第6章 静电场中导体和电介质

合集下载

第6章 静电场中导体和电介质 重点与知识点

第6章 静电场中导体和电介质 重点与知识点

理学院物理系 王 强
第六章 静电场中的导体和电介质
大学物理
第六章 重点与知识点
一、静电场中的导体
2、空腔导体(带电荷 、空腔导体 带电荷 带电荷Q)
1)、腔内无电荷,导体的净电荷只能分布在外表面。 腔内无电荷,导体的净电荷只能分布在外表面。 净电荷只能分布在外表面 Q
在静电平衡状态下,导体 在静电平衡状态下, 空腔内各点的场强等于零, 空腔内各点的场强等于零, 空腔的内表面上处处没有 空腔的内表面上处处没有 净电荷分布。 净电荷分布。
C2 U
Cn
2、电容器的并联
C = C1 + C2 + ⋅ ⋅ ⋅ + Cn
= ∑ Ci
i =1
nq1C1来自q2C2qn U
Cn
2012年3月23日星期五
理学院物理系 王 强
第六章 静电场中的导体和电介质
大学物理
第六章 重点与知识点
四、 电场的能量
(一)、静电场的能量
电场能量密度: 电场能量密度
We 1 2 1 we = = εE = ED V 2 2
ε
电容率, : 电容率,决定于电介质种类的常数
2)、电介质中的高斯定理 )
v r D ⋅ dS = ∑ Q0i ∫
S i (自由电荷)
2012年3月23日星期五
电介质中通过任 一闭合曲面的电位 一闭合曲面的电位 移通量等于该曲面 移通量等于该曲面 所包围的自由电荷 所包围的自由电荷 的代数和
第六章 静电场中的导体和电介质
一般电场所存储的能量: 一般电场所存储的能量
dWe = wedV
1 2 We = ∫ dWe = ∫ ε E dV V V 2
适用于所有电场) (适用于所有电场)

第六章静电场中的导体与电介质

第六章静电场中的导体与电介质
(任何介质) (各向同性线性介质)
第六章 静电场中的导体和电介质
33
物理学
第五版
6 静电场中的导体与电介质
电位移线
方向: 切线 大小:
电位移线起始于正自由电荷终止于负自由电荷, 与束缚电荷无关。
电场线起始于正电荷终止于负电荷,包括自由 电荷和与束缚电荷。
第六章 静电场中的导体和电介质
34
物理学
第五版
SD dS
有介质时的高斯定理
n
D dS S
Q0i
i 1
第六章 静电场中的导体和电介质
28
物理学
第五版
6 静电场中的导体与电介质
第三节 电介质中的高斯定理 电位移矢量
电介质中的高斯定理 电介质中高斯定理的应用
第六章 静电场中的导体和电介质
29
物理学
第五版
6 静电场中的导体与电介质
一、电位移矢量 电介质中的高斯定理
电介质 有极分子:(水、有机玻璃等) 正电荷的
等效中心
定义:分子电矩——由分子(或
原子)中的正负电荷中心决定的
电偶极子的电偶极矩,用 表
示:
电子云的
第六章 静电场中的导体和电介质 负电中心
5
物理学
第五版
6 静电场中的导体与电介质
1)无极分子(非极性分子)
分子内正负电荷中心重合
甲烷分子 CH4
+H 正负电荷
真空中:
自由电荷
电介质中:
极化电荷如何求?
极化电荷 自由电荷
向外,'>0,正极化电荷在外,闭合曲
面内留下负极化电荷;
+
向内,'<0,负极化电荷在外,闭合曲 -

