线性代数期末知识点总结线性代数知识点总结(免费)

合集下载

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。

它广泛应用于物理、工程、计算机科学等领域。

下面将对线性代数的主要知识点进行全面归纳。

1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。

常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。

2.向量及其运算:向量是一个有序数组,具有大小和方向。

常见的向量运算有加法、减法、数乘、点乘和叉乘等。

3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。

解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。

4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。

线性变换是一种保持向量空间结构的映射。

5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。

维度是向量空间中基的数量。

6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。

如果向量组中的向量线性无关,则任何线性组合的系数都为零。

7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。

矩阵乘法可以将多个线性变换组合为一个线性变换。

8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。

9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。

正定矩阵是指二次型在所有非零向量上的取值都大于零。

10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。

正交性是指两个向量的内积为零,表示两个向量互相垂直。

11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。

正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。

线性代数的重点知识点总结

线性代数的重点知识点总结

线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。

在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。

本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。

1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。

向量可以表示为一个有序的数列,也可以表示为一个列矩阵。

矩阵是由多个向量按照一定规则排列而成的矩形阵列。

矩阵可以进行加法、减法和数乘等运算。

矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。

2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。

线性方程组的求解可以通过消元法、矩阵的逆等方法进行。

当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。

3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。

子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。

子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。

子空间的维度等于基向量的个数。

4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。

线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。

线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。

5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。

特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。

特征值和特征向量可以通过求解线性方程组来得到。

6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。

内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是一门研究向量空间和线性映射的数学学科,是数学中的一个重要分支。

它的应用范围非常广泛,包括物理学、工程学、计算机科学、经济学等等。

下面是对线性代数的一些重要知识点的归纳整理。

1.向量和向量空间:-向量的定义和性质:向量是有方向和大小的量,可以进行加法和数乘运算。

-向量空间的定义和性质:向量空间是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律、零向量存在性等性质。

2.矩阵和矩阵运算:-矩阵的定义和性质:矩阵是一个由数构成的矩形阵列,可以进行加法和数乘运算。

-矩阵的乘法和转置:矩阵可以进行乘法运算,满足结合律和分配律;矩阵的转置是将矩阵的行和列互换得到的新矩阵。

3.线性方程组和矩阵求解:-线性方程组的解的存在性和唯一性:线性方程组的解存在的条件是系数矩阵的秩等于增广矩阵的秩;解的唯一性与线性方程组的自由变量有关。

-矩阵求解线性方程组的方法:高斯消元法、矩阵的逆、克拉默法则等。

4.线性映射和线性变换:-线性映射的定义和性质:线性映射是一种保持向量空间的加法和数乘运算的映射,满足线性性质。

-线性变换的矩阵表示:线性变换可以用矩阵表示,矩阵的列向量是线性变换作用在基向量上的结果。

5.特征值和特征向量:-特征值和特征向量的定义和性质:对于一个线性变换,特征向量是指在这个变换下保持方向不变的向量,特征值是对应特征向量的缩放因子。

-特征值分解:特征值分解是将一个矩阵分解成特征向量和特征值的形式。

6.内积和正交性:-内积的定义和性质:内积是一种度量向量之间夹角的方法,满足对称性、线性性和正定性等性质。

-正交性和正交基:正交向量是指两个向量的内积为零,正交基是一组两两正交的向量。

7.线性相关和线性无关:-线性相关和线性无关的定义和性质:一组向量中,如果存在不全为零的线性组合等于零向量,则称这组向量线性相关;否则称线性无关。

-维数和基:一组线性无关的向量可以作为向量空间的基,基的个数称为向量空间的维数。

《线性代数》期末复习提纲汇总

《线性代数》期末复习提纲汇总

《线性代数》期末复习提纲第一部分:基本要求(计算方面)1. 四阶行列式的计算;2. N 阶特殊行列式的计算(如有行和、列和相等);3. 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);4. 求矩阵的秩、逆(两种方法);解矩阵方程;5. 含参数的线性方程组解的情况的讨论;6. 齐次、非齐次线性方程组的求解(包括唯一、无穷多解);7. 讨论一个向量能否用和向量组线性表示;8. 讨论或证明向量组的相关性;9. 求向量组的极大无关组,并将多余向量用极大无关组线性表示;10.将无关组正交化、单位化;11.求方阵的特征值和特征向量;12.讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;13.通过正交相似变换(正交矩阵)将对称矩阵对角化;14.写出二次型的矩阵,并将二次型标准化,写出变换矩阵;15.判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用2n 个元素ij a 组成的记号nnn n n n a a a a a a a a a212222111211称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算1. 一阶行列式a a =,二、三阶行列式有对角线法则;2. N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

3. 特特情况(1) 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0;Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例;Ⅳ 奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A 、B 为同阶方阵,则B A AB ⋅=; ④n kA k A =3.矩阵的秩(1)定义 非零子式的最大阶数称为矩阵的秩;(2)秩的求法 一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

