地表温度反演单窗算法.doc
(完整word版)MODIS数据反演地表温度

表1 MODIS 部分波段及其参数[14]波段 光谱范围 信噪比 主要用途 分辨率 1 620~670nm 128 陆地、云边界 250m 2 841~876nm 201 陆地、云边界 250m 19 915~965nm 250 大气水汽 1000m 31 10.780~11.280μm 0.05 地球表面和 云顶温度1000m 3211.770~12.270μm0.051000m劈窗算法介绍McMillin (1975年)最早提出了劈窗算法,最先是用于海面温度的反演,这种方法是利用2个相邻的热红外窗口大气水汽吸收特性的差异,把海面温度表达成2个热红外窗口亮度温度的线性组合。
Price (1984年)最先把劈窗算法推广到陆面温度的反演,通过引入比辐射率改正项来减小因陆地表面比辐射率变化而引起的误差。
Becker 从理论上证明了用分裂窗技术反演地表温度的可行性,并且第一次从理论上给出了使用分裂窗技术时大气和比辐射率对地表温度反演的影响。
Becker 和Li 根据热辐射传导的地方性特征,提出了著名的局地劈窗算法,已得到了较广泛的应用。
Wan 和Dozier 在Becker 和Li 的研究基础上,于1996年提出了一种广义的地表温度反演劈窗算法。
Sobrino 和Becker 用Lowtran 7对不同的大气、观测角度以及地表参数进行模拟,得出了各参数的表达式。
在这些表达式里,大气和比辐射率的作用是耦合在一起的。
而Sobrino 等则通过某些近似把这2种作用分开了,通过对大气向下热辐射的近似解和对Planck 辐射函数的线性化。
覃志豪等推导了劈窗算法,该算法仅需要2个因素来进行地表温度的演算,即大气透过率和地表比辐射率[15][ 16]。
在众多的劈窗算法中,覃志豪等提出的算法由于需要参数少、计算简单且精度较高,被认为是较好的算法之一。
本文主要针对这一算法进行介绍。
覃志豪[15]等提出的针对MODIS 数据反演地表温度的劈窗算法使用的公式如下:0131232Ts A AT A T =+- (1)其中:Ts 是地表温度,31T 、32T 分别是MODIS 第31、32通道的亮温。
基于单窗算法的西安市地表温度反演

基于单窗算法的西安市地表温度反演■刘晶长安大学地球科学与资源学院城市生活\陆地表面温度被认为是城市环境分析的重要指标之一。
目前,利用热红外遥感技术反演地表温度是获取有关 区域地表温度信息的一个有效可行的方式。
针对不同热红 外传感器,国内很多学者做了大量的相关实验,其中以覃 志豪单窗算法精度相对较高。
因此本文采用覃志豪单窗算 法反演地表温度,从而分析西安市的地表温度情况。
实验 结果显示,反演温度与实测温度接近,对西安市热岛研究 具有一定的参考意义。
地表温度简单来说就是地面的温度,太阳的热能被 辐射到地面后,有很大一部分热能被地面所吸收,从而使 得地面热能增加。
对地面的温度进行测量后所得到的温 度就是地表温度。
地表温度是区域地表能量和水量平衡 的重要物理参数,其是城市环境分析中的一项重要指标。
另外,地表在地表通量、作物估产、缺水状况监测等方面 也发挥着重要的作用。
我国气象气候、农业生产、生态保 护等都需要以地表温度作为重要参数开展研究。
尤其是 近年来,随着科学技术的不断发展,地表温度的重要性越 来越凸显。
利用热红外遥感技术反演地表温度是获取有关区域 地表温度信息的一个有效可行的方式,其具连续性、完整 性、实时性以及准确性的优势,也正是因为如此,该地表温 度反演方法得到了众多学者的认可,并且得到十分广泛的 应用。
就目前来看,地表温度反演的算法有很多种,不同的 算法其操作步骤方面有较大的差异性,因此,在地表温度 反演应用过程中,应该根据实际需求合理选择适宜的是算 法。
单通道算法、单窗算法、劈窗算法等都是代表性的地表 温度反演算法,而其中单窗算法具有误差小、精准度高的特点,因此得到了广泛的应用。
单窗算法覃志豪单窗算法MW(Mono-window Algorithm)是基 于Landsat TM6反演地表温度的算法。
根据地表热辐射 传输方程分析了大气平均作用温度和大气上行辐射和大 气下行辐射等参量之间的关系,将单窗算法表达为大气 透过率和大气平均作用温度的函数,推导出利用Landsat TM T I R S波段数据反演地表温度,其计算公式 如下:T= [a6(l_C6_D6)+ (b6(1_C6_D6)+C6+D6)T6_D6T a]15S C6.其中:C=£T,D=(l—T)[l+(l — £)T],a 和b为系数,T为大气透过率,e为地表发射率,T i。
Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。
即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。
目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。
目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。
本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。
基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。
具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程):Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1)式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T的黑体在热红外波段的辐射亮度B(T S)为:B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2)T s可以用普朗克公式的函数获取。
T S = K2/ln(K1/ B(T S)+ 1) (1.3)对于TM,K1 =607.76 W/(m2*µm*sr),K2 =1260.56K。
对于ETM+,K1=666.09 W/(m2*µm*sr),K2 =1282.71K。
对于TIRS Band10,K1= 774.89 W/(m2*µm*sr),K2 = 1321.08K。
实习7、地表反射率、温度的反演以及植被指数的计算

