2016年第14届希望杯五年级第2试试题及参考答案
2016年第14届希望杯5年级第2试模拟试题(2)-S版

2016年第14届小学“希望杯”全国数学邀请赛五年级第2试模拟试题(2)(时间:90分钟;满分120分)一、填空题。
(每小题5分,共60分)1.计算:669×670×671 - 668×670×672 = 。
2.在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在和这两个数字上。
3.已知甲乙两数的和是231,已知甲数的末位是0,如果把甲数末位的0去掉,正好等于乙数,那么,甲数是,乙数是。
4.黑板上写有一串数:1、2、3、…、2011、2012,任意擦去几个数,并写上被擦去的几个数的和被11除所得的余数,如:擦去8、9、10、11、12,因为(8+9+10+11+12)÷11=4…6,于是写上6,这样操作下去,一直到黑板上只剩下一个数,则这个数是。
5.数一数,图中有个三角形。
6.1×2×3×4×…×2010×2011的乘积是一个多位数,而且末尾许多个零,那么从右到左第一个不等于零的数是。
7.如图,由15个边长为1的小正方形拼成一个5×3的长方形,如图示小正方形中有“☆”。
那么图中含有“☆”的长方形(含正方形)有个。
8.a、b、c、d是4个非零的一位自然数,用它们组成的24个没有重复数字的四位数的和是(a + b + c + d)的倍。
9.一个四位数是奇数,它的首位数字小于其余各位数字,而第二位数字大于其他各位数字,第三位数字等于首末两位数字的和的两倍,这个四位数是。
10.我们把形如的四位数称为“对称数”,如1221、3333、5005等,那么共有个“对称数”。
11.已知两个自然数分别除以它们的最大公约数所得的商之和是18,而这两个数的最小公倍数是975,则这两个数是。
12.用0~9这10个数字组成3个三位数和1个一位数,使它们的和是999,要使得最大的三位数尽可能大,则这个最大的三位数是。
历届(9—13届)希望杯五年级答案及解析

历届五年级希望杯答案及解析2010年第八届2011年第九届1、解:原式=1.25 ×31.3 ×3 ×8 = 100 ×93.9 = 9392、解:将循环节多写一次即可逐位比较3、解:十位数之前应该有1 + 2 + 3 +……+9 = 45位。
1位数有9位,10—19有20位,20—27有16位,所以十位数的开头应为28,为28293031324、解:从A到B一定会经过三步,第一步要从A走到中间,最后一步应该是从中间走到B,而第二步为从中间走到中间只能有一种走法。
从A到中间一条线上共有5种走法,从B到中间一条线上也有5种走法。
所以共有5 ×1 ×5 = 25种走法。
5、解:在3 ×4的长方形中有20个横平竖直的正方形。
斜着的有1 ×1正方形17个,2 ×2的正方形8个,还有1个3 ×3的大正方形。
共46个。
6、解:47 ÷b = c ……c ,即b ×c + c = 47,即c ×( b + 1 ) = 47,所以c一定是47的约数,c为47肯定不符合条件,所以c = 1,即除数是46,余数是1.7、解:能被90整除说明即能被9整除也能被10整除,被10整除说明最后一位是0,被9整除说明数字和应为9的倍数,即2 + 0 + 1 + 1 + a +0 是9的倍数,所以a = 5,即后两位是50.8、解:约数个数为奇数说明这个自然数为完全平方数,1000以内最大的完全平方数是31²= 9619、解:首先最下面的一个角肯定没有,最上面的中部也会少一部分,所以是丁。
10、解:一圈共400米,甲是乙速度的1.5倍,所以甲共走了240米,乙走了160米。
DE为60米,CE为40米。
SADE = 3000平方米,SBCE = 2000平方米,差为1000平方米。
11、解:弟弟如果不多跑半小时应比哥哥少跑80 ×30 — 900 = 1500米,所以哥哥共跑了1500 ÷(110—80)= 50分钟,共跑了50 ×110 = 5500米。
2016年第14届希望杯五年级第2试试题及参考答案

