地质雷达

合集下载

地质雷达基础知识(一)

地质雷达基础知识(一)

地质雷达基础知识(一)一、教学内容本节课的教学内容来自小学科学教材第六册第五章节“地球的秘密”。

该章节主要介绍了地质雷达的基本概念、工作原理及其在地质探测中的应用。

具体内容包括地质雷达的定义、组成部分、工作原理、使用方法以及探测结果的解读等方面。

二、教学目标1. 让学生了解地质雷达的基本概念,知道地质雷达在地质探测中的重要作用。

2. 学生能理解地质雷达的工作原理,并能简单描述其工作过程。

3. 学生能够运用地质雷达的知识,解决实际问题。

三、教学难点与重点重点:地质雷达的基本概念、工作原理及其在地质探测中的应用。

难点:地质雷达工作原理的理解和实际应用。

四、教具与学具准备教具:PPT、地质雷达模型、实物图片等。

学具:笔记本、彩笔、练习册等。

五、教学过程1. 实践情景引入:通过展示地震灾区现场,引导学生关注地质探测技术在灾后救援中的重要作用,进而引出地质雷达的概念。

2. 知识讲解:介绍地质雷达的定义、组成部分、工作原理及其在地质探测中的应用。

通过地质雷达模型的展示,让学生更直观地理解地质雷达的工作原理。

3. 例题讲解:分析实际探测案例,让学生了解地质雷达在地质探测中的应用,培养学生运用地质雷达知识解决实际问题的能力。

4. 随堂练习:设计一些有关地质雷达的练习题,让学生巩固所学知识。

5. 板书设计:板书地质雷达的基本概念、工作原理及其在地质探测中的应用。

6. 作业设计:题目1:请简要描述地质雷达的基本概念。

答案:地质雷达是一种利用电磁波探测地下目标的仪器,主要由发射装置、接收装置和数据处理装置组成。

题目2:请解释地质雷达的工作原理。

答案:地质雷达通过发射装置发射电磁波,当电磁波遇到地下目标时,会发生反射。

接收装置接收这些反射回来的电磁波,并通过数据处理装置分析,从而得到地下目标的信息。

题目3:请举例说明地质雷达在地质探测中的应用。

答案:地质雷达可以用于探测地下水位、查找地下管线、探测地下溶洞等地质现象。

在地震灾区,地质雷达还可以用于探测被埋压人员的生存状态。

土木工程中的地质雷达探测技术应用

土木工程中的地质雷达探测技术应用

土木工程中的地质雷达探测技术应用在土木工程领域,为了确保工程的质量、安全和顺利进行,各种先进的探测技术不断涌现。

其中,地质雷达探测技术以其高效、准确、无损等优点,成为了土木工程中不可或缺的重要工具。

地质雷达探测技术的原理其实并不复杂。

它就像是给大地做“CT 扫描”,通过向地下发射高频电磁波,然后接收反射回来的电磁波信号,根据信号的传播时间、振幅、频率等特征,来推断地下介质的分布情况和性质。

这项技术在土木工程中的应用范围十分广泛。

在道路工程中,它可以帮助检测道路基层和面层的厚度,发现潜在的空洞、裂缝等病害,为道路的维护和修复提供科学依据。

比如,在一些年久失修的道路上,表面看起来可能只是有些轻微的裂缝,但实际上基层可能已经出现了较大的空洞,如果不及时发现和处理,很容易引发道路塌陷等严重事故。

而地质雷达就能够在不破坏道路的情况下,快速准确地探测到这些隐藏的问题。

在桥梁工程中,地质雷达可以用于检测桥墩基础的稳定性,查明桩身的完整性,以及检测桥梁结构内部是否存在钢筋锈蚀、混凝土疏松等缺陷。

桥梁作为交通枢纽的重要组成部分,其安全性至关重要。

通过地质雷达的探测,能够及时发现桥梁结构中的隐患,采取相应的加固措施,保障桥梁的正常使用和行车安全。

在隧道工程中,地质雷达更是发挥着重要作用。

它可以在隧道施工前,对前方的地质情况进行超前预报,帮助施工人员了解是否存在断层、溶洞、含水带等不良地质体,提前做好应对措施,避免施工过程中发生坍塌、涌水等事故。

