13三角函数的计算教学设计

合集下载

《1.3三角函数的计算》 教案

《1.3三角函数的计算》  教案

1.3三角函数的计算教学目标:1.能够用计算器进行有关三角函数值的计算.2.能够运用计算器辅助解决含三角函数值计算的实际问题,提高用现代工具解决实际问题的能力.3.通过积极参与数学活动,体会解决问题后的快乐. 感悟计算器的计算功能和三角函数的应用价值.重点与难点:重点:用计算器辅助进行三角函数的计算及其在生活中的实际问题. 难点:建构数学模型,解决实际问题.课前准备:教师准备:多媒体课件,导学案.学生准备:课下复习三角函数函数的定义及30°、45°、60°的三角函数值等相关知识.教学过程:一、创境导入,提出问题同学们大多都玩过滑滑梯吧!看下面这幅图片,一个小朋友不小心摔了下去,所以园区负责人为了增强滑滑梯的安全性,采取了以下措施,请你帮他来实现.【多媒体展示】把滑梯的倾斜角由原来的45°改为20°,已知滑梯高2m ,如果滑梯高度不变,那么改善前、后的滑梯占地分别多长.(结果精确到0.01m )处理方式:让学看完图片后,独立读题、思考并给出自己的答案,改善前滑梯占地借助特殊角45°角的正切值求解可得答案为tan BCBDC DC∠=,tan 45BC DC =,21DC=,2DC =; 类似的可以得出tan BC BAC AC ∠=,2tan BAC AC∠=,22tan tan 20AC BAC ==∠.这与前面特殊角度的三角函数值不同,就目前我们的知识基础没有办法继续完成本问题的解答,得到最终的答案,引起知识冲撞,进而自然而然引出我们今天讲要研讨的问题:用计算器来进行三角函数的有关计算,请看屏幕明晰今天的学习目标.1.能够用计算器进行有关三角函数值的计算.2.能够运用计算器辅助解决含三角函数值计算的实际问题.设计意图:计算器对于学生来说,并不陌生,在学习七年级数学时,曾用计算器进行过有理数的计算;在学习八年级数学时,曾用计算器进行过数的开方.所以,本节课在开课伊始,采用滑梯改善前后,坡角由特殊角度改为一般角,引起合理知识冲撞,创设出情景,引入新课内容和学习目标.应用这种形式,一方面能调动学生的学习积极性,激发学生的学习激情,创设积极的浓厚的学习氛围,另一方面导入新课,让学生明确本节课将要使用的学具和学习任务.二、自主合作,解决问题探究活动一:请同学们阅读课本P12第7行---表格末和P14页第一行---P14页第9行,自学后,完成下面自学探究问题题组一.探究问题题组一1.用科学计算器求三角函数值'''= ;cos19°= .sin26°= ;tan3528352.用科学计算器求角度sinA=0.9816,∠A= ;cos B=0.8607,∠B= ;tanC=56.78 ,∠C= ;处理方式:待学生自学研讨后,进行展评答案,交流学习感悟!对于这个探究问题题组,只要能认真研读课本,按顺序按键,完全正确解答它们应该是没有问题的.但是,在学生展评后,应该加以强调1.用计算器求三角函数值时,计算结果一般精确到万分位.2.用计算器根据三角函数值求角度时,计算结果一般精确到1',注意结果的形式要是以度为单位时,一般要精确到万分位,如果要用度分秒表示,要在按完最后一个数字后按“”,就呈现度分秒为单位的结果了.具体的操作流程:1.学生独立思考.2.小组内讨论交流.3.展示汇报.4.修订答案.5.解后反思.【多媒体展示标准答案】 1.用科学计算器求三角函数值sin 26°= 0.4384 ;tan 352835'''= 0.7127 ;cos 19°= 0.9455. 2.用科学计算器求角度sinA =0.9816,∠A =785931'''; cos B =0.8607, ∠B =303617'''; tanC =56.78 ,∠C =885927''';当处理完问题1、2后,教师再次追问:“如果得出的角度想转化为度、分、秒,该如何按键得出答案呢?”,教会学生如何更好的利用课本学习知识和获取知识.设计意图:本环节目的是实施目标1,让学生学会应用计算器进行求三角函数值或求角度.为实现这个目标,设计问题1的目的是借助计算器求三角函数值,问题2是已知三角函数求角度,应用的第二功能解决问题,让学生感受数学知识的正反两用的可逆过程,培养学生逆用知识的能力.为探究活动二构建知识和平台..探究活动二:引入科学计算器的辅助功能后,我们就可以求任意一个锐角的三角函数值了,从而对于生活中的实际问题我们就可以非常顺利的解决了.比如下面的问题,我们就可以借助科学计算器来解决了.(多媒体展示)问题1.如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200米,已知缆车行 驶的路线与水平面的夹角为∠a =16°,那么缆车垂直上升的距离是多少?(结果精确到si nco sta n0.01m )问题2.