基本原理一)地表反射率是指地表物体向各个方向上反射的太阳总辐射通量与到达该物体表面上的总辐射通量之比。
反照率可以通过遥感成像提供的辐射亮度值L 或反照率p ,二向性反射率分布函数BRDF 来获得:地物反射率的光谱特征差异是从遥感影像中识别地表不同类型地物的基本依据,也是地表其他各种物理、生物物理参数反演的依据地表。
地表反射率的计算步骤:1、辐射定标:根据遥感影像DN 值计算到达传感器的各波段辐射亮度也就是将传感器记录的辐射量化值(Digital Number ,DN )转换成绝对辐射亮度值、表观反射率,或者表观温度的过程。
绝对定标:通过各种标准辐射源,建立辐射亮度值与辐射量化值(DN )之间的定量关系式中,辐射亮度值L 的常用单位为W/(m2.μm.sr),或者μW/(cm2.nm.sr) 。
1W/(m2.μm.sr)=0.1 μW/(cm2.nm.sr)2、各波段表观反射率计算3、大气辐射校正(ENVI FLAASH/QUAC )绝对大气辐射校正:消除大气辐射衰减效应,将遥感影像的DN 值转换为地表反射率、辐亮度、地表温度等的方法,此过程包含了辐射定标。
相对大气辐射校正:将遥感影像的DN 值转换为类似的整型数,同时消除大气辐射衰减效应。
FLAASH 是用数学建模辐射的物理行为,纠正波长在可见光至近红外和短波红外区域,最多3微米。
(对于热地区,使用基本工具>预处理>校准工具>热大气压校正菜单选项。
)不同于预先计算模拟结果的数据库内插辐射传输特性许多其他大气校正程序, FLAASH 采用了MODTRAN4辐射传输代码。
MODTRAN4并入ENVI FLAASH 的版本被修改,以校正在HITRAN -96水行参数的误差。
可以选择任何一种标准MODTRAN 大气模型和气溶胶类型,FLAASH 还包括以下功能:校正邻近效应(像素混合是由于表面反射辐射的散射) 计算场景的平均能见度(气溶胶/雾量)。
遥感概论实验3_地表温度反演

Luminance spectrale
Longueur d'onde (祄 )
波长(μm)
透过大气窗口的光谱辐射能量
surface B ( , )
=
0 ( ) B (Ts )
+
b, ( s , s ; , ) Es , ( s )
1,2e-3
cm -2 sr -1μm W(W cm-2sr-1 祄 -1) -1
ENVI下利用ETM+数据反演地表温度
(3)地表比辐射率计算
根据前人的研究,将遥感影像分为水体、城镇和自然表面3种类型。本试验采取以 下方法计算研究区地表比辐射率:水体像元的比辐射率赋值为0.995,自然表面和 城镇像元的比辐射率估算则分别根据下式(1)(2)进行计算: εWater=0.995 εsurface = 0.9625 + 0.0614FV - 0.0461FV^2 (1) εbuilding = 0.9589 + 0.086FV - 0.0671FV^2 (2) 式中,εsurface和εbuilding分别代表自然表面像元和城镇像元的比辐射率。 ENVIBand Math (b1 le 0)*0.995+(b1 gt 0 and b1 lt 0.7)*(0.9589 + 0.086*b2 - 0.0671*b2^2)+(b1 ge 0.7)*(0.9625 + 0.0614*b2 - 0.0461*b2^2) b1=NDVI,b2=FV
L B T 1 L L s
BT
s L
L
1 L
温度反演[1]
![温度反演[1]](https://img.taocdn.com/s3/m/9539d7ab87c24028905fc34b.png)
《遥感数字图像处理》第六讲实习2 Landsat TM6 地表温度反演EX2 Retrieving Earth Surface Temperature from Landsat TMBand Sixth Imagery一目标1、TM Level 1 数据的热红外波段辐射定标:学会阅读头文件,找出所需定标参数;利用定标参数将TM图像热红外波段DN值转换为辐射亮度;2、运用单通道法,反演地表温度反演。
二要求1、提交实习报告,作为第2次平时成绩;2、按5组分组,组长负责本组同学,组织沟通和交流,并督促完成实习报告;科代表负责全班的实习报告收集。
三地表温度的反演——单窗算法技术流程1、如图所示,卫星传感器接收到的热红外辐射亮度 L由三部分组成:λλλλλλλλτετεo o o o s L L ↓↑-++=)1()T (B L其中,s T 为地表真实温度,)T (B s λ表示温度为s T 的黑体在热红外波段的辐射亮度,Lo ↓λ表示大气向下辐射亮度,L o↑λ表示大气向上辐射亮度,λτo为大气在热红外波段的透过率,λε为地表发射率。
上式移项得到:L L o o o s ↓↑---=λλλλλλλλεετε1L )T (B )(2、大气参数的确定方法通过模拟大气对辐射传输的影响,可以为计算大气效应提供了一种有效的方法。
由于没有卫星过境时的同步气象数据,不能很好的模拟当时的大气状况。
这里我们参考中纬度夏季标准大气剖面,采用MODTRAN 模拟得到各个大气参数:Lo ↓λ表示大气向下辐射亮度,模拟结果为1.68 Wm -2um -1Sr -1,L o↑λ表示大气向上辐射亮度,模拟结果为1.74 Wm -2um -1Sr -1,λτo 为大气在热红外波段的透过率,模拟结果为0.77。
3、地表发射率λε的确定方法(1)可以根据不同地物类型,赋值给出:(2)使用国外研究者的经验公式(利用λε和NDVI 之间的拟合公式给出) 根据Van 的经验公式:)ln(047.00094.1NDVI +=λεVan 经验公式是在自然地表上总结出来的,在应用于非自然地表地区(如城市地表)时必须进行订正。
地表物质的热学性质及地表温度的反演