同时,在隧道建成后,还可以用于检测隧道衬砌的质量,及时发现衬砌背后的空洞、不密实等问题,确保隧道的长期稳定。

在岩土工程中,地质雷达可以用于勘察岩土体的分布和性质,为地基处理、边坡支护等设计提供可靠的地质资料。

比如在高层建筑的地基勘察中,地质雷达能够帮助确定地下是否存在软弱土层、古河道等不良地质条件,从而优化地基设计方案,保证建筑物的稳定性。

地质雷达探测技术之所以在土木工程中得到广泛应用,主要得益于它的诸多优点。

地下空间勘查中的新兴技术研究

地下空间勘查中的新兴技术研究

地下空间勘查中的新兴技术研究随着城市化进程的加速,城市土地资源日益紧张,地下空间的开发利用成为解决城市发展难题的重要途径。

地下空间勘查作为地下空间开发的前期工作,对于保障工程安全、提高开发效率具有重要意义。

近年来,随着科技的不断进步,一系列新兴技术在地下空间勘查中得到了广泛应用,为地下空间的开发利用提供了更精确、更高效的手段。

一、地质雷达技术地质雷达是一种利用高频电磁波探测地下介质分布的无损检测技术。

它通过发射高频电磁波,并接收地下介质反射回来的电磁波,从而获取地下结构和物质的信息。

地质雷达具有分辨率高、探测速度快、操作简便等优点,在地下空间勘查中得到了广泛应用。

在城市地下空间勘查中,地质雷达可以用于探测地下管线、地下空洞、地下障碍物等。

例如,在地铁隧道建设前,可以利用地质雷达对沿线进行勘查,提前发现地下管线和空洞,避免施工过程中发生事故。

此外,地质雷达还可以用于检测地下结构的完整性,如地下停车场、地下室等的混凝土结构是否存在裂缝、疏松等缺陷。

然而,地质雷达技术也存在一定的局限性。

例如,它对金属物体的探测效果较差,电磁波在地下传播过程中容易受到干扰,导致探测结果不准确。

因此,在实际应用中,需要结合其他勘查技术进行综合分析。

二、高密度电法技术高密度电法是一种基于电阻率差异的地球物理勘查方法。

它通过在地面上布置多个电极,测量不同电极之间的电阻值,从而推断地下介质的电阻率分布。

高密度电法具有测点密度高、数据量大、信息丰富等优点,可以有效地探测地下含水层、断层、岩溶等地质构造。

在地下空间勘查中,高密度电法可以用于探测地下水位、地下水流向、含水层厚度等水文地质参数。

这对于地下停车场、地下商场等地下工程的排水设计和防水处理具有重要意义。

此外,高密度电法还可以用于探测地下岩溶发育情况,为地下工程的选址和设计提供依据。

但是,高密度电法也存在一些不足之处。

例如,它的探测深度有限,对于深部地质构造的探测效果不佳。

而且,高密度电法的数据处理和解释较为复杂,需要专业的技术人员进行操作。

地质勘探中的地质雷达技术

地质勘探中的地质雷达技术

地质勘探中的地质雷达技术地质雷达技术是地球科学领域中一种非常重要的勘探技术,它能够通过无损检测方式获得地下结构的信息。

本文将介绍地质雷达技术的原理、应用领域以及未来的发展趋势。

一、地质雷达技术的原理地质雷达技术利用微波信号与地下物质相互作用的特性,通过检测回波信号来确定地下结构。

其原理可以简单概括为发射、接收和处理三个步骤:1. 发射:地质雷达系统通过天线发射微波信号,这些信号会在地下不同介质的界面上发生反射、折射、散射等现象。

2. 接收:接收系统会收集回波信号,并将其转化为电信号发送到处理系统进行分析。

3. 处理:处理系统对接收到的信号进行时频分析,通过波形和幅度的变化来获得地下结构的信息。

二、地质雷达技术的应用领域地质雷达技术在地球科学领域有着广泛的应用,可以用于以下几个方面:1. 地质勘探:地质雷达技术可以用于地质勘探,例如矿产资源勘探、岩溶地貌勘察、地下水资源调查等。