如图,当缆车继续由点B 到达点D 时,它又走过了200 m ,缆车由点B 到点D 的行驶路线与水平面的夹角是∠β,缆车上升了133.8m ,由此你能计算出∠β的大小吗?处理方式:学生独立思考后,小组内讨论交流,形成问题解决方案,推选代表组间展示汇报. 问题1、2都是三角函数在生活中的实际应用,这就要求学生有从实际问题抽象概括数学模型的能力,在学生展示过程中,主要让学生展示自己建构数学模型的过程,训练和培养学生抽象概括实际问题为数学问题的能力,其中问题1是已知角求边长;问题2是已知边求角,学生交流后老师强调解题步骤,形成规范的解题模式.具体的操作流程: 1. 学生独立思考. 2.小组内讨论交流. 3.展示汇报. 4.修订答案. 5.解后反思.【多媒体展示标准答案】设计意图:这一组题是借助科学计算器进行的三角函数的计算,在生活实际中的应用,°16s =sin =2000.275655.12m A BCABBC BC ∆∠∠=∴∴⨯∴≈1.解:在Rt ABC 中,C=90,,inA=,BC AB A=200sin16()°s 133.8s 0.66920042DEBD βββ∆∠====∴==∴=2.解:在Rt BDE 中,E 90,BD 200m ,DE 133.8min ,in目的是培养学生建构数学模型的能力、规范解题的能力,教师做好板书的示范作用,教会学生建构数学模型,并会按照解决数学问题的步骤写规范的解题步骤,既会已知角求有关长度,也会已知长度,求角度,实现知识的和技能的正反应用,培养学生综合应用知识的能力.探究活动三:【在同学们的共同努力下,我们对于任意一个锐角的三角函数我们都可以借助科学计算器进行计算了.这样对于改造滑滑梯的问题就可以迎刃而解了.请同学们独立解决一下滑滑梯改造后占地多长吧.】解:在Rt ⊿ACB 中,tan BCBAC AC ∠=2tan BAC AC ∴∠= 22tan tan 20AC BAC ∴==∠5.50.AC m ∴=处理方式:由于前面已经分析到22tan tan 20AC BAC ==∠这一步,再加上刚才探究完科学计算器进行任意角的三角函数了,所以学生独立完成滑滑梯改造后占地多长应该易如反掌了.但是在解决完之后,一定要巡视指导学生注意答案精确度的要求,这是学生常常忽略的地方,使学生能规范的答题,完整的答题. 设计意图:这样设计的目的一是前后呼应,使整堂课浑然一体,成为一个完整的体系. 其二是使学生真正的体会到数学在生活中的应用,体会到数学的价值,从而更加认真的研究数学,提高学生学习数学的积极性了.三、小结感悟,能力提升同学们,反思才能进步,总结方能提高,让我们就象虚心的竹子一样,打一节进步一节成长一步吧!通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.生:畅谈自己的收获!师:再画龙点睛,展示知识结构,提出对学生的期望和更高的要求.【其中我们在利用计算器进行三角函数的计算时,其按键顺序和注意事项是值得我们重点识记的,就让我们再来共同回忆一下吧!】1.在用计算器求三角函数值时,其按键顺序【以求tan182132'''的值为例】是在用计算器求角度时其其按键顺序【以已知sin α=0.9816求α的值为例】是设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.四、达标检测,反馈提高通过本节课的学习,同学们的收获很多!“学的好不好,一试便知道”.请同学们利用刚才你们的探究成果解决下面的问题,希望各位同学都能顺利通过我们开课伊始制定的目标考核.加油哇,聪明的孩子们!A组(必做题):1.用科学计算器计算:≈________.(结果精确到0.01)2.若tanA=2.7474,且∠A为锐角,则sinA= .A.0.9397B.0.3420C.0.9D.0.42303.为了方便行人推自行车过某天桥,市政府在10m高的天桥两端修建了40m的斜道.这条斜道的倾斜角是多少?B组(选做题):4.如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度363636368686(1)求AM的长.︒+56tan331(2)当∠BAC=104°时,求AD的长(精确到1cm).处理方式:学生做题时教师巡视,发现对今天所学知识掌握不够好的学生及时辅导,鼓励学生遇到问题时及时询问,做完的学生教师当堂批改,指出对错.若有时间A组第3题可以让学生黑板板书,师生共同点评,B组选做题第4题可以让A组学生到黑板尝试板演,旨在给其他志在攻坚的学生抛砖引玉,做个示范.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的. 分层设置作业,注重基础的夯实,能力的提升.使不同的学生都得到更大的收获,都能获得成功的喜悦.五、布置作业,课后促学A.必做题:课本P15第2题、第3题、第4题.B.选做题:课本P27第23题.板书设计。

