实生活中数据间存在的规律性,这种规律性体现数学美从而激发学生学习兴趣3. 重点,难点以及确定依据:教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路.推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想.高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上.二、教学策略(说教法)1.教学手段:应着重采用启发式的教学方法层层推进①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用.②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活.③强调从特殊到一般,再从一般到特殊的思考方法与研究方法.④补充等差数列前项和的最大值、最小值问题.2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力三、学情分析:(说学法)(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展生理上表少年好动,注意力易分散(2)知识障碍上:学生原有的知识等差数列的性质许多学生出现遗忘,所以应全面系统的去讲述;并进行适当的复习。
《等差数列》 说课稿

《等差数列》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《等差数列》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“等差数列”是高中数学必修 5 第二章数列中的重要内容。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。
等差数列在现实生活中有着广泛的应用,如建筑设计、经济增长等方面。
本节课是在学生已经学习了数列的基本概念和函数特性的基础上,进一步研究一类特殊的数列——等差数列。
通过本节课的学习,不仅可以深化学生对数列的理解,还为后续学习等比数列以及数列求和等知识奠定基础。
教材在内容编排上,先通过实例引入等差数列的概念,然后通过通项公式的推导,让学生体会从特殊到一般的数学思维方法。
同时,教材还配备了丰富的例题和习题,以帮助学生巩固所学知识。
二、学情分析我所授课的学生已经具备了一定的逻辑思维能力和抽象概括能力,但对于数学概念的理解和应用还需要进一步加强。
在之前的学习中,学生已经掌握了函数的相关知识,这为理解数列这种特殊的函数提供了一定的帮助。
然而,由于等差数列的概念较为抽象,通项公式的推导需要一定的数学技巧,学生在学习过程中可能会遇到困难。
三、教学目标基于对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解等差数列的概念,掌握等差数列的通项公式。
(2)能够运用等差数列的通项公式解决相关问题。
2、过程与方法目标(1)通过观察、分析、归纳等方法,培养学生的抽象概括能力和逻辑思维能力。
(2)经历等差数列通项公式的推导过程,体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标(1)让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。
(2)通过合作探究,培养学生的团队合作精神和创新意识。
四、教学重难点1、教学重点(1)等差数列的概念和通项公式。
(2)通项公式的应用。
2、教学难点(1)等差数列通项公式的推导。
《等差数列求和》说课课件学习资料

1、教材的地位和作用
教材 分析
等差数列是重要工具,为进一 步用代数方法研究数列问题奠定 了基础 。
教材 分析
2、教学的重点、难点
教学重点
等差数列通项公式的推导过程及蕴含在其中的 数学思想方法
教:学难点 公式推导过程中的转化思想
1、知识与技能目标
教学 目标
掌握等差数列通项公式推导过程,并能正 确使用公式解决简单问题 。
记:Sn= 1+2+3+…+(n-2)+(n-1)+n
2Sn n(n 1)
n(n 1) Sn 2
教学 程序
B公式 推导
问题3:现在把问题推广到更一般的情形: 等差数列 {an} 的首项为a1,公差为d,如何求等差数
列的前n项和Sn=a1+a2+a3+…+an? Sn=a1+ a2 +a3 +…+an-2+an-1+an Sn=an+an-1+an-2+…+a3 + a2 +a1
独立思考
→ 提出方案 →
评价
教学 程序
A问题 探究
问题1: 若把问题变成求:1+2+3+4+‥ ‥ +99=?可
以用哪些方法求出来呢?
方案
1 求一组数的和
常规方案:交点法
高斯求和法
1+2+3+ … +98+99+100= ?