通过地质雷达扫描,可以获取地下结构的信息,帮助勘探人员确定勘探区域的地质构造和岩石性质。

2. 土壤研究:地质雷达技术对于土壤研究也有很大的帮助。

通过对土壤中微波信号的分析,可以获取土壤的含水量、密度、孔隙率等信息,有助于土壤质地评价和土壤污染监测。

3. 工程勘察:地质雷达技术在工程勘察中起到了重要的作用。

它可以用于检测地下管线、洞穴、地下隧道等工程建设中的隐患,帮助工程师减少钻探次数、提高工作效率,并确保施工的安全性。

4. 灾害监测:地质雷达技术在灾害监测方面也有广泛应用。

例如,它可以用于监测地质滑坡、地下水位变化、地震活动等,为灾害预警和防治提供重要的数据支持。

三、地质雷达技术的发展趋势随着科技的不断进步,地质雷达技术也在不断发展。

未来,地质雷达技术可能朝着以下几个方向发展:1. 分辨率提升:随着雷达系统技术的改进,地质雷达的分辨率将进一步提升,可以获取更精细的地下结构信息。

2. 多频段应用:地质雷达技术可以利用多种频段的微波信号,通过对多频段信号的处理来获取更丰富的地下信息。

地质雷达原理

地质雷达原理

地质雷达原理
地质雷达是利用电磁波在地下传播的原理,通过对地下物质的反射和散射进行接收和分析,进而对地下结构进行探测和测量的一种无损检测仪器。

其原理是利用雷达技术,通过发射一定频率的电磁波,当电磁波遇到地下各种介质界面时,会发生反射、折射、散射等现象,根据这些现象可以获得地下结构的信息。

地质雷达主要通过接收不同方向散射回来的电磁波信号,进而确定各个界面的位置、形状、厚度等地质特征。

地质雷达的发射源一般采用高频的连续波或者脉冲波,其工作频率通常在10~1000MHz之间。

发射源产生的电磁波信号通过天线发射进入地下。

当电磁波遇到不同性质的地下物质时,就会发生反射和散射。

这些反射和散射的电磁波信号经过地下不同介质的传播后,一部分会返回到地面,并被接收器的天线接收到。

接收到的反射和散射信号经过放大和滤波等信号处理过程后,可以得到地下介质的电磁参数、介电常数、电导率等信息。

通过地质雷达扫描地表,可以绘制出地下各个界面的分布情况,如土质、岩性、矿脉、水层等地质结构的分布图。

通过分析这些地质结构的信息,可以对地质勘探、水资源调查、工程建设等提供有力的支持。

总之,地质雷达利用电磁波在地下介质中的传播特性,通过接收反射和散射信号,可以实现对地下结构的无损检测和测量。

通过地质雷达技术,可以获取各个界面的位置、形状、厚度等地质特征,为地质勘探和工程建设提供重要的信息。

地质勘探中的地质雷达数据处理

地质勘探中的地质雷达数据处理

地质勘探中的地质雷达数据处理地质雷达是一种重要的勘探工具,常用于地下资源勘探和工程地质调查。

在地质勘探中,地质雷达数据的处理十分关键,可以帮助我们分析地下结构和探测潜在的地质问题。

本文将介绍地质雷达数据的处理方法和常见的应用案例。

1. 数据采集地质雷达的数据采集通常是通过扫描仪、探头或阵列进行的。

这些设备会发送高频电磁波并接收反射回来的信号。

采集到的数据包括电磁波的幅度和到达时间。

在野外勘探中,地质雷达设备通常通过车辆或人工方式进行扫描。

2. 数据预处理为了提取有效信息并降低噪声的干扰,地质雷达数据需要进行预处理。

预处理的步骤包括:a) 数据校正:对于设备的硬件误差进行校正,例如,校正电磁波的频率和幅度。

