可控硅知识
可控硅的主要参数

可控硅的主要参数可控硅(SCR)是一种常见的半导体器件,也被称为双向可控整流二极管(thyristor)或晶闸管。
它是一种电子开关,可控硅具有多种主要参数,这些参数对于合理选用和应用可控硅是非常重要的。
本文将介绍可控硅的主要参数,包括阈值电压、额定电流、最大可承受电压、触发电流和反向触发电压。
1.阈值电压(VBO):阈值电压是指在可控硅关闭状态下,当施加的压差超过该电压时,可控硅将开始导通。
阈值电压是可控硅能否实现可控的重要参数。
2.额定电流(IT):额定电流是指可控硅能够长时间承受的最大电流。
超过额定电流的电流将会引起可控硅的过热和损坏,因此在使用可控硅时应确保电流不超过额定电流。
3.最大可承受电压(VDRM):最大可承受电压是指在关闭状态下,可控硅可以承受的最高电压。
当施加的电压超过最大可承受电压时,可控硅可能损坏。
4.触发电流(IGT):触发电流是指在可控硅导通之前需要施加的触发电流。
触发电流是可控硅实现可控的重要参数。
5.反向触发电压(VDRM):反向触发电压是指可控硅在关闭状态下能承受的最高反向电压。
超过该电压,可控硅可能开始导通,导致不可预计的行为。
除了上述主要参数外,可控硅还有一些其他的重要参数,如触发时间(tQ)、关断时间(tQ)、导通压降(VF)和静态工作点等。
这些参数需要根据具体的应用需求来选择和考虑。
总之,可控硅的主要参数包括阈值电压、额定电流、最大可承受电压、触发电流和反向触发电压等。
掌握这些参数对于正确选择和应用可控硅至关重要。
通过详细了解可控硅的参数,可以更好地设计和使用可控硅,以满足各种不同的电气控制需求。
什么是可控硅

什么是可控硅一、概述可控硅(SCR,Silicon-Controlled Rectifier)是一种电子器件,也称为双向晶闸管(TRIAC,Triode for alternating current)。
它属于功率半导体器件,可以进行电流的正反向控制,具有经济、可靠、范围广等优点,在诸多工业应用领域得到广泛应用。
二、组成可控硅由四个PN结组成,也就是说,它是一种四层半导体器件。
PN结是指正负电荷聚集形成的界面,由P型半导体和N型半导体构成。
可控硅的四个PN结分别为:•P型半导体•N型半导体•P型半导体•N型半导体这四个PN结相互连接而成,形成双向电流通道。
三、工作原理可控硅有两个电极,即控制电极和主电极。
当控制电极加上触发电压时,可控硅就会导通,电流开始在主电极上流动;当控制电极断电时,可控硅停止导通,电流中断。
具体来说,当控制电极加上触发电压时,可控硅的P1-N1结区域中的电子和瞬间发生注入效应,导致P1-N1结区域中的电流瞬间增大;这个过程称为开启。
当控制电极电压下降到触发电压以下时,可控硅将自动保持导通状态,即使控制电极断电也不会中断电流。
反之,当控制电极断电时,可控硅的P1-N1结区域中的电子将被P1端的空穴重新吸收,导致电流瞬间中断;这个过程称为关断。
可控硅的关断需要用反向电压来实现,即控制电极与主电极之间分别加上正、负电压,这样才能断开电流通道。
四、应用可控硅在工业控制领域应用广泛,可以用于:•电动机控制•加热控制•电源控制•充电器控制•交流电调节•灯光调节•家用电器等电子产品控制同时,可控硅的使用也存在一些限制:•工作稳定性较差,容易出现温度漂移,需要考虑散热设计。
•受限于电压和电流范围,在一些高压、高电流场合中无法使用。
五、总结可控硅作为一种高性价比、可靠、范围广的功率半导体器件,在现代工业生产中扮演着极为重要的角色。
通过控制电压和电流的开启和关断,可控硅可以实现多种电子系统和工业设备的精确控制。
可控硅知识

可控硅知识一、可控硅的概念和结构?晶闸管又叫可控硅(Silicon Controlled Rectifier, SCR)。
自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。
今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。
从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。
可控硅二、晶闸管的主要工作特性为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。
晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。
注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。
晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。
现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。
这个演示实验给了我们什么启发呢?可控硅这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。
晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。
晶闸管的特点:是“一触即发”。
但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。
控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。
那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。
可控硅(SCR)知识