101
高斯 Gauss.C.F
教学 程序
B公式 推导
问题2: 求和:1+2+3+4+…+n=? Sn= n+(n-1)+(n-2)+…+3+2+1
《等差数列求和公式》教案

《等差数列求和公式》教案教案:等差数列求和公式一、教学目标:1.理解等差数列的概念,掌握等差数列的通项公式和部分和公式;2.能够根据所给的等差数列求出其前n项的和。
二、教学重点:1.等差数列的通项公式和部分和公式的掌握;2.能够根据实际问题应用等差数列的求和公式。
三、教学难点:1.等差数列部分和公式的推导;2.将实际问题转化为等差数列的求和问题。
四、教学过程:1.情境导入(5分钟)教师展示一段视频:小明每天放学回家都会经过一家自动贩卖机,他每天都会从自动贩卖机里买一瓶饮料。
他发现,每天他付的饮料价格比前一天多2元。
请大家思考一下,小明连续买了n天的饮料,他总共花费了多少钱呢?2.理解等差数列的概念(10分钟)教师引导学生思考,并给予提示,帮助学生定义等差数列:等差数列:指一个数列中,从第二项起,每一项与前一项的差都相等。
这个相等的差叫做公差。
学生根据提示得出答案并讨论。
3.推导等差数列的通项公式(15分钟)教师通过提问引导学生思考,帮助学生推导出等差数列的通项公式:设等差数列的首项为a1,公差为d,第n项为an;由等差数列的定义可知:a2=a1+da3=a2+d=a1+2da4=a3+d=a1+3d……an = a1 + (n-1)d4.理解等差数列的部分和公式(15分钟)教师通过引导学生思考推导出等差数列的部分和公式:等差数列的前n项和Sn = a1 + a2 + a3 + … + an又a1 + an = a2 + an-1 = a3 + an-2 = … = an-1 + a2 = an +a1由此可以得出:2Sn = (a1 + an) + (a2 + an-1) + … + (an + a1)Sn = (a1 + an) × n/25.运用等差数列求和公式解题(30分钟)教师给学生提供一些实际问题,引导学生运用等差数列求和公式解决问题。
例如:小明连续买了n天的饮料,第一天他支付了2元,第二天支付了4元,第三天支付了6元,以此类推,请计算小明总共支付的饮料费用。
等差数列说课稿及教学设计

等差数列说课稿及教学设计一、说课稿尊敬的教师们:大家好!今天我将要为大家介绍的是关于等差数列的课程教学设计。
本课程设计适用于中学初中阶段的数学教学,主要目标是让学生掌握等差数列的基本概念、性质以及求解等差数列的方法。
一、教学内容分析等差数列是数学中的重要概念之一,也是数学学习的基础。
在中学阶段,学生需要明确等差数列的定义、性质和求解方法。
本课程设计将从以下三个方面进行讲解:1. 等差数列的定义:通过示例,引导学生理解等差数列的定义,即数列中每一项与它的前一项之差都是相等的。
2. 等差数列的性质:介绍等差数列的常见性质,如公差、首项、通项公式等,并通过例题让学生熟练掌握这些性质。
3. 求解等差数列的方法:通过具体的例题,引导学生运用等差数列的性质和公式,解决等差数列相关的问题。
二、教学目标本课程设计的教学目标如下:1. 知识与技能目标:学生能够准确理解等差数列的定义,掌握等差数列的常见性质和求解方法。
2. 过程与方法目标:培养学生的逻辑思维能力,引导学生运用等差数列的性质和公式解决问题。
3. 情感、态度与价值观目标:培养学生对数学学习的兴趣,激发学生对于数学的探索精神。
三、教学重点与难点教学重点:等差数列的定义、性质和求解方法。
教学难点:培养学生对于等差数列的抽象思维能力,运用性质解决问题。
四、教学步骤1. 导入部分:通过观察一些生活中的例子引发学生对等差数列的思考,激发学生的学习兴趣。
2. 概念讲解:通过简洁明了的语言对等差数列的定义进行解释,并给出一些例子帮助学生理解。
3. 性质介绍:通过演示和讲解,引导学生了解等差数列的公差、首项、通项公式等性质,帮助学生熟悉这些概念。
4. 解题示范:选择几个典型例题进行解题示范,并引导学生参与解题过程,培养学生的解题能力。
5. 巩固练习:设计一些练习题,让学生巩固所学知识,并提供答案解析进行自我评价。
6. 总结部分:对本节课的学习内容进行总结,并引导学生思考等差数列在实际问题中的应用。
等差数列前n项和公式说课稿