线性代数知识点总结(免费)_

线性代数知识点总结(免费)_

《线性代数知识点总结(免费)_》摘要:(是非奇异矩阵),②、矩阵列等价:(右乘,可逆),、的行向量线性无关1、行列式 1. 行列式共有个元素,展开后有项,可分解为行列式; 2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为; 3. 代数余子式和余子式的关系: 4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值; 6. 对于阶行列式,恒有:,其中为阶主子式; 7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值; 2、矩阵 1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵; 2. 对于阶矩阵:无条件恒成立; 3. 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、 8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0; 9. 线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程; 10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得; 11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数) 4、向量组的线性相关性 1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程) 3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14) 4. ;(例15) 5. 维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面; 6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定; 7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论) 8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆); 9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩; 10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置) 11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解; 12. 设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关; 14. 线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数; 15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:; 16. 若为的一个解,为的一个基础解系,则线性无关;(题33结论) 5、相似矩阵和二次型 1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:; ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似; 5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格); 6. 为对称阵,则为二次型矩阵; 7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1 行列式〔一〕行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:〔用于化简行列式〕〔1〕行列互换〔转置〕,行列式的值不变〔2〕两行〔列〕互换,行列式变号〔3〕提公因式:行列式的某一行〔列〕的所有元素都乘以同一数k,等于用数k 乘此行列式〔4〕拆列分配:行列式中如果某一行〔列〕的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

〔5〕一行〔列〕乘k加到另一行〔列〕,行列式的值不变。

〔6〕两行成比例,行列式的值为0。

〔二〕重要行列式4、上〔下〕三角〔主对角线〕行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:〔A是m阶矩阵,B是n阶矩阵〕,那么7、n阶〔n≥2〕X德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:〔三〕按行〔列〕展开9、按行展开定理:〔1〕任一行〔列〕的各元素与其对应的代数余子式乘积之和等于行列式的值〔2〕行列式中某一行〔列〕各个元素与另一行〔列〕对应元素的代数余子式乘积之和等于0〔四〕行列式公式10、行列式七大公式:〔1〕|kA|=k n|A|〔2〕|AB|=|A|·|B|〔3〕|A T|=|A|〔4〕|A-1|=|A|-1〔5〕|A*|=|A|n-1〔6〕假设A的特征值λ1、λ2、……λn,那么〔7〕假设A与B相似,那么|A|=|B|〔五〕克莱姆法那么11、克莱姆法那么:〔1〕非齐次线性方程组的系数行列式不为0,那么方程为唯一解〔2〕如果非齐次线性方程组无解或有两个不同解,那么它的系数行列式必为0 〔3〕假设齐次线性方程组的系数行列式不为0,那么齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵〔一〕矩阵的运算1、矩阵乘法考前须知:〔1〕矩阵乘法要求前列后行一致;〔2〕矩阵乘法不满足交换律;〔因式分解的公式对矩阵不适用,但假设B=E,O,A-1,A*,f(A)时,可以用交换律〕〔3〕AB=O不能推出A=O或B=O。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结汇总线性代数知识点总结行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=kn|A|(2)|AB|=|A|·|B|(3)|AT|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数期末知识点总结线性代数知识点总结
(免费)
1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;
2.代数余子式的性质:
①、和的大小无关;
②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;
③、某行(列)的元素乘以该行(列)元素的代数余子式为;
3.代数余子式和余子式的关系:
4.设行列式:
将上、下翻转或左右翻转,所得行列式为,则;
将顺时针或逆时针旋转,所得行列式为,则;
将主对角线翻转后(转置),所得行列式为,则;
将主副角线翻转后,所得行列式为,则;
5.行列式的重要公式:
①、主对角行列式:主对角元素的乘积;
②、副对角行列式:副对角元素的乘积;
③、上、下三角行列式():主对角元素的乘积;
④、和:副对角元素的乘积;
⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;
⑦、特征值;
6.对于阶行列式,恒有:,其中为阶主子式;
7.证明的方法:
①、;
②、反证法;
③、构造齐次方程组,证明其有非零解;
④、利用秩,证明;
⑤、证明0是其特征值;
2、矩阵
1.是阶可逆矩阵:
(是非奇异矩阵);
(是满秩矩阵)
的行(列)向量组线性无关;
齐次方程组有非零解;
,总有唯一解;
与等价;
可表示成若干个初等矩阵的乘积;
的特征值全不为0;
是正定矩阵;
的行(列)向量组是的一组基;
是中某两组基的过渡矩阵;
2.对于阶矩阵:
无条恒成立;
3.
4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;
5.关于分块矩阵的重要结论,其中均、可逆:
若,则:
Ⅰ、;
Ⅱ、;
②、;(主对角分块)
③、;(副对角分块)
④、;(拉普拉斯)
⑤、;(拉普拉斯)
3、矩阵的初等变换与线性方程组
1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;
等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;
对于同型矩阵、,若;
2.行最简形矩阵:
①、只能通过初等行变换获得;
②、每行首个非0元素必须为1;
③、每行首个非0元素所在列的其他元素必须为0;
3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)
①、若,则可逆,且;
②、对矩阵做初等行变化,当变为时,就变成,即:;
③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;
4.初等矩阵和对角矩阵的概念:
①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;
②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;
③、对调两行或两列,符号,且,例如:;
④、倍乘某行或某列,符号,且,例如:;
⑤、倍加某行或某列,符号,且,如:;
5.矩阵秩的基本性质:
①、;
②、;
③、若,则;
④、若、可逆,则;(可逆矩阵不影响矩阵的秩)
⑤、;(※)
⑥、;(※)
⑦、;(※)
⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;
6.三种特殊矩阵的方幂:
①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;
②、型如的矩阵:利用二项展开式;二项展开式:;
注:Ⅰ、展开后有项;
Ⅱ、Ⅲ、组合的性质:;
③、利用特征值和相似对角化:
7.伴随矩阵:
①、伴随矩阵的秩:;
②、伴随矩阵的特征值:;
③、、 8.关于矩阵秩的描述:
①、,中有阶子式不为0,阶子式全部为0;(两句话)
②、,中有阶子式全部为0;
③、,中有阶子式不为0;
9.线性方程组:,其中为矩阵,则:
①、与方程的个数相同,即方程组有个方程;
②、与方程组得未知数个数相同,方程组为元方程;
10.线性方程组的求解:
①、对增广矩阵进行初等行变换(只能使用初等行变换);
②、齐次解为对应齐次方程组的解;
③、特解:自由变量赋初值后求得;
11.由个未知数个方程的方程组构成元线性方程:
①、;
②、(向量方程,为矩阵,个方程,个未知数)
③、(全部按列分块,其中);
④、(线性表出)
⑤、有解的充要条:(为未知数的个数或维数)
4、向量组的线性相关性
1.个维列向量所组成的向量组:构成矩阵;
个维行向量所组成的向量组:构成矩阵;
含有有限个向量的有序向量组与矩阵一一对应;
2.①、向量组的线性相关、无关
有、无非零解;(齐次线性方程组)
②、向量的线性表出
是否有解;(线性方程组)
③、向量组的相互线性表示
是否有解;(矩阵方程)
3.矩阵与行向量组等价的充分必要条是:齐次方程组和同解;(例14)
4.;(例15)
5.维向量线性相关的几何意义:
①、线性相关