静电场中的导体和电介质

静电场中的导体和电介质

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。

(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。

从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。

用一句话说:静电平衡时导体为等势体。

二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。

静电场中的导体和电介质

静电场中的导体和电介质

静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。

(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。

导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。

定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。

拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。

测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。

库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。

所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。

所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。

以上是库仑平方反比定律验证的发展历史。

见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。

使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。

则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。

孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。

电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。

然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。

静电场中的导体和电介质

静电场中的导体和电介质
-
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理

大学物理——静电场中的导体和电介质

大学物理——静电场中的导体和电介质

v E
二、导体上电荷的分布 由导体的静电平衡条件和静电场的基本性 dV 质,可以得出导体上的电荷分布。 1.导体内部无静电荷 证明:在导体内任取体积元 dV
E内 = 0
r r 由高斯定理 E dS ⋅ = 0 ∫
S
∑q = ∫ ρ dV = 0
i i V
Q体积元任取 导体带电只能在表面!
ρ =0
证毕
A B σ1 σ 2σ 3
场 两板之间 强 分 布 两板之外
Q E = ε0S
r E
E=0
练习
已知: 两金属板带电分别为q1、q2 求:σ1 、σ2 、σ3 、σ4
q1
q2
q1 + q2 σ1 = σ 4 = 2S
σ1
σ2
σ3
σ4
q1 − q2 σ 2 = −σ 3 = 2S
2.导体表面电荷 表面附近作圆柱形高斯面
r r σΔS 0 ∫ E • dS = E ⋅ ΔS ⋅ cos 0 =
σ
r E
ΔS
ε0
σ ∴E = ε0
r σ ^ ^ E表 = n n :外法线方向
ε0
3.孤立带电导体表面电荷分布 一般情况较复杂;孤立的带电导体,电荷 分布的实验的定性的分布: 曲率较大,表面尖而凸出部分,电荷面密度较大 曲率较小,表面比较平坦部分,电荷面密度较小 曲率为负,表面凹进去的部分,电荷面密度最小
例3.已知:导体板A,面积为S、带电量Q,在其旁边 放入导体板B。 求:(1)A、B上的电荷分布及空间的电场分布 (2)将B板接地,求电荷分布
σ1 σ 2 σ 3 σ4 − − − =0 a点 2ε 0 2ε 0 2ε 0 2ε 0
A B σ1 σ 2σ 3 σ 4

6 大学物理 第06章 静电场中的导体和电介质

6 大学物理 第06章 静电场中的导体和电介质
第六章 静电场中的导体和电介质 加上外电场后
E外
16
物理学
第五版
+ + + + + + + + + +
第六章 静电场中的导体和电介质 加上外电场后
E外
17
物理学
第五版
+ + + + + + + + + +
E外
加上外电场后 第六章 静电场中的导体和电介质
18
物理学
第五版
导体达到静平衡
+ + + + + + + + + +
介质电容率 ε ε0 εr
41
- - - - - - - σ
相对电容率 εr 1
第六章 静电场中的导体和电介质
物理学
第五版
+++++++
- - - - - - - σ
σ E0 ε0
ε0
σ
+++++++
- - - - - - - σ
σ E ε
ε
σ
第六章 静电场中的导体和电介质
②用导线连接A、B,再作计算
连接A、B,
Q q
q
( q )
中和
B
q q
A R1 O
R2
球壳外表面带电 Q q
R3
r R3
R3
E0

Qq uo Edr Edr 4 0 R3 0 R3

第六章静电场中的导体和电介质jianhua讲解

第六章静电场中的导体和电介质jianhua讲解
1. 根据介质中的高斯定理计算出电位移矢量。
D dS qi
S
2. 根据电场强度与电位移矢量的关系计算场强。
E
D