可控硅(SCR)知识可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。
它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。
1.可控硅的特性。
可控硅分单向可控硅、双向可控硅。
单向可控硅有阳极A、阴极K、控制极G 三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G 三个引出脚。
只有当单向可控硅阳极A 与阴极K 之间加有正向电压,同时控制极G 与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K 间呈低阻导通状态,阳极A 与阴极K 间压降约1V。
单向可控硅导通后,控制器G 即使失去触发电压,只要阳极A 和阴极K 之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A 电压拆除或阳极A、阴极K 间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A 和阴极K 间又重新加上正向电压,仍需在控制极G 和阴极K 间有重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1 与第二阳极A2 间,无论所加电压极性是正向还是反向,只要控制极G 和第一阳极A1 间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
此时A1、A2 间压降也约为1V。
双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。
只有当第一阳极A1、第二阳极A2 电流减小,小于维持电流或A1、A2 间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。
2.单向可控硅的检测。
万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极。
可控硅的工作原理与种类

可控硅的工作原理与种类可控硅(Silicon Controlled Rectifier,SCR)是一种用于控制大电流的半导体元件,广泛应用于电力电子领域。
其工作原理是基于PN结的特性,通过控制正向偏置电压和触发电流,实现对电流的控制。
可控硅由四个PN结组成,即两个正向接触的P区,中间夹着两个N区。
当P 区加上正向电压,N区加上反向电压时,PN结呈现出正向偏置特性,此时NPNPN结构的形成使电流能够通过。
但当P区加上负向电压,N区加上正向电压时,PN结的反向耐压特性生效,电流无法通过。
在可控硅导通之前,需要通过一个触发电流(Gate Current)来激活。
当触发电流Igt满足一定标准时,从低阻态(OFF态)向高阻态(ON态)切换,并开始导通电流,从而实现对电流的控制。
在可控硅中,还存在一个关键参数叫做触发电压(Gate Voltage)。
当触发电流通过后,正向电压达到一定值时,才能够激活并导通,这就是触发电压的作用。
触发电压的值取决于具体的可控硅型号与工作条件。
可控硅根据不同的工作状态和应用特性,可分为以下几种类型:1. 静态门极控制型可控硅(SGCR)静态门极控制型可控硅是最常见的一种可控硅类型。
当触发电流通过后,硅片的移动电荷会改变PN结的导电特性,从而实现硅片的导通。
通过改变触发信号来控制触发电流,可以实现对电流的调控。
2. 双向晶闸管(Thyristor)双向晶闸管是一种具有双向导通能力的可控硅。
与普通的单向可控硅不同,双向晶闸管可以实现两个方向上的导通和关断。
这种特性使其适用于交流电源的控制。
3. 光控硅(Light Controlled SCR,LSCR)光控硅是一种通过光控制触发电流的可控硅。
光控硅内部嵌入了一个光敏元件,当光敏元件受到光照时,产生电流以激活SCR。
通过改变光照强度和光敏元件的特性,可以实现对电流的控制。
4. 可控硅二极管(SCR-Diodes)可控硅二极管是一种由多个可控硅串联而成的电子元件。
可控硅基本知识