2016年第14届希望杯五年级第2试试题一、填空题(每小题5分,共60分。
)1、10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=。
2、小磊买3块橡皮,5支铅笔需付10.6元;若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是元。
3、将1.41的小数点向右移动两位,得a,则a—1.41的整数部分是。
4、定义:m⊗n=m×m—n×n,则2⊗4—4⊗6—6⊗8—8⊗10—……—98⊗100=。
5、从1——100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是。
6、如图1,四边形ABCD是正方形,ABGF和FGCD是长方形,点E在AB上,EC交FG于点M,若AB=6,△ECF的面积是12,则△BCM的面积是。
7、在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同的余数之和是。
8、图2是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最少是。
9、正方形A、B、C、D的边长依次是15,b,10,d(b,d都是自然数),若它们的面积满足SA =SB+SC+SD,则b+d=。
10、根据图3所示的规律,推知M=。
11、一堆珍珠共6468颗,若每次取相同的质数颗,若干次后刚好取完,不同的取法有a种;若每次取相同的奇数颗,若干次后刚好取完,不同的取法有b种,则a+b=。
12、若是A质数,并且A—4,A—6,A—12,A—18也是质数,则A=。
二、解答题(每小题15分,共60分。
)每题都要写出推算过程。
13、张强骑车从公交车的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟。
若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?14、如图4,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,求五边形EFGHI的面积。
希望杯第一届至第十届五年级试题与答案

10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是
。
8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =
,
BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=
。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是
2022年教学教材第14届希望杯五年级第2试模拟练习及参考答案配套精选卷

2021年小学第十五届“希望杯〞全国数学邀请赛五年级第2试试题一、填空题〔每题5分,共60分〕1、计算:〔+2021×—×〔+2021〕=。
2、定义:a*b=a×b+a—2b,假设3*m=17,那么m=。
3、在表1中,8位于第3行第2列,2021位于第a行第b列,那么a—b=。
4、相同的3个直角梯形的位置如图1所示,那么∠1=。
5、张超和王海在同一家文具店买同样的练习本和铅笔,张超买了5个练习本和4支铅笔,付了2021找回元;王海买了2个练习本和2支铅笔,正好7元整,那么练习本每个元。
6、数a,b,c,d的平均数是,且×a=b—=c+=×d,那么a×b×c×d=。
7、如图2,小正方形的面积是1,那么图中阴影局部的面积是。
8、将2021,2021,2021,2021,2021这五个数分别填在图3中写有“D,O,G,C,W〞的五个方格内,使得D+O+G=C+O+W,那么共有种不同的填法。
9、不为0的自然数a满足以下两个条件:〔1〕=m×m;〔2〕=n×n×n,其中m,n为自然数,那么a的最小值是。
10、如图4是一个玩具钟,当时针转一圈时分针转9圈,假设开始时两针重合,那么当两针下次重合时,时针转过的度数是。
11、假设六位数能被11和13整除,那么两位数=。
12、甲、乙、丙三人相互比拟各自的糖果数。
甲说:“我有13颗,比乙少3颗,比丙多1颗。
〞乙说:“我不是最少的,丙和我相差4颗,甲有11颗。
〞丙说:“我比甲少,甲有10颗,乙比甲多2颗。
〞如果每人说的三句话中都有一句话是错的,那么糖果数最少的人有颗糖果。
二、解答题〔每题15分,共60分〕每题都要写出推算过程。
13、自然数a,b,c分别是某个长方体的长、宽、高的值,假设两位数,,满足+=79,求这长方体的体积的最大值?14、李老师带着学生参观科技馆,学生人数是5的倍数,根据规定,教师、学生按票价的一半收费,且恰好每个人所付的票价为整数,共付了1599元,问:〔1〕这个班有多少名学生?〔2〕规定的票价是每人多少元?15、如下列图,ABCD是长方形,AEFG是正方形,假设AB=6,AD=4,S△ADE=2,求S△ABG?16、某天爸爸开车送小红到距学校1000米的地方后,让她步行去学校,结果小红这天从家到学校用了分钟,假设小红骑自行车从家到学校需40分钟,她平均每分钟步行80米,骑自行车比爸爸开车平均每分钟慢800米,求小红家到学校的距离?2021年小学第十五届“希望杯〞全国数学邀请赛五年级第2试答案解析一、填空题〔每题5分,共60分〕1、答案:解析:【考察目标】小数的简便计算。
希望杯第1-8届五年级数学试题及答案(WORD版)

第一届小学“希望杯”全国数学邀请赛五年级第1试一、填空题1.计算=_______ .2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点.4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9。
2016年最新五年级希望杯100题学生做题版及参考答案