注意: (1)D的分布应具有一定的对称性
(2)要选取合适的高斯面
[例 1]已知: 一导体球半径为R1,带电 q0(>0)
外面包有一层均匀各向同性电介质球壳,
r R1 R2 在带电面两侧的场强都发生突变,这是面电荷 分布的电场的一个共同特点(有普遍性)。 普遍结论: 当电介质充满两个等势面之间的空间时, 该空间的场强等于真空时场强的 1/ r 倍。
0
6-3 电容和电容器
孤立导体的电容
导体具有储存电荷的本领 电容:孤立导体所带电量q与 其电势V 的比值。
+ +++
-
-+
+q +
-+
-+
-
有导体存在时静电场的分布与计算
基本依据: (1)利用静电平衡条件 E内 0 或 V c (2)利用电荷守恒 Qi const .
i
qi (3)利用高斯定律 E d s i S
0
(4)利用环路定理(电势、电力线的概念)
L E d l 0
电阻率很大,导电能力很差的物质,即绝缘体。
(常温下电阻率大于107欧·米) 电介质的特点: 分子中的正负电荷束缚的很紧,介质内部几 乎没有自由电荷。 置入电场中会受电场作用;反之,介质会对 电场产生影响。
有介质时的高斯定理
定义电位移矢量: D
介质中的高斯定理: 在静电场中,通过任意封闭曲 面的电位移通量等于该曲面所包围的自由电荷的代 数和。 注意:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 静电场中的导体与电介质
一、选择题
1. 当一个导体带电时, 下列陈述中正确的是
(A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高
(C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ]
2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零
(B) 导体内的场强为零, 电势不为零
(C) 导体内的电势与导体表面的电势相等
(D) 导体内的场强大小和电势均是不为零的常数 [ ]
3. 当一个带电导体达到静电平衡时
(A) 导体内任一点与其表面上任一点的电势差为零
(B) 表面曲率较大处电势较高
(C) 导体内部的电势比导体表面的电势高
(D) 表面上电荷密度较大处电势较高 [ ]
4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将
(A) 放入前后场强相同
(B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小
(D) 无法判定 [ ]
5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为
(A) 23R V r (B) V r (C) 2RV r (D) V R
[ ]
6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后
(A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ]
7. 在某静电场中作一封闭曲面S .若有
⎰⎰=⋅s
S D 0d ϖ
ρ, 则S 面内必定
(A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷
(C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ]
8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为
(A) 原来的两倍 (B) 原来的一半
(C) 与原来的相同 (D) 以上答案都不对 [ ]
9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内
q
图1
(A) E ρ
=0, V =0 (B)
E ρ
=0, V ≠0 (C) E ρ
≠0, V ≠0 (D) E ρ
≠0, V =0 [ ]
10. 空气平板电容器与电源相连接.现将极板间充满油液, 比较充油前后电容器的电容C 、电压U 和电场能量W 的变化为 (A) C 增大, U 减小, W 减小
(B) C 增大, U 不变, W 增大 (C) C 减小, U 不变, W 减小
(D) C 减小, U 减小, W 减小 [ ]
二、填空题
1. 如图3所示,两金属球壳A 和B 中心相距l ,原来都不带电.现在两球壳中分别放置点电荷q 和Q ,则电荷Q 作用在q 上的电力大小为F
= .如果去掉金属壳A ,此时,电荷Q 作用在q 上的电力大小是 .
2 .如图4所示的导体腔C 中,放置两个导体A 和B ,最初它们均不带电.现设法使导体A 带上正电,则这三个导体电势的大小关系为 .
3. . 半径为r 的导体球原来不带电.在离球心为R (r R >)的地方放一个点电荷q , 则该导体球的电势等于 .
4. 如图5所示,金属球壳的内外半径分别r 和R , 其中心置一点电荷q , 则金属球壳的电势为 .
5. 如图6所示,一个未带电的空腔导体球壳内半径为R .在腔内离球心的距离为d 处 (d < R ) 固定一电荷量为+q 的点电荷,用导线把球壳接地
后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为 6. . 电荷q 均匀分布在内外半径分别为1R 和2R 的球壳体内,这个电荷体系的电势能为 , 电场能为 .
三、计算题
1. 真空中一带电的导体球A 半径为R .现将一点电荷q 移到距导体球A 的中心距离为
r 处,测得此时导体球的电势为零.求此导体球所带的电荷量.
2. 如图7所示,一球形电容器由半径为R 1的导体球和与它同心的半径为R 2的导体球壳组成.导体球与球壳之间一半是空气, 另一半充有电容率为ε的均匀介质.求此电容器的电容.
3. 一面积为S 、间隔为d 的平板电容器,最初极板间为空气,在对其充电±q 以后与电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪儿去了?
图3 图4
A
B
C
A
B
Q
q
l
r
R
Q
图2
r
R
q
图5
d
R
q O
图6
图7
第6章 静电场中的导体与电介质答案
一、选择题
1.[ C ];
2.[ C ];
3.[ A ];
4.[ B ];
5.[ C ];6 [D ];7.[ C ];8.[ D ];9. [B ]. 10. [B ].。

二.填空题
1. 1. 20π4l qQ ε,2
0π4l qQ
ε;2. 0C
B A >>>U U U ;3. R q 0π4ε;4. R q 0π4ε 5.
)1
1(π40R
d q -ε; 6. 2222121023222122131)(π40)2463(3R R R R q R R R R R R +++++ε,2
222121023
222122131)
(π40)2463(3R R R R q R R R R R R +++++ε 三、计算题
1. 解:球心的电势应等于点电荷在A 球心处的电势与导体球在球心处的电势以及导体球上感应电荷在球心处的电势之和.
设导体球带电Q ,它在球心处的电势为
04πQ Q
V R
ε=
利用上题的结果, 球心处的电势为
004π4πq A Q q Q
V V V V r R
εε=++=
+
由题意有
0004π4πq A Q q Q
V V V V r R
εε=++=
+=
所以,导体球所带电荷量Q 为
q r
R Q -
= 2. 解:如图8所示,设想通过球心的平面将一个球形电容器分成了两个半球形的电容器,再相互并联.已知球形电容器的电容为
1
22
1π4R R R R C -=
ε
于是,两半球形电容器的电容分别为
1
22100π2R R R R C -=
ε 122
1π2R R R R C -=εε
所求之电容为
)(π2π2π201
22
11221122100εεεεε+-=-+-=
+=R R R R R R R R R R R R C C C
3. 解:平板电容器充电后.具有静电能
S
d
q C q W 0222121ε=
= 与电源断开后,电容器极板上的电荷量不变.充入电介质后,其静电能为
S
d
q C q W ε222121=
'=' 则静电能改变的减少量为
⎪⎪⎭
⎫ ⎝⎛-=
-='-=∆εεεε1121212102202S
d
q S d q S d q W W W 这减少的能量转化为了电介质的动能,最后通过摩擦转化为热能.。

相关文档
最新文档