初中数学《1.3 三角函数的计算》教案

初中数学《1.3  三角函数的计算》教案

§.1 三角函数的有关计算(第1课时)教学目标1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数意义.2.能够用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题.教学重点1.用计算器由已知锐角求三角函数值.2.能够用计算器辅助解决含三角函数值计算的实际问题.教学难点用计算器辅助解决含三角函数值计算的实际问题.教学方法探索——引导.教学过程一、提出问题,引入新课课本P15引例如图,当登山缆车的吊箱经过点A到达点B时,它走过了200米,已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?怎样用科学计算器求三角函数值呢?二、讲授新课1.用科学计算器求一般锐角的三角函数值.讲解计算器的使用(参照课本)2.下面就请同学们利用计算器求出本节刚开始提出的问题.3.下面请同学们用计算器计算下列各式的值(多媒体演示).(1)sin56°;(2)sin15°49′;(3)cos20°;(4)tan29°;(5)tan44°59′59″;(6)sin15°+cos61°+tan76°.(以小组为单位,展开竞赛,看哪一组既快又准确)4.你能用计算器计算说明下列等式成立吗?(用多媒体演示)下列等式成立吗?(1)sin15°+sin25°=sin40°;(2)cos20°+cos26°=cos46°;(3)tan25°+tan15°=tan40°.由此,你能得出什么结论?三、用计算器辅助解决含有三角函数值计算的实际问题.当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面的夹角是∠β=42°,由此你能想到还能计算什么?四、随堂练习P17五、课时小结本节课主要内容如下:(1)运用计算器计算由已知锐角求它的三角函数值.(2)运用计算器辅助解决含三角函数值计算的实际问题.六、课后作业习题1.4的第1.2题§1.3.1 三角函数的有关计算(一)1.用计算器由已知锐角求它的三角函数值熟练操作,求sin16°,cos42°,tan85°,sin72°38′25″.2.用计算器辅助解决含三角函数值计算的实际问题.。