(1)
太阳的中红外辐射受大气衰减比较严重,如何找到一
个合理的方法或模型来估算太阳辐射对第三通道的中红外波段的
贡献;
(2)
地表在第三通道的中红外波段的双向反射率特性比第
四、五通道更强烈,有必要做更多的野外实测和理论工作以建立
地表在第三通道的双向反射率模型。
Gillespie et al.(1986,1987)也讨论了把地表比辐射率 和地表温度对辐射测量的影响分离开的问题。
MODIS
通道 3 4 5 20 22 23 29 31 32 33
波长范围 (mm) 3.54-3.94
10.32-11.32 11.41-12.38 3.660-3.840 3.929-3.989 4.020-4.080 8.400-8.700 10.780-11.280 11.770-12.270 13.185-13.485
陆面温度的遥感反演
•如何获得表面比辐射率?
√ 根据室内、外测量 ➢ 波谱辐射仪 ➢ 辐射仪结合CO2激光仪(主动与被动结合) ➢ 黑箱子 需要假定表面温度和比辐射率在测量过程中不变
√ 从卫星上测定 ➢ 根据可见光和近红外光谱信息的统计关系(NDVI/e) ➢ 根据热红外光谱仪里最小e和在最大相对比辐射率 之差的统计关系 ➢ 利用多时相数据假定: eday = enight 或 eday1 = eday2
地表温度的反演-地表温度反演算法
• 单通道多角度法
同一物体从不同角度观测所经过的大气路径不 同而产生不同的大气吸收。 大气的作用可通过单通道在不同角度观测下所 获得的亮温的线性组合来消除。 大量的工作用于研究海水表面温度的反演 只有少量的关于陆面温度反演的研究。(由于 不同角度的地面分辨率不同,以及陆地表面状 况很不均匀和地物类型复杂)
(完整)基于单窗算法反演地表温度的ENVI操作教程

单窗算法反演地表温度教程1.1 算法原理1.1.1单窗算法单窗算法(MW 算法)是覃志豪于2001年提出的针对TM 数据只有一个热红外波段的地面温度反演算法。
经过众多学者验证,单窗算法具有很高的反演精度,且同样适用于ETM+和landsat 8数据。
公式如下:6666666666/)))1(()1((C T D T D C D C b D C a T a sensor s -++--+--=式中,LST 为地表温度(K ),T sensor 是传感器上的亮度温度(K ),T a 是大气平均温度(K );a 、b 为参考系数,当地表温度为0-70℃时,a = -67.355351,b = 0.458606;C 、D为中间变量,计算公式为:式中,为地表比辐射率,为地面到传感器的大气总透射率。
因此单窗算法反演地表温度的关键是计算得到亮度温度T senso 、地表比辐射率、大气透射率和大气平均作用温度T a 。
1.1.2参数计算1.1.2.1辐射亮温计算利用Planck 公式将图像像元对应传感器辐射强度值转换为对应的亮度温度值。
公式如下式中,T senso 为亮度温度值;影像预处理后得到的光谱辐射值,λL 单位为,K1 、K2为常量,可由数据头文件获取。
)/(2m sr m w μ⋅⋅计算图像辐射亮温之前,需采用辐射定标参数将像元灰度值DN转换为热辐射强度值,公式如下:式中,M L 为增益参数,A L 为偏移参数,该参数可直接在影像通文件数据中获取,且ENVI 软件中已经集成,不需要自己在查找。
1.1.2.2地表比辐射率计算根据覃志豪针对TM 影像提出的混合像元分解法来确定区域地表福辐射率。
对于城市区域,我们简单的将其分为水体、自然表面和建筑表面三种,因此针对混合像元尺度上的地表比辐射率通过下式来估算:式中,为混合像元的地表比辐射率;P V 为植被覆盖率;R V 为植被的温度比率;R M 为建筑表面的温度比率;V 表示植被法地表比辐射率,m 表示建筑表面的地表比辐射率;d表示辐射校正项。