D
C 图20
63.如图 21,1 个大正六边形内部有 7 个同样的小正六边形,求大正六边形面积是空白部分 (去调阴影部分之外的部分)面积的几倍。
图21
64.如图 22,水平方向和竖直方向上相邻两点之间的距离都是 a , SABC 14 ,求四边形
DEFG 的面积。
E
B F
D
A G C 图22
25. 888888 999 的余数是多少?
5
26.一个自然数 b 乘以 3 后,乘积的最后三位数是 103,求 b 的最小值。
27.求能被 3,5,7 整除的最小的四位数。
28.有一个自然数除 4 余 2,除 6 余 4,除 9 余 7,求这个数最小是多少?
29.若被 28 整除的最小三位数是 a ,最大的三位数是 b ,求 a b 。
69.甲、乙、丙、丁、戊五个盒子中依次装有 1,3,5,7,9 块糖,第一位小朋友从装糖最 多的盒子中取 4 块糖放入其它盒子中各一块, 第二小朋友也从装糖最多的盒子中取 4 块糖放 入其它盒子中各一块糖,如此继续下去,„,当第 100 个小朋友放完糖后,丁盒中有多少块 糖。
70.小丽用 60 元买了 8 个盒子,其中圆盒子 5 元 1 个,内有 3 张卡片,方盒子 9 元 1 个,内 有 5 张卡片,求打开盒子后可得到多少张卡片?
18.有 6 个数排成一列,从第 2 个数起每个数都是前一个数的 2 倍,且这个数的和是 78.75, 求第 2 个数。
19.从左到右排列的 31 个数,到第 16 个数为止,后面一个数比前面相邻的数大 3;从第 16 个数开始,到第 31 个数为止,后面的数比前面的数小 4,若这 31 个数的和是 2012,求第 16 个数。
小学五年级奥数希望杯邀请赛第1-10届试卷及答案(打印版)