北师大版九年级数学13三角函数的计算教案

北师大版九年级数学13三角函数的计算教案

教学目标:1.了解三角函数的定义及其在直角三角形中的应用。

2.掌握正弦、余弦、正切函数的计算方法。

3.能够解决与三角函数相关的实际问题。

教学重点:1.正弦、余弦、正切函数的定义和计算方法。

2.应用正弦、余弦、正切函数求解实际问题。

教学难点:应用三角函数求解实际问题。

教学准备:1.北师大版九年级数学教材。

2. PowerPoint演示文稿。

3.直角三角形的模型与工具。

4.与三角函数相关的实际问题。

教学流程:Step 1: 引入(15分钟)1.向学生介绍三角函数的概念,并与实际生活中的角度概念进行对比。

2.提问:你对三角函数有什么了解?它们有什么应用?3.学生回答后,教师简要介绍三角函数的定义及其在直角三角形中的应用。

Step 2: 知识讲解(30分钟)1.通过PPT演示,详细讲解三角函数的定义及其计算方法。

2.强调正弦函数、余弦函数、正切函数的定义和计算方法,着重介绍三角函数与角度的对应关系。

Step 3: 实例演示(20分钟)1.基于直角三角形的实例,演示如何通过给定的角度和边长计算三角函数的值。

2.通过实例演示的方式,让学生熟悉三角函数的计算过程,并解决相关计算题目。

Step 4: 实际应用(30分钟)1.教师出示与三角函数相关的实际问题,并要求学生运用所学知识解决问题。

2.学生个别或小组合作,分析问题、制定解决方案并给出答案。

3.学生展示解题过程与结果,并与其他同学讨论对比。

Step 5: 总结(15分钟)1.教师总结本节课的重点内容,并提醒学生复习。

2.学生提问与讨论相关问题。

3.教师对学生的学习情况进行评价,并提醒下节课的知识安排。

教学延伸:1.学生可以通过使用计算器或三角函数表练习计算。

2.学生可以应用三角函数解决更复杂的实际问题,如测量高度或距离等。

教学反思:在教学过程中,通过引入实际问题与学生互动,激发了学生的学习兴趣。

通过实例演示和实际应用,学生能够更好地理解和应用三角函数的计算方法。

三角函数计算教案

三角函数计算教案

三角函数计算教案引言:三角函数是数学中的重要概念,广泛应用于科学、工程、物理等领域中。

掌握三角函数的计算方法和应用是学习高等数学和物理学的基础。

本教案旨在帮助学生全面掌握三角函数的计算方法,包括三角函数的定义、性质以及常见的计算技巧。

一、三角函数的定义和基本性质1.1 正弦函数的定义和性质正弦函数是三角函数中最基本的函数之一。

其定义为在单位圆上,对于任意角度θ,正弦函数的值等于θ的终边与x轴正方向的交点的纵坐标与单位圆的半径的比值。

正弦函数的值域为[-1, 1]。

1.2 余弦函数的定义和性质余弦函数也是三角函数中的一种主要函数。

其定义为在单位圆上,对于任意角度θ,余弦函数的值等于θ的终边与x轴正方向的交点的横坐标与单位圆的半径的比值。

余弦函数的值域同样为[-1, 1]。

1.3 正切函数的定义和性质正切函数是三角函数中另一个重要的函数。

其定义为在单位圆上,对于任意角度θ,正切函数的值等于θ的正弦值与余弦值的比值。

正切函数的定义域为除去所有余弦值为0的点之外的所有实数。

1.4 三角函数的周期性正弦函数、余弦函数和正切函数都具有周期性。

正弦函数和余弦函数的周期为2π,而正切函数的周期为π。

二、常见的三角函数计算技巧2.1 角度的换算在三角函数的计算中,角度的形式有两种:弧度和度数。

在实际应用中,我们常常需要在两种形式之间进行换算。

一般来说,弧度换算为度数需要使用以下公式:度数 = 弧度× 180 / π;度数换算为弧度需要使用以下公式:弧度 = 度数×π / 180。

2.2 三角函数的基本运算法则三角函数具有多个基本的运算法则,包括和差角公式、倍角公式、半角公式等。

根据这些公式,我们可以简化复杂的三角函数计算过程,提高计算的准确性和速度。

2.3 利用三角函数计算三角形的边长和角度三角函数在解决三角形相关问题时具有重要的作用。

我们可以利用三角函数的计算方法来求解三角形的边长和角度,使得在几何推理中更加高效。

三角函数的计算教案

三角函数的计算教案

三角函数的计算教案【教案一】一、教学目标:1. 了解三角函数的基本定义和常用的三角函数公式;2. 掌握三角函数的计算方法;3. 能够在实际问题中应用三角函数进行计算。