等差数列前n项和公式说课稿一、说教材(一)作用与地位《等差数列前n项和公式》是高中数学课程中的重要内容,位于数列章节的核心位置。
等差数列作为数列中的基础类型,其前n项和公式的推导和应用,不仅对理解数列的性质具有关键作用,而且对于后续学习等比数列、数列的极限等高级数学概念奠定了基础。
(二)主要内容本文主要围绕等差数列前n项和公式的推导和应用展开,首先通过具体实例引入等差数列的概念,进而引导学生发现并证明等差数列前n项和的公式。
内容涉及以下几个方面:1. 等差数列的定义及性质复习;2. 利用图形及实际案例推导等差数列前n项和公式;3. 通过例题讲解,让学生掌握等差数列前n项和公式的应用;4. 课后练习,巩固所学知识。
二、说教学目标(一)知识与技能1. 理解等差数列的概念,掌握等差数列的基本性质;2. 学会推导等差数列前n项和公式,并能熟练运用;3. 能够解决实际问题中与等差数列前n项和相关的计算问题。
(二)过程与方法1. 通过观察、分析、归纳等学习方法,培养学生发现问题和解决问题的能力;2. 通过小组合作、讨论等学习方式,提高学生的沟通能力和团队协作能力。
(三)情感态度价值观1. 培养学生对数学的兴趣,激发学生学习数学的热情;2. 培养学生严谨、踏实的科学态度,提高学生的逻辑思维能力。
三、说教学重难点(一)重点1. 等差数列前n项和公式的推导过程;2. 等差数列前n项和公式的应用。
(二)难点1. 等差数列前n项和公式的推导过程,特别是倒序相加法的理解;2. 在实际问题中灵活运用等差数列前n项和公式解决问题。
四、说教法(一)教学方法1. 启发法:通过设置问题情境,引导学生主动思考,发现等差数列前n项和的规律。
在教学过程中,我会设计一系列由浅入深的问题,让学生在解决问题的过程中,逐步推导出等差数列前n项和公式。
2. 问答法:在教学过程中,我将以提问的方式引导学生复习等差数列的基本概念和性质,为新知识的推导做好铺垫。
等差数列的前n项和公式说课稿

《等差数列的前n项和公式》说课稿尊敬的各位评委老师大家好:今天我说课的课题是《等差数列的前n项和公式》,属于新授课,接下来我将从教材分析、教法、学法分析、教学过程、板书设计和效果分析五个方面来展开本节的说课内容。
一、教材分析1、地位与作用《等差数列的前n项和公式》是中等职业教育国家规划教材《数学》(基础版)下册第六章第2节内容,是进一步学习其他数列知识的基础,这一节内容能体现解决数列问题的通性通法,并且在推导等差数列前n项和公式中运用的“例序相加法”是今后数列求和的一种常用的重要方法。
因此等差数列前n项和公式在《数列》一章具有极为重要的地位,也是高考命题的热点。
2、教学目标分析根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:(1)知识与技能掌握等差数列前n项和公式以及推导该公式的数学思想方法,并能运用公式解决简单的问题;(2)过程与方法通过公式的探索、发现,在知识发生、发展以及形成的过程中培养学生观察、联想、分析、归纳、综合和逻辑推理的能力。
(3)情感、态度与价值观通过数学史小故事,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
3、教学重点和难点本着新课程标准,在吃透教材的基础上,我确定了下面的教学重点和难点(1)教学重点:等差数列前n项和公式的推导、掌握及灵活运用(2)教学难点:诱导学生用“倒序相加法”推导等差数列前n项和公式二、说教法(1)采取“诱导启发、自主探究”的互动式教学。
在教师的引导下,创设情景,通过问题的设置来启发学生思考,在思考中体会所蕴涵的数学方法,获得成功的内心感受。
(2)利用“多媒体教学”结合“微课”视频,节省课堂时间,增强课堂趣味性,提高课堂效率。
三、说学法以“自主探索,小组合作”为主,有助于学生深刻地理解和掌握知识,有助于思维能力的培养和训练,有助于知识的迁移。
接下来,为更好的突出重点、突破难点,我再具体谈一谈这堂课的教学过程:四、说教学过程环节(一):复习回顾——为公式的推导作铺垫设计意图:1、检索学生头脑中的原有知识,起到巩固原有知识的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列求和公式的
说课稿
说课稿:等差数列的前n项和
一、教材分析