第一届小学“希望杯”全国数学邀请赛五年级第1试2003年3月30日上午8:30至10:00一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得 1分。
每人扔100次,得分高的可能性最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年第14届希望杯五年级第2试试题
一、填空题(每小题5分,共60分。
)
1、10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=。
2、小磊买3块橡皮,5支铅笔需付10.6元;若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是元。
3、将 1.41的小数点向右移动两位,得a,则a—1.41的整数部分是。
4、定义:m⊗n=m×m—n×n,则2⊗4—4⊗6—6⊗8—8⊗10—……—98⊗100=。
5、从1——100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是。
6、如图1,四边形ABCD是正方形,ABGF和FGCD是长方形,点E在AB上,EC 交FG于点M,若AB=6,△ECF的面积是12,则△BCM的面积是。
7、在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同的余数之和是。
8、图2是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最少是。
9、正方形A、B、C、D的边长依次是15,b,10,d(b,d都是自然数),若它们
的面积满足S
A =S
B
+S
C
+S
D
,则b+d=。
10、根据图3所示的规律,推知M=。
11、一堆珍珠共6468颗,若每次取相同的质数颗,若干次后刚好取完,不同的取法有a种;若每次取相同的奇数颗,若干次后刚好取完,不同的取法有b种,则a+b=。
12、若是A质数,并且A—4,A—6,A—12,A—18也是质数,则A =。
二、解答题(每小题15分,共60分。
)每题都要写出推算过程。
13、张强骑车从公交车的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟。
若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?
14、如图4,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD 的面积是23,求五边形EFGHI的面积。
15、定义:[a]表示不超过的最大自然数,如[0.6]=0,[1.25]=1。
若[5a—0.9]=3a+0.7,求a的值。
16、有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?
2016年第14届希望杯五年级第2试参考答案
一、填空题。
1、答案:0.25
解析:【考查目标】去括号法则。
括号前是“÷”号,去掉括号要变号。
10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)
=10÷2×0.3÷0.3×0.04÷0.04×0.05
=10÷2×0.05
=5×0.05
=0.25
2、答案:2.2
解析:【考查目标】消去法解应用题。
橡+5铅=橡+20铅=42.4
橡+4铅=橡+12铅=36
铅笔:(42.4—36)÷(20—12)=0.8(元)
橡皮:(12—4×0.8)÷4=2.2(元)
3、答案:139
解析:【考查目标】小数点的移动
a=141,a—1.41=141—1.41=139.59
所以a—1.41的整数部分是139。
4、答案:9972
解析:【考查目标】代入型定义新运算。
2⊗4—4⊗6—6⊗8—8⊗10—……—98⊗100
=22—42—42+62—62+82—82+102—……—982+1002
=22—42—42+1002
=9972
5、答案:5624
解析:【考查目标】平均数、和差问题。
和差基本公式:(和+差)÷2=较大数,(和—差)÷2=较大数。
1——100这100个数的和是:1+2+3+4+……+100=5050;
剩下的98个数的和是:50×98=4900,则去掉的两个偶数的和是:5050—4900=150;差是2,有和差公式可知这两个数分别为:
(150+2)÷2=76;(150—2)÷2=74,所以这两个数的乘积是:76×74=5624。
6、答案:6
解析:【考查目标】等积变形。
连接BM,则S
△EFM =S
△BFM
,所以S
△EFC
=S
四边形BFCM
=12,又因为S
△BFC
=
1
2
S
正方形ABCD
=
1
2
×6×6=18,
所以S
△BCM
=18—12=6
7、答案:15
解析:【考查目标】数的整除。
因为被除数是12,若有余数,则除数不可能是1、2、3、4、6,则有可能是下列几种情况:
12÷5=2 (2)
12÷7=1 (5)
12÷8=1 (4)
12÷9=1 (3)
12÷11=1 (1)
所以不同的余数之和为:1+2+3+4+5=15
8、答案:6
解析:【考查目标】立体图形的三视图。
若要求几何体的体积最少,则要求几何体中的小正方体的个数最少,根据正面和左面可知小正方体的个数最少是6个,所以体积最少就是6。
9、答案:13或15
解析:【考查目标】不定方程。
因为S
A =S
B
+S
C
+S
D
,所以b2+102+d2=152,则b2+d2=125
所以: b=2 b=5
d=11 d=10 b+d=13 b+d=15
10、答案:1692
解析:【考查目标】找规律及奇数列求和。
M=12+3+5+7+9+……+81
=11+1+3+5+7+9+……+81
=11+412
=1692
11、答案:16
解析:【考查目标】分解质因数。
6468=22×31×72×111,所以a是6468的质因数个数是4,b是6468的奇质因数个数是:(1+1)×(2+1)×(1+1)=12,。
所以a+b=16。
12、答案:23
解析:【考查目标】质数的性质。
A肯定是大于18且是质数,若A是19,则19—4=15,而15不是质数,不符合题意;若A是23,则23—4=19,23—6=17,23—12=11,23—18=5,都是质数。
所以A是23。
13、答案:2100
解析:【考查目标】行程问题。
因为公交车每行驶6分钟需靠站停1分钟,在15分钟的时间内,公交车需靠站停2次,所以公交车在15分钟的时间内公交车行驶的路程是:450×(15—3)=5850(米),张强行驶的路程是:250×15=3750(米)。
则张强在公交车出发前已经行驶的路程是:5850—3750=2100(米)
14、答案:28
解析:【考查目标】格点面积。
格点面积公式:(内部格点数+边界格点数÷2—1)×单位面积
因为水平方向和竖直方向上相邻两点之间的距离都是m,所以单位面积是m2,S =(10+5÷2—1)×2=23,m2=2
四边形ABCD
则S
=(12+6÷2—1)×2=28
五边形EFGHI
15、答案:1.1
解析:【考查目标】解方程、末尾分析。
因为[5a—0.9]=3a+0.7,且[5a—0.9]是整数,3a+0.7也是整数,所以3a的小数部分是0.3,a的小数部分是0.1,设a=x+0.1,x是整数部分,则有:[5(m+0.1)—0.9]=3(m+0.1)+0.7
[5m—0.4]=3m+1
5m—1=3m+1
m=1
所以a=1+0.1=1.1
16、答案:31
解析:【考查目标】抽屉原理、分类枚举。
假设每个书店都订了98本,则还剩下400—98×4=8(本),剩下的8本分给4个书店有以下几种情况:
①8=3+3+2+0,这时有4×3=12(种);
②8=3+3+1+1,这时有2×3=6(种);
③8=3+2+2+1,这时有4×3=12(种);
④8=2+2+2+2,这时有1种;
所以一共有:12+6+12+1=31(种)。