二、教学内容:1. 三角函数的基本概念及定义;2. 常用的三角函数公式;3. 三角函数的计算方法;4. 三角函数在实际问题中的应用。

三、教学过程:1. 概念讲解介绍三角函数的基本定义,包括正弦函数、余弦函数和正切函数。

解释三角函数的含义及其在数学和实际生活中的应用。

2. 常用公式介绍正弦函数、余弦函数和正切函数的常用公式,如和差化积公式、倍角公式、半角公式等。

讲解公式的推导过程,并进行具体的计算演示。

3. 计算方法分别讲解三角函数的计算方法,包括角度计算和边长计算。

以具体的例题为例,详细讲解计算步骤和注意事项。

4. 应用实例列举一些实际问题,并结合三角函数的计算方法进行求解。

例如,计算船与岸边的夹角、计算建筑物的高度等。

通过实例的讲解,帮助学生理解三角函数的应用场景。

四、教学要点:1. 三角函数的概念和定义;2. 常用的三角函数公式;3. 三角函数的计算方法;4. 三角函数的应用实例。

五、教学辅助工具:黑板、粉笔、投影仪、计算器等。

六、教学评价方法:1. 课堂讨论:通过提问和回答的方式,检查学生对三角函数的理解程度;2. 作业批改:布置练习题,检查学生的计算能力;3. 小组活动:组织学生分为小组进行实际问题的解答,评价小组的合作能力和解决问题的能力。

七、教学反思与总结:通过本节课的教学,学生对三角函数的概念和计算方法有了更深入的理解。

通过实际问题的解答,学生对三角函数的应用也有了一定的掌握。

在今后的教学中,还可以引入更多的实际问题,激发学生的兴趣,提高学习效果。

同时,要注意培养学生的计算能力和团队合作能力,使学生能够灵活运用所学知识解决实际问题。

1.3三角函数的有关计算(一) 教案

1.3三角函数的有关计算(一) 教案

(3) tan25°+tan15°=tan40°
练习 3.课本 P17 随堂练习.
三、变式训练
1.一个人从山底爬到山顶,需先爬 40°的山坡 300 米,再爬 30°的
山坡 100 米,求山高.(结果精确到 0. 01 米) A
B 30°
C 40° D
E
D
2.求图中避雷针 CD 的长度.(精确 到 0.01 米)
cos
tan85°
tan
sin72°38′25″ sin 3
4 2= 8 5=
7 2 DMS 8 DMS 2
cos42°=0.743144825
tan85°=11.4300523 [来 源:学# 科 #]
sin72°38′25″ [来源:学&科&]
=0.954450312 [来源:学&科&Z&X&X&K]
问题 2. 200sin16°米中 的 sin16°是多少呢?
二、讲授 新课:
1.用科学计算器求一般锐角 的三角函数值.
如:求 sin16°,cos42°,tan85°和 sin72°38′25″按键顺序如下
表所示:
按键顺序
in16°=0.275637355
cos42°
(1)sin56°
(2)sin1 5°49′
(3) °cos20
(4)tan29°
(5)tan44°59′59″ (6)sin15°+cos61°+tan76°
练习 2.你能用计算器计算说明下列等式成立吗?
(1) sin15°+ sin25°=sin40°
(2) cos20°+cos26°=cos46°

《三角函数的有关计算》教学设计

《三角函数的有关计算》教学设计

《三角函数的有关计算》教学设计
一、教学内容
本节课的主要内容是三角函数的计算,主要包括以下几个部分:
1.三角函数性质的认识;
2.三角函数的值的计算;
3.三角函数传递函数的性质;
4.三角函数的运用。

二、教学目标
1.能够熟练运用三角函数的性质,计算三角函数的值;
2.能理解三角函数的传递函数的性质,并能运用相应结论解决实际问题;
3.能熟练运用三角函数解决实际问题。

三、教学重点
1.熟练掌握三角函数的性质,完成三角函数的值的计算;
2.理解三角函数传递函数的性质,并能熟练运用它解决实际问题。

四、教学难点
1.对于三角函数的性质及计算的理解;
2.对三角函数传递函数及其理解;
3.在实际问题中如何运用三角函数的性质及传递函数求解。

五、教学方法
本课采用具体案例讲授、讨论法、练习法等教学方法,以及引导学生理解及运用的口头指导法,以达到使学生理解三角函数性质及传递函数及其计算。

六、教学步骤
1.引导及抛砖引玉:准备一些有关三角函数的例题,如余弦定理、正弦定理、余切定理等,让学生进行思考及讨论,有效的引导学生思考,激发学生学习的积极性。

北师大版九年级数学下册:第一章 1.3《三角函数的计算》精品教学设计

北师大版九年级数学下册:第一章 1.3《三角函数的计算》精品教学设计

北师大版九年级数学下册:第一章 1.3《三角函数的计算》精品教学设计一. 教材分析北师大版九年级数学下册第一章《三角函数的计算》的内容包括正弦、余弦、正切函数的定义,三角函数的图像和性质,以及三角函数在实际问题中的应用。

