10静电场中的导体和电介质习题解答

合集下载

第十章 静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。

试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。

习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。

(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。

试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。

习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。

川师大学物理第十章 静电场中的导体和电介质习题解

川师大学物理第十章 静电场中的导体和电介质习题解

第十章 静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S ,两板分别带正电Q a 和Q b ,每板表面电荷面密度σ1= ,σ2= ,σ3= ,σ4= 。

解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。

由电荷守恒定律得12a S S Q σσ+= (1)34b S S Q σσ+= (2)设P ,Q 是分别位于二导体板内的两点,如图10-2所示,由于P ,Q 位于导板内,由静电平衡条件知,其场强为零,即3124000002222P E σσσσεεεε=---= (3)3124000002222Q E σσσσεεεε=++-= (4) 由方程(1)~(4)式得142abQ Q Sσσ+== (5) 232a bQ Q Sσσ-=-= (6) 由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面1,4),带等量同号电荷。

10–2 如图10-3所示,在半径为R 的金属球外距球心为a 的D 处放置点电荷+Q ,球内一点P 到球心的距离为r ,OP 与OD 夹角为θ,感应电荷在P 点产生的场强大小为 ,方向 ;P 点的电势为 。

解:(1)由于点电荷+Q 的存在,在金属球外表面将感应出等量的正负电荷,距+Q 的近端金属球外表面带负电,远端带正电,如图10-4所示。

P 点的场强是点电荷+Q 在P 点产生的场强E 1,与感应电荷在P 点产生的场强E 2的叠加,即E P =E 1+E 2,当静电平衡时,E P =E 1+E 2=0,由此可得21r 2204π(2cos )Qa r ar εθ=-=-+-E E e其中e r 是由D 指向P 点。

因此,感应电荷在P 点产生的场强E 2的大小为图10–4xσ2 4σQQ aQ b 图10-2σ1σ2 σ4σ3 Q a Q b图10-1图10-322204π(2cos )QE a r ar εθ=+-方向是从P 点指向D 点。

10静电场中的导体和电介质习题解答

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。

所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电o R d +q . 选择题2图荷为零,所以有)π4π4000Rq d qV εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E 解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

静电场中的导体与电介质---常见疑问解答

静电场中的导体与电介质---常见疑问解答

静电场中的导体与电介质---常见疑问解答1. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。

下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。

对于静电平衡状态下的导体,其表面附近的场强为./0εσ'=E这里的 σ′是指带电导体表面某处单位面积上所带的电荷。

如果无限大均匀带电平面是一个静电平衡状态下的无限大均匀带电导体板,则σ是此导体板的单位面积上(包括导体板的两个表面)所带的电荷,而σ′仅是导体板的一个表面单位面积上所带的电荷。

在空间仅有此导体板(即导体板旁没有其他电荷和其他电场)的情形下,导体板的表面上电荷分布均匀,且有两表面上的面电荷密度相等。

在此情况下两个面电荷密度间的关系为σ =2σ′。

这样,题目中两个E 式就统一了。

2. 把一个带电物体移近一个导体壳,带电体单独在导体壳的腔内产生的电场是否为零?静电屏蔽效应是如何发生的?参考解答:把一个带电物体移近一个导体壳时,带电体单独在导体壳的腔内产生的电场不是零,因为带电物体在空间任何一点都可以产生电场。

本题正确的说法是:带电物体上的电荷和导体壳外表面上的感应电荷在导体壳外表面以内空间(包括导体金属部分占据的空间和导体壳的腔内空间)所产生的合电场为零(详细解释仍需用到“惟一性定理”),也可以说是在导体壳外表面以内空间,导体壳外表面上感应电荷的电场把带电物体上电荷所产生的电场给抵消了。