b) 数据滤波:使用数字滤波器去除高频噪声和低频成分,以保留需要的信号。

c) 数据校准:将地质雷达数据与参考标志物进行对比,修正时间和深度等参数。

3. 数据解释与分析在地质雷达数据处理的过程中,数据解释与分析是十分重要的环节。

根据数据特征和采集目的,可以进行以下分析:a) 反射和回波分析:分析地下反射或回波的特征和模式,确定可能的地下结构或矿物。

b) 地震学分析:利用地质雷达数据进行地震学分析,研究地下地质构造的特征,如断层、褶皱等。

4. 数据可视化为了更好地理解和展示地质雷达数据,常常需要将其可视化。

常见的地质雷达数据可视化方法包括:a) 剖面图:将采集到的数据在横向和纵向上绘制出来,形成地下剖面图。

b) 等深线图:根据反射强度和深度等绘制等深线,用来表示地下结构的分布。

c) 三维模型:利用地质雷达数据生成地下三维模型,以更直观地展示地下结构。

5. 应用案例地质雷达数据处理在各个地质领域都有广泛的应用。

以下是两个常见的应用案例:a) 矿产勘探:地质雷达可以用来确定矿床的位置、储量和含矿岩石的特征,有助于指导矿产开采。

b) 工程勘察:地质雷达可检测地下障碍物(如管道、洞穴、地下水等),为工程建设提供基础数据。

地质雷达报告

地质雷达报告

地质雷达报告地质雷达 (Ground-Penetrating Radar,简称GPR) 是一种非侵入性的地质勘探工具,通过向地下发射电磁波并接收反射信号,用于探测地下结构和特征。

本报告旨在探讨地质雷达在地质工程和考古领域的应用,以及其优点和局限性。

一、地质雷达原理及技术特点地质雷达使用高频脉冲电磁波,一般在数兆赫到数千兆赫的频率范围内操作。

当电磁波遇到不同介质边界时,会发生反射、折射和散射。

地质雷达通过接收这些反射信号并进行处理分析,可以生成地下结构的剖面图像。

地质雷达具有以下技术特点:1. 非侵入性:地质雷达无需物理上接触地下,因此对目标地区没有破坏性。

2. 快速获取数据:地质雷达可以在短时间内收集大量数据,有效提高勘探效率。

3. 高分辨率:地质雷达可以提供较高的空间分辨率,可以检测到较小的地下结构特征。

4. 多功能应用:地质雷达不仅用于地质工程,还可以应用于考古学、环境监测等领域。

二、地质雷达在地质工程中的应用1. 地下管线检测:地质雷达可以准确检测地下管道的位置,帮助规划和维护地下设施。

2. 岩土勘探:地质雷达可以测定岩体的不同物理参数,如土壤含水量和密度等,为工程规划和设计提供依据。

3. 地下洞穴检测:地质雷达可以探测地下洞穴的位置和规模,帮助判断地下洞穴的稳定性和安全性。

4. 地质灾害预警:地质雷达可以监测地下水位变化、滑坡等地质灾害的迹象,提前预警风险。

三、地质雷达在考古学中的应用1. 遗址探测:地质雷达可以探测地下隐藏的古代建筑和遗址,帮助考古学家进行发掘和保护。

2. 文物勘探:地质雷达可以探测地下文物的位置和规模,为文物保护提供支持和指导。

3. 土壤分析:地质雷达可以分析土壤中的有机物和矿物质,为考古学家提供土壤成分和古代环境的信息。

四、地质雷达的优点和局限性地质雷达具有以下优点:1. 高效:地质雷达可以快速获取数据,提高勘探效率。

2. 高分辨率:地质雷达可以探测到较小的地下结构特征。

地质雷达(GPR)

地质雷达(GPR)