本节课的重点是让学生掌握三角函数的定义和计算方法,理解三角函数的图像和性质,能够运用三角函数解决实际问题。

二. 学情分析九年级的学生已经学习了初中阶段的代数和几何知识,对函数的概念和性质有一定的了解。

但是,三角函数作为一种新的函数类型,对学生来说还是相对陌生的。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握三角函数的概念和性质。

三. 教学目标1.了解三角函数的定义,掌握正弦、余弦、正切函数的计算方法。

2.理解三角函数的图像和性质,能够运用三角函数解决实际问题。

3.培养学生的逻辑思维能力和创新能力,提高学生的数学素养。

四. 教学重难点1.三角函数的定义和计算方法。

2.三角函数的图像和性质。

五. 教学方法1.情境教学法:通过实际问题引入三角函数的概念,让学生在解决问题的过程中理解和掌握三角函数的性质。

2.数形结合法:通过绘制三角函数的图像,让学生直观地理解三角函数的性质。

3.小组合作学习:引导学生分组讨论和探究,培养学生的团队合作能力和创新能力。

六. 教学准备1.教学课件:制作三角函数的图像和性质的课件,以便在课堂上进行展示和讲解。

2.练习题:准备一些有关三角函数计算和应用的练习题,以便在课堂上进行巩固和拓展。

七. 教学过程1.导入(5分钟)通过一个实际问题引入三角函数的概念,如在直角三角形中,边长为a、b、c的三角形的面积可以表示为S=1/2ab sinC,让学生思考sinC的定义和计算方法。