本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.是继等差数列通项公式之后的又一重要概念,与前面学习的函数有着密切的联系;通过对公式的推导,可以让学生进一步掌握从特殊到一般的研究问题的方法,也为以后推导等比数列求和公式奠定了基础;同时等差数列在现实生活中比较常见,因此等差数列求和在实际生活中有着广泛的应用.
二、学情分析
学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想.高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍.
三、教学目标
知识目标:掌握等差数列的前n项和公式,能熟练的应用等差数列的前n 项和公式求和;
能力目标:在知识发生、发展以及形成过程中遵循从特殊到一般的认知规律,培养学生的类比思维能力,通过对公式从不同角度不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题解决问题的能力
情感目标:通过生动具体的现实问题,以及令人着迷的数学史,激发学生探究的兴趣,产生热爱数学的情感。
四、教学重点、难点
教学重点:等差数列的前n项和公式,学会用公式解决一些实际问题
教学难点:获得等差数列前n项和公式的推导思路
五、教学方法
利用计算机和实物投影辅助教学,采用启发探究相结合的教学模式
六、教学过程
学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:
(一)创设情境——引入问题
首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,
绝,成为世界七大奇迹之一。
)
共有100层(见下图),
你知道这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100)
紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。
200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=?
据说,当其他同学忙于把100个数逐项相加时,
10岁的高斯却用下面的方法迅速算出了正确答案:
(1+100)+(2+99)+……+(50+51)=101×50=5050
【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。
(二)层层铺垫——发现方法
学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,
但是他们对这种方法的认识可能处于模仿、记忆的阶段,
为了促进学生对这种算法的进一步理解,设计了下面问题。
探究1:图案中,第1层到第21层一共有多少颗宝石?这是求奇数项和的问题,学生们会提出以下方法
方法1:原式=(1+2+…+10+12…+21)+11
方法2:原式=0+1+2+……+20+21
方法3:原式=(1+2+3+……+20)+21
以上方法实际上是用了“化归思想”,将奇数项问题转化为偶数项求解,老师对学生的解法给予肯定表扬,并进一步提出新的问题
探究2:是不是求前若干个自然数之和需要看其项数的奇偶呢?即求1+2+3+…+n需讨论n的奇偶呢?学生们很自然就想到要用分类讨论来解决此类问题,老师要肯定学生的想法,指出此方法的缺点是繁琐,进而促使学生探索更简捷的做法。
【设计说明】借此渗透分类讨论意识以及化归思想,并激发学生探索的兴趣
用多媒体做一个实验:把“全等三角形”倒置,与原图补成平行四边形,让学生
观察效果很容易获得结果:
2
) 21
1(
21 21+
=
S,并尝试将直观问题抽象成数学问题。
【设计说明】在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。
但是如何将直观问题抽象化,此处也是教学的一个难点。
老师启发学生一起去发现两个三角形体现的求和思想,板书给出
2120112121++++++= S
1211202121+++++= S ⇒ )211(21221+=S ⇒ 2
)211(2121+=S 通过这个过程让学生理解“倒置”与“倒序”,“补”与“相加”的对应关系。