2009.10
中国矿业大学。地球探测与信息技术
2.2
瑞典探地雷达(RAMAC/GPR)
RAMAC/GPR非屏蔽天线是低频天线,主要用于深层探 测,该天线只能与CUII主机配合使用。典型的非屏蔽天线有 25MHz、50MHz、100MHz、200MHz天线。所有的 RAMAC/GPR非屏蔽天线均使用同样的发射机及接收机、光
标为反射波双程定时,表示雷达脉冲从发射天线出发经地下
界面反射回到接收天线所需的时间。这种记录能准确反映测 线下方地下各反射界面的形态。
2009.10
中国矿业大学。地球探测与信息技术
2009.10
中国矿业大学。地球探测与信息技术
2009.10
中国矿业大学。地球探测与信息技术
2009.10
中国矿业大学。地球探测与信息技术
个天线接受来自地下介质界面的反射波。电磁波在介质中
传播时,其路径、电磁场强度与波形将随所通过介质的电 性质及几何形态而变化。因此,根据接收到波的旅行时间 (亦称双程走时)、幅度与波形资料,可推断地下介质的 分布情况。
2009.10
中国矿业大学。地球探测与信息技术
对地下雷达探测目标的解释,离不开必要的地
900MHz
1200MHz
2009.10
中国矿业大学。地球探测与信息技术
2.1
SIR雷达介绍
2009.10
中国矿业大学。地球探测与信息技术
2.1
SIR雷达介绍
2009.10
中国矿业大学。地球探测与信息技术
2.2

瑞典探地雷达(RAMAC/GPR)




主要特点 1. 高集成化、真数字式、高速 、轻便。 2. 系统集成化程度高,体积小、重量轻(主机重量仅为2.4公 斤)。 3. 功耗低,主机功耗仅为25W;系统耗电量低,不需电瓶供电, 为野外工作提供方便。 4. 天线与主机之间采用光纤连接,频带宽、速度快、数据质量好、 抗干扰能力强,因此发射机、接收机及主机之间不会相互干扰。 5. 100兆、250兆、500兆、800兆及1000兆天线采用屏蔽方式,因 此其抗干扰能力强。 6. 主机与计算机之间采用ECP并口传输方式,数据传输速度快。 7. 主机可与低频、中频、高频天线全部兼容,同时与孔中天线也 兼容,因此性能价格比高,为用户添臵新天线节约资金。 2009.10 8. 显示方式采用外接笔记本方式。 中国矿业大学。地球探测与信息技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地质雷达在隧道超前地质预报中的应用
摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。

关键词:地质雷达;隧道超前地质预报;掌子面
引言
目前,我国修建大量穿越山岭的特长隧道。

由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。

为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。

在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。

一、地质雷达基本原理及探测深度、精度
地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。

发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)
图1 地质雷达反射探测原理图
根据波动理论,电磁波的波动方程为:
P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。

式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为:
V = ω/α(2)当电磁波的频率极高时,上式可简略为:
V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常
数。

地质雷达所使用的是高频电磁波,因此地质雷达在地下介质中的传播速度主要由介质中的相对介电常数确定。

电磁波向地下介质传播过程中,遇到不同的波阻抗界面时将产生反射波和透射波。

反射和透射遵循反射与透射定律。

反射波能量大小取决于反射系数R,反射系数的数学表达式为:
R =[(ε1)1/2 -(ε2)1/2]/[(ε1)1/2 +(ε2)1/2] (4)式中ε1和ε2分别表示反射界面两侧的相对介电常数。

由(4)可知,电磁波在反射系数取决于介质的相对介电常数,介电数差异越大,雷达波形越清晰。

空隙中空气的相对介电常数为1;软弱夹层(黏土)在9~ 14之间;水为81;砾岩在4~ 6之间。

几者间的相对介电常数差异较大,这为雷达方法作超前预报提供了较好的地球物理前提。

电磁波在介质中传播的路径——波形将随所通过介质的电性及几形态而变化,根据接收到波的旅行时间(亦即双程走时)、幅度、频率与波形变化资料,可以推断介质的内部结构以及目标的深度、形状等,利用电磁波在介质中的波速和旅行时间可以计算介面深(h=v*t/2)。