2.呈现(15分钟)讲解三角函数的定义,引导学生从已有的知识出发,理解三角函数的概念。

然后,通过绘制三角函数的图像,让学生直观地理解三角函数的性质。

3.操练(15分钟)让学生分组讨论和探究,运用三角函数的性质解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章直角三角形的边角关系《三角函数的计算》教学设计一、学生知识状况分析1. 本章前两节学生学习了三角函数的定义,三角函数sinα、cosα、tanα值的具体意义,并了解了30°,45°,60°的三角函数值.2. 学生已经学会使用计算器进行有理数的加、减、乘、除及平方运算,对计算器的功能及使用方法有了初步的了解.二、教学任务分析随着学习的进一步深入,当面临实际问题的时候,如果给出的角不是特殊角,那么如何解决实际的问题,为此,本节学习用计算器计算sinα、cosα、tanα的值,以及在已知三角函数值时求相应的角度.掌握了用科学计算器求角度,使学生对三角函数的意义,对于理解sinα、cosα、tanα的值∠α之间函数关系有了更深刻的认识.根据学生的起点和课程标准的要求,本节课的教学目标和任务是:知识与技能1. 经历用计算器由已知锐角求三角函数的过程,进一步体会三角函数的意义.2. 能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.过程与方法在实际生活中感受具体的实例,形成三角形的边角的函数关系,并通过运用计算器求三角函数值过程,进一步体会三角函数的边角关系.情感态度与价值观通过积极参与数学活动,体会解决问题后的快乐. 感悟计算器的计算功能和三角函数的应用价值1教学重点:用计算器求已知锐角的三角函数值.能够用计算器辅助解决含三角函数值计算的实际问题.教学难点:能够用计算器辅助解决含三角函数值计算的实际问题三、教学过程分析三、教学过程分析本节课设计了六个教学环节:复习引入、探索新知、例题讲解,随堂练习、,课堂小结、布置作业、课外探究.第一环节复习引入活动内容:用多媒体展示学生前段时间所学的知识,提出问题,从而引入课题.直角三角形的边角关系:222,两锐角的关系: ∠A+三边的关系: ∠B=90°. cb?a?边与角的关系:aba cos A?sin B?tan?sin A?cos BA?,,,锐角三角函数ccb特殊角30°,45°,60°的三角函数值.、12、已知sin A?则?A?? sin16引入问题:1、你知道°等于多少吗?4探索新知第二环节活动内容一:我们知道,三角函数中,当角的大? °米中的“sin16°”是多少呢ABsin16.小确定时,三角函数值与直角三角形的大小无关,随着角度的确定而确定°可以根据勾股定理和含这些特殊角的直角三6045对于特殊角30°、°、我们该怎求出它们的三角函数值,而对于一般锐角的三角函数值,角形的性质,.么办?我们需借助于科学计算器求出这些锐角的三角函数值 2怎样用科学计算器求三角函数值呢?1.用科学计算器求一般锐角的三角函数值.和键用科学计算器求三角函数值,.要用到我们对下面几个角的三角函数cos72°38′25″°tan85同学们可用自己的计算器按上述按键顺序计算sin16°,cos72°38′25″,tan85°.看显示的结果是否和表中显示的结果相同.(教学时应注意不同的计算器按键方式可能不同,可引导学生利用自己所使用的计算器探索计算三角函数值的具体步骤,也可以鼓励同学们互相交流用计算器计算三角函数值的方法)用计算器求三角函数值时,结果一般有10个数位,我们的教材中有一个约定.如无特别说明,计算结果一般精确到万分位.下面就请同学们利用计算器求出本节刚开始提出的问题.用计算器求得BC=sin16°≈0.2756.[问题]如图,当登山缆车的吊箱经过点A到达点B时,它走过了200米,已知缆车行驶的路线与水平面的夹角为∠a=16°,那么缆车垂直上升的距离是多少? 3BC. 米,需求出AB=200=16°,在Rt△ABC中,∠αBCBC?, =根据正弦的定义,sin16°200AB55.12m.°≈ABsin16°=200 sin16∴BC=,缆mD时,它又走过了200 对问题进一步探索:当缆车继续由点B到达点由此你能想到还能计°,=42B车由点到点D的行驶路线与水平面的夹角是∠β?算什么学生思考后,有如下几种解决方案:.点垂直上升的高度点到D方案一:可以计算缆车从B水平移动的距一共垂直上升的高度、D点,方案二:可以计算缆车从A点到.离用计算器辅助计算出结果:=,缆车上升的垂直高度DE°,BD=200 m)在Rt△DBE中,∠β=421().133.83(米°=200sin42°≈BDsin42为度垂直高→D上升的B可由前面的计算知,缆车从A→2()).米=188.95(BC+DE=55.12+133.830.9613200×AC=ABcos16°≈∠ABC中,α=16°,AB=200米,Rt(3)在△).192.23(米=×≈200BD·cos42°.BEBD=中RtADBE,∠β42°,=200米=在). 米0.7431=148.63(). 