正因有以上结论,一个导体壳可以保护其腔内空间不受导体壳外带电体的影响,这就是静电屏蔽(接地导体壳可保护壳外空间不受腔内带电体的影响也是静电屏蔽)。

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

大学物理第十章有导体和电介质时的静电场习题解答和分析

大学物理第十章有导体和电介质时的静电场习题解答和分析

第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。

分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有AC AB U U =。

解:(1)设B 、C 板上的电荷分别为Bq 、C q 。

因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。

导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。

作如图中虚线所示的圆柱形高斯面。

因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ① 又因为: AC AB U U = 而: 2AC AC d U E =⋅AB AB U E d =⋅∴ 2AC AB E E =于是:02C Bσσεε =⋅两边乘以面积S 可得:2C BS S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-1题10-1解图d(2) 00222C C A AC C AC AC q d d dU U U U E S σεε =+==⋅=⋅=⋅ 7334122102102.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求: (1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ; (2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。

大学物理下册第10章课后题答案

大学物理下册第10章课后题答案

习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。

10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。

故正确答案为(A)。

10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。

设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。

导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。

感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。

静电场中的导体和电介质习题详解

静电场中的导体和电介质习题详解

习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。

设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。

答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。

设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。

答案:C D?解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。

3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。

4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。

当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。

所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电荷为零,所以有)π4π4000Rq d q V εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D ) o R d +q . 选择题3图 选择题2图5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

所以选(B )6. 一空气平行板电容器,充电后测得板间电场强度为E 0,现断开电源,注满相对介质常数为εr 的煤油,待稳定后,煤油中的极化强度的大小应是( )0r 00rr 0r r 00r 01 . D 1 . C 1 . B .A )E (εεE ε)(εE ε)(εεE εε --- 解:断开电源后,不管是否注入电介质,极板间的自由电荷q 不变,D 0=D即 E E r 000εεε= 得到 r 0/εE E =又 P E D +=0ε0rr 0r 00000)1(E E E E D P εεεεεεε-=-=-= 所以选(B )7. 两个半径相同的金属球,一为空心,一为实心,两者的电容值相比较 ( )A. 实心球电容值大B. 实心球电容值小C. 两球电容量值相等D. 大小关系无法确定解:孤立导体球电容R C 0π4ε=,与导体球是否为空心或者实心无关。

所以选(C )8. 金属球A 与同心球壳B 组成电容器,球A 上带电荷q ,壳B 上带电荷Q ,测得球和壳间的电势差为U AB ,则该电容器的电容值为( )A. q /U ABB. Q /U ABC. (q +Q )/ U ABD. (q +Q )/(2 U AB )解:根据电容的定义,应选(A )。

9. 一空气平行板电容器,极板间距为d ,电容为c 。

若在两板中间平行地插入一块厚度为d / 3的金属板,则其电容值变为 ( )A. CB. 2C /3C. 3 C /2D. 2C 解:平行板电容器插入的金属板中的场强为零,极板上电荷量不变,此时两极板间的电势差变为:0 32)3(εσεσd d d d E U =-='= 其电容值变为: C d S S U Q C 23233d 2 00===='εεσσ 所以选(C )10. 一平板电容器充电后保持与电源连接,若改变两极板间的距离,则下述物理量中哪个保持不变?( )A. 电容器的电容量B. 两极板间的场强C. 电容器储存的能量D. 两极板间的电势差解:平板电容器充电后保持与电源连接,则两极板间的电势差不变;平行板电容器的电容dS C ε=,改变两极板间的距离d ,则电容C 发生变化;两极板间的场强dU E =,U 不变,d 变化,则场强发生变化;电容器储存的能量2e 21CU W =,U 不变,d 变化,导致电容C 发生变化,则电容器储存的能量也要发生变化。

d /3 选择题9题所以选(D )二 填空题1. 一任意形状的带电导体,其电荷面密度分布为σ(x 、y 、z ),则在导体表面外附近任意点处的电场强度的大小E (x 、y 、z ) = ,其方向 。

解:E (x 、y 、z )= σ(x 、y 、z )/ε0,其方向与导体表面垂直朝外(σ>0)或与导体表面垂直朝里(σ<0)。

2. 如图所示,一无限大均匀带电平面附近设置一与之平行的无限大平面导体板。

已知带电面的电荷面密度为σ ,则导体板两侧面的感应电荷密度分别为σ1和σ2 = 。

解:由静电平衡条件和电荷守恒定律可得:022202010=-+εσεσεσ;21σσ-=。

由此可解得:21σσ-= ;22σσ=。

3. 半径为R 1和R 2的两个同轴金属圆筒(R 1< R 2),其间充满着相对介电常数为εr 的均匀介质,设两筒上单位长度带电量分别为λ 和-λ ,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。