和学生一起完成 :求1到n 的正整数之和,并板书
1)2()1(321++-+-+=++++= n n n S n
S n n
个
n n n n n S )1()1()1(2++++++= ⇒2)1(+=n n S n 然后让学生反思求和过程,体会其中的数列具有怎样的关键特点?并指出这种方法就是“倒序相加法” 有些学生会发现特点一:在于前n 个自然数具有一种“对称性”。
即:与首末两项等距离的两数之和都等于首末两数之和。
即“首尾配对”。
这个性质在等差数列中具有普遍性吗?带着学生去验证等差数列具有:1121a a a a a a n n n +==+=+-
特点二:即“从前往后看,每一项都比前一项多d ”“从后往前看,每一前项比后一项少d ”。
即“递进递减”
【设计说明】从求确定的前n 个正整数之和到求一般项数的前n 个正整数之和,旨在让学生体验“倒序相加求和”这一算法的合理性,从心理上完成对“首尾配对求和”算法的改进。
从反思中进一步体会等差数列具有“首尾配对”“递进递减”的两个特点,为后面顺利完成等差求和的推导奠定基础。
本节课的难点得以突破。
(三)归纳整理——思想升华
完成上述推导以后,我再顺势引导学生能否将问题一般化?分别叫学生到黑板上推导,老师个别指导
方法一:121321a a a a S a a a a S n n n n n
n ++++=++++=--
)(21n n a a n S += 2)(1n n a a n S += ⇒公式2 d n n na S n 2
)1(1-+= 方法二:[]
[]d n a d a a S d n a d a a S n n n n n )1()()1()(111--++-+=-+++++=
)(21n n a a n S += 1公式⇒ 2)(1n n a a n S += ⇒公式2 d n n na S n 2
)1(1-+= 【设计说明】在教师的引导下,让学生主动思考主动参与体会知识结论的形成过程,对等差数列有了更深刻的理解
(四)巩固练习——全面认识
例1、 等差数列{}n a 中,已知629,37,20===n S n d ,求1a 和n a
【设计说明】本例是使用等差数列的求和公式和通项公式求未知元。
可以使用公式2,先求出首项,再使用通项公式求尾项。
也可以使用公式1和通项公式,联立方程组求解。
事实上,在求和公式、通项公式中共有首项、公
差、项数、末项、前n 项和五个元素,如果已知其中三个,联列方程组,就可求其余二个。
例2、 在等差数列{}n a 中,(1)已知36151252=+++a a a a ,求16S
(2)已知166=a ,求11S
【设计说明】每道小题通过所给条件是无法将首项和公差全部求出来的,本例是引导学生认识求和公式中的整体思想,由(2)给出等差数列中
n n a n S )12(12-=- .
(五)梳理知识——形成系统
引导学生回顾公式、推导方法鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。
(1)回顾从特殊到一般的研究方法;
(2)体会等差数列的基本元表示方法,倒序相加的算法,及数形结合的数学思想;
(3)掌握等差数列的两个求和公式及简单应用
(4)前n 项和公式的函数意义
(六)布置作业 分层练习
课本118页 习题3.3 第2、3、4。
选做题 已知函数f (x )
,则)6()4()5(f f f ++-+- 的值等于多少?
思考题:若数列{}n a 的前n 项和2An Bn =+n S (B A ∈R 、),则数列{}n a 是等差数列。
【设计意图】出选做题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。
(七)教学反思
本节课是通过介绍高斯的算法,探究这种方法如何推广到一般等差数列的求和.本节课的难点在于如何获得推导公式的“倒序相加法”这一思路.为了突破这一难点,在教学中采用了以问题驱动的教学方法,设计的三个问题体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题.在教学过程中,通过教师的层层引导、学生的合作学习与自主探究,尤其是借助图形的直观性,学生“倒序相加法”思路的获得就水到渠成了.
(八)板书设计。