米=D移动的水平距离为BE+AC192.23+148.63=340.86(→→缆车从AB°角的三角函数值,由此引出一对教材中的问题,需要求出16活动目的:.般锐角的三角函数的计算问题 4实际教学效果:学生根据之前所学的三角函数的定义得出边角的关系,并对问题进行拓展,让学生对非特殊角的三角函数进行理解,对实际问题进行体会,由此感受到学习新知识的需要,产生探索的欲望.活动内容二:1?sin A,则∠A等于多少课前提出的问题. 4我们来看下面这个实际问题:[问题]随着人民生活水平的提高,私家小轿车越来越多,为了交通安全及方便行人推车过天桥,某市政府要在10 m高的天桥两端修建40m长的斜道.请问这条斜道的倾斜角是多少? (如下图所示)活动目的:通过上例创设问题情境,激发学习兴趣,学生要解决这个问题必须先求BC1 ,再求∠AsinA=,把这个问题归结为“已知三角函数值求相应锐AC4角的大小”.实际教学效果:学生的求知欲被激发起来,思维处于活跃状态,每个同学都积极探索解决这个实际问题的办法与途径.寻求方法、练习掌握已知三角函数值求角度,要用到、活动内容:键-1-1-1.键的第二功能“sin,cos ,tan”和例如:①已知sinA=0.9816,求锐角A.②已知cosA=0.8607,求锐角A.③已知tanA=56.78,求锐角A.5sinA=0.9816cosA=0.8607tanA=56.78键即可显示以“度、分、.上表的显示结果是以“度”为单位的再按.秒”为单位的结果1=0.25.按键顺序为这一环节的引例中sinA=4.∠A=14°28′39″.(以后在用计算器求角度时如果没有特别说明,结果精确到1″即可.)(教学时,给学生以充分交流的时间和空间,教师要引导学生根据自己使用的计算器,探索具体操作步骤.)活动目的:前一环节课已经学习如何利用科学计算器求已知角的三角函数值,通过本环节学习,使学生掌握如何利用科学计算器由锐角三角函数值求相应的锐角的大小,即已知三角函数值求角度,要用到、、键的第二-1-1-1键 sin功能“.,cos,tan此外,通过这一环节促进学生的可逆性”和.联想学生能够利用科学计算器由已知锐角三角函数值反过来求相实际教学效果:体会了三角函数值应的锐角的大小,并从中体会用科学计算器解决问题的优势,. 和对应角度的对应关系活动内容(练一练):下面请同学们用计算器计算下列各式的值(多媒体演示).61、用计算器求下列各式的值.(1)sin56°;(2)cos20.5°;(3)tan44°59′59″;(4)sin15°+cos61°+tan76°.(以小组为单位,展开竞赛,看哪一组既快又准确)答案:(1)sin56°≈0.8290;(2)cos20.5°≈0.9367;(3)tan44°59′59″≈1.0000;(4)sin15°+cos61°+tan76°≈0.2588+0.4848+4.0108=4.7544.答案:θ≈56°活动目的:通过上面的练习,使学生通过亲手操作掌握利用计算器由已知锐角三角函数值求相应锐角大小的方法,并能进行不同角度单位之间的转换.实际教学效果:学生能够正确使用计算器解决已知锐角三角函数值求相应锐角的大小的问题(包括函数值为无理数的情形).第三环节:例题讲解例1.求图中避雷针的长度(结果精确到0.01m).BCBD o?50?tan?tan56,解:∵2020??50?BC20BD?20tan56tan∴??m825?.56BC?BD??20tantan?2050CD∴ACB)∠形角求深测得它的上口宽形槽工件上有一2例题:V,20mm,19.2mm,V( 7的大小(结果精确到1°).DC第四环节:随堂练习坝高斜AD=16m,ABCD,坝顶宽CD=3m,:练习1 某水库大坝的横断面是梯形AB.和坝底宽BC的坡角∠B8m,斜坡BC的坡比为1:3,求斜坡CDBAMN.的面积,求△ABC根据图中已知数据2. 如图,A4cm46°32°CB根据图中已知数据,求如图3. ,AD.8ABDC4cm第五环节课堂小结活动内容:谈一谈:这节课你学习掌握了哪些新知识?通过这节课的学习你有哪些收获和感想?活动目的:鼓励学生结合本节课的学习,从数学方法、数学思维与科学工具等方面谈自己的收获与感想.实际教学效果:学生畅所欲言谈自己的学习感受和实际收获:学会了运用计算器计算已知锐角的三角函数值以及由三角函数值求角;运用三角函数解决与直角三角形有关的实际问题;三角函数的有关知识与现实生活有密切的联系.进一步认识数学方法、数学思维与科学工具的功能,增强在解决问题的过程中综合运用三个方面解决问题的意识.第六环节布置作业习题1.4.第七环节课外探究活动内容:拓展创新演练:°角,如图,某地夏日一天中午,太阳光线与地面成80 AB=1.8 m,要在窗户外面上方安装一个房屋朝南的窗户高AC,使光线恰好不能直射室内,求挡板AC 的宽度水平挡板(结果精确到0.01 m) .9四、教学反思少年智则国智,少年富则国富,少年强则国强,少年独立则国独立,少年自由则国自由,少年进步则国进步,少年胜于欧洲,则国胜于欧洲,少年雄于地球,则国雄于地球。

相关文档
最新文档