当发射天线沿欲探测物表面移动时就能得到其内部介质剖面图像。

反射脉冲的信号强度与界面的波反射系数和穿透介质的波吸收程度有关。

影响地质雷达的预报深度、分辨率这两个重要指标的因素包括两方面。

内在因素主要是指探测对象所处环境的电导率,介电常数等因素。

相对介电常数随介质中的含水量变化而急剧变化,含水少的介质其值较大。

外在因素主要与探测所采用的频率,采样速度等探测方法有关,通常只有外在因素才具有选择性。

在实际应用中必须综合考虑这些因素,采用适当的方法技术。

探测时所采用的天线中心
频率称为探测频率。

而其实际的工作频率范围是以探测频率为中心的频带。

当中心频率f 一定时,在特定介质中传播速度V也已知,根据公式K= V/ f,波长也是定值。

当地质体层厚小于1/ 4 波长时,反射波不能反映中间层,所以探测频率决定了探测的分辨率。

同时,介质对高频波吸收快,低频波吸收慢。

所以频率越高,探测深度越浅,分辨率越高,频率低时则相反。

所以超前预报要选用的频率来满足探测深度和精度(分辨率) 两方面的要求。

一些基于经验的探测深度、分辨率与中心频率的关系见表1。

经综合考虑,超前预报常选用中心频率为100 MHz 的天线( 也可选配其他合适频率天线作辅助测量) 。

表1 经验探测深度、分辨率与天线中心频率的关系
二、检测设备、方法及现场测线布置
对于不同深度、不同岩性的探测目的层与目的物,在应用地质雷达检测时,需选择相应频率的天线和适当的仪器参数。

要探测到较深的地质情况,就必须选用相对较低频率的天线,本次检测选用了100MHz天线。

使用的设备:美国劳雷公司SIR-3000型地质雷达(如图2所示);天线频率100MHZ。

检测方法是:在掌子面上布设测线或测点,由天线向地层中发射一定强度的高频电磁波,电磁波在传播过程中遇到与周围电阻抗有差异的地层或目标体时,部分能量反射回来,被接收天线所接收,通过分析雷达图像特征,预测前方围岩情况。

该方法分辨率较高,方向性
较好,能够分辨出较小规模的地质异常,能及时预报出掌子面附近的破碎带、溶洞及赋水等不良地质情况。

本次采用了连续线测及点测试方法,测线及测点布设见图3。

图2 SIR—3000型地质雷达图3 雷达测线及测点布设图
三、实列分析与研究
下面介绍地质雷达在广东省某隧道地质超前预报中的应用。

该隧道全长约750m。

隧道掌子面岩石岩性为二长花岗岩,青灰色,中粗粒结构,块状构造,节理、裂隙较发育,无水,掌子面岩石整体接触较好,结构较稳定,右下角岩体较破碎且强度较低,因岩石节理面近似垂直,拱顶层面组合受震动易出现局部掉块、超挖,综合评价掌子面岩块结合性一般,整体稳定性一般。

(如图4所示)围岩级别为Ⅱ~V级。

图4 掌子面围岩
图5 雷达测试波列图(线测)
通过对地质雷达图像的分析,距目前掌子面13~25米范围内雷达反射波较强,预计该段围岩与目前掌子面相比较会稍有变化,岩石岩性主要为二长花岗岩,节理、裂隙发育,同时还可能存在小的破碎带,拱顶层面组合受震动易出现局部掉块,整体稳定性较差。

经开挖证实在距掌子面13.7米处,掌子面左右两侧均出现小的破碎带,在距掌子面16~17米处掌子面右侧出现一条宽约40cm的全风化
花岗岩带,其中在距离掌子面15~22米范围内岩石节理比较发育,过了该段岩石节理,裂隙发育情况明显好转。

四、结束语
(1) 地质雷达用于隧道地质超前预报具有快速、便捷的特点。

(2) 地质雷达由于发射的是超高频电磁波, 故探测深度及广度有限。

(3) 探测过程中经常会有干扰因素存在,如隧道台车、装载机、照明电缆等的干扰。

如何正确识别干扰,从而得到正确的分析结果尤为重要。

(4) 本次探测实例证明了地质雷达用于隧道地质超前预报有理有据,结果真是可靠。

但是对雷达图像异常情况的判断解释,需要积累大量的实际经验。

参考文献
[1] 夏才初,潘国荣.土木工程监测技术[M] .北京:中国建筑工业出版社, 2001:245~280
[2] 杨峰,彭苏萍.地质雷达探测原理与方法研究[M].北京:科学出版社,2010:8~9
[3] 刘柱.地质雷达无损检测隧道施工质量的图像分析方法[J].公路交通科技!应用技术版,2012.2:21~22
[4] 由广明,刘学增,汪成兵.地质雷达在公路隧道超前地质预报。

相关文档
最新文档