解:根据有介质情况下的高斯定理,选同轴圆柱面为高斯面,则有D = λ /(2πr ),电场强度大小E = D /εr ε0=λ /(2πεr ε0 r )。

4. 电容值为100pF 的平板电容器与50V 电压的电源相接,若平板的面积为100cm 2,其中充满εr =6的云母片,则云母中的电场强度E = ;金属板上的自由电荷Q = ;介质表面上的极化电荷Q' = 。

解:极板间电场强度V/m 1042.93r 0r 0r 0⨯====SCU S Q D E εεεεεε,两极板上自由电荷C 1059-⨯==CU Q ,由高斯定理,当有介质时,对平板电容器可有0εQ Q S E '+=⋅, Q 为自由电荷,Q'为介质表面上的极化电荷,代入已知数据可求得Q' = 4.17×10-9 C 。

5. 平行板电容器的两极板A 、B 的面积均为S ,相距为d ,在两板中间左右两半分别插入相对介电常数为εr1和εr2的电介质,则电容器的电容为 。

解:该电容器相当于是两个面积为S /2的电容器的并联,电容值分别为:d S C 211r 01εε=,dS C 212r 02εε=, )(22r 1r 021εεε+=+=∴dS C C C 6. 半径为R 的金属球A ,接电源充电后断开电源,这时它储存的电场能量为5×10-5J,今将该球与远处一个半径是R 的导体球B 用细导线连接,则A 球储存的电场能量变为 。

解:金属球A 原先储存的能量J 1052152-⨯==CQ W ,当它与同样的金属球B 连接,则金属球A 上的电荷变为原来的1/2,则能量J 1025.1)2/(2152-⨯=='CQ W 7. 三个完全相同的金属球A 、B 、C ,其中A 球带电量为Q ,而B 、C 球均不带电,先使A 球同B 球接触,分开后A 球再和C 球接触,最后三个球分别孤立地放置,则A 、B 两球所储存的电场能量W e A 、W e B ,与A 球原先所储存的电场能量W e0比较,W e A 是W e0的 倍,W e B 是W e0的 倍。

解:初始A 球的电场能量CQ W 20e 21=,先使A 球同B 球接触,则 Q Q Q B A 21==,0e 2e 41)2/(21W C Q W B ==,σ σ 1 2 填充题2图分开后,A 球再和C 球接触,则Q Q Q C A 41==',0e 2e 161)4/(21W C Q W A == 8. 一空气平行板电容器,其电容值为C 0,充电后将电源断开,其储存的电场能量为W 0,今在两极板间充满相对介电常数为εr 的各向同性均匀电介质,则此时电容值C = ,储存的电场能量W e = 。

解:初始时电容000U Q C =,充电后将电源断开,Q 0不变,由r 0/εεD E =,当两极板间充满电介质时,两极板电势差r 0r 00r 0εεεεεU S d Q d DEd U ====,0r 0C UQ C ε==∴ r 0r 20202121εεW C Q C Q W ===。

9. 一平行板电容器,极板面积为S ,间距为d ,接在电源上并保持电压恒定为U 。

若将极板距离拉开一倍,那么电容器中静电能的改变为 ,电源对电场做功为 ,外力对极板做功为 。

解:初始时,电容器的静电能2000002121U dS U Q W e ε==将极板距离拉开一倍,电容值变为00212C d S C ==ε,极板间电压不变,00002121Q U C CU Q ===∴,此时电容器的静电能200e 0e 414121U dS W QU W ε=== ∴电容器中静电能的改变 200e e e 41U dS W W W ε-=-=∆ 电源对电场做功200021)21(U dS Q Q U q U W ε-=-=∆= 由能量守恒,电源和外力做功的和等于电容器中静电能的改变,所以外力做的功 dSU U d S U d S W W W 424202020e εεε=+-=-∆=' 10. 平板电容器两板间的空间(体积为V )被相对介电常数为εr 的绝缘体充填,极板上电荷的面密度为σ,则将绝缘体从电容器中取出过程中外力所做的功为 。

相关文档
最新文档