②、线性相关
坐标成比例或共线(平行);
③、线性相关
共面;
6.线性相关与无关的两套定理:
若线性相关,则必线性相关;
若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)
若维向量组的每个向量上添上个分量,构成维向量组:
若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)
简言之:无关组延长后仍无关,反之,不确定;
7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);
向量组能由向量组线性表示,则;(定理3)
向量组能由向量组线性表示有解;
(定理2)
向量组能由向量组等价(定理2推论)
8.方阵可逆存在有限个初等矩阵,使;
①、矩阵行等价:(左乘,可逆)与同解
②、矩阵列等价:(右乘,可逆);
③、矩阵等价:(、可逆);
9.对于矩阵与:
①、若与行等价,则与的行秩相等;
②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;
③、矩阵的初等变换不改变矩阵的秩;
④、矩阵的行秩等于列秩;
10.若,则:
①、的列向量组能由的列向量组线性表示,为系数矩阵;
②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)
11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;
①、只有零解只有零解;
②、有非零解一定存在非零解;
12.设向量组可由向量组线性表示为:(题19结论)
()
其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)
(必要性:;充分性:反证法)
注:当时,为方阵,可当作定理使用;
13.①、对矩阵,存在,、的列向量线性无关;()
②、对矩阵,存在,、的行向量线性无关;
14.线性相关
存在一组不全为0的数,使得成立;(定义)
有非零解,即有非零解;
,系数矩阵的秩小于未知数的个数;
15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;
16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)
5、相似矩阵和二次型
1.正交矩阵或(定义),性质:
①、的列向量都是单位向量,且两两正交,即;
②、若为正交矩阵,则也为正交阵,且;
③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;
2.施密特正交化:

; 3.对于普通方阵,不同特征值对应的特征向量线性无关;
对于实对称阵,不同特征值对应的特征向量正交;
4.①、与等价
经过初等变换得到;
,、可逆;
,、同型;
②、与合同
,其中可逆;
与有相同的正、负惯性指数;
③、与相似

5.相似一定合同、合同未必相似;
若为正交矩阵,则,(合同、相似的约束条不同,相似的更严格);
6.为对称阵,则为二次型矩阵;
7.元二次型为正定:
的正惯性指数为;
与合同,即存在可逆矩阵,使;
的所有特征值均为正数;
的各阶顺序主子式均大于0;
;(必要条)。

相关文档
最新文档