可控硅的工作原理及基本特性1、工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1 可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流 ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通和关断条件状态条件说明从关断到导通 1、阳极电位高于是阴极电位2、控制极有足够的正向电压和电流两者缺一不可维持导通 1、阳极电位高于阴极电位2、阳极电流大于维持电流两者缺一不可从导通到关断 1、阳极电位低于阴极电位2、阳极电流小于维持电流任一条件即可2、基本伏安特性可控硅的基本伏安特性见图2图2 可控硅基本伏安特性(1)反向特性当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。
此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。
此时,可控硅会发生永久性反向击穿。
图3 阳极加反向电压(2)正向特性当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压图4 阳极加正向电压由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。
可控硅参数说明
可控硅参数说明可控硅是一种常见的半导体器件,也被称为晶闸管。
它具有可控性强、效率高、性能稳定等优点,在电力控制和电子控制领域得到广泛应用。
下面是对可控硅参数的详细说明:1.最大额定电压(VRRM):可控硅能够承受的最大电压。
超过这个额定电压时,可控硅可能会出现击穿现象,导致失效或损坏。
2.最大平均整流电流(IOAV):在特定条件下,可控硅能够持续稳定工作的最大平均电流。
该参数与可控硅的热稳定性和功率特性有关。
3.最大重复峰值反向电压(VRSM):可控硅能够承受的最大峰值电压。
超过这个峰值电压时,可控硅可能会出现击穿现象,导致失效或损坏。
4.最大峰值水平电流(IPP):可控硅在极端工作条件下能够承受的瞬时峰值电流。
该参数与可控硅的电流承载能力和热稳定性有关。
5.最大正向门极触发电流(IFGT):为了激活可控硅,需要施加正向的门极触发电流。
该参数表示可控硅的最大门极触发电流。
6.最大正向临界触发电流(IFRM):当可控硅被正向触发时,电流开始流过器件,达到临界触发电流的值。
该参数表示可控硅的最大正向临界触发电流。
7.最大漏极电流(IRM):未施加触发电流时,可控硅漏极的泄露电流。
该参数表示可控硅的泄露电流水平。
8.最大导通电压降(VTM):在可控硅正向导通状态下,器件两端的电压降。
该参数对于功耗和电压稳定性非常重要。
9.最大反向漏电流(IRRM):在可控硅反向电压下,漏极的最大反向泄露电流。
该参数表示可控硅的漏路电流水平。
10. 最大引出电阻(Rth):可控硅的热阻值,表示器件在工作过程中产生的热量与温度之间的关系。
较小的热阻值有利于可控硅的散热和长时间稳定工作。
以上是对可控硅参数的详细说明,这些参数在可控硅的选择和应用中非常重要。
在使用可控硅时,需要根据具体的应用需求和工作环境来选择合适的可控硅型号和参数。
bta20可控硅参数
bta20可控硅参数摘要:一、可控硅概述二、可控硅的分类与性能三、可控硅的参数四、可控硅的应用五、总结正文:一、可控硅概述可控硅(Silicon Controlled Rectifier,简称SCR)是一种四层三端的半导体器件,具有电压控制的开关特性。
它有阳极(Anode,A)、阴极(Cathode,K)和控制极(Gate,G)三个端子。
可控硅主要用于交流电路中的整流、交直流转换、逆变等,可以实现对电压、电流的控制,从而控制电气设备的功率输出。
二、可控硅的分类与性能1.按结构分类:可分为单相可控硅、三相可控硅。
2.按电压等级分类:可分为低压可控硅(小于600V)、中压可控硅(600V-3000V)和高压可控硅(大于3000V)。
3.按电流等级分类:可分为小功率可控硅(小于100A)、中功率可控硅(100A-1000A)和大功率可控硅(大于1000A)。
4.可控硅的性能:可控硅具有高耐压、高电流、低功耗、长寿命、高可靠性等特点。
三、可控硅的参数1.正向阻断电压:可控硅导通时,需要施加的最低电压,使得可控硅正常导通。
2.正向峰值电流:可控硅可以承受的最大正向电流。
3.反向耐压:可控硅所能承受的最高反向电压。
4.控制灵敏度:可控硅控制极电压变化与阳极电流之间的关系。
5.开关速度:可控硅从导通到阻断,或从阻断到导通的时间。
四、可控硅的应用1.电源电路:可控硅广泛应用于交流电源、直流电源、变压器等领域,实现电源的整流、逆变等功能。
2.工业控制:可控硅用于工业控制系统中,实现对电机、加热设备等电气设备的控制。
3.家电领域:可控硅应用于电视机、洗衣机、空调等家用电器中,实现电源转换、电机控制等功能。
4.通信设备:可控硅在通信设备中用于电源管理、信号处理等模块。
五、总结可控硅作为一种重要的半导体器件,在电子电路中具有广泛的应用。
了解可控硅的分类、性能和参数,对我们分析和应用可控硅具有重要意义。
在实际应用中,根据电路需求选择合适参数的可控硅,可以确保电气设备的稳定运行。
可控硅名词解释
可控硅名词解释可控硅又称为晶闸管,晶闸管是硅晶体闸流管的简称。
可控硅是大功率变流器件,利用其整流可控特性可方便地对大功率电源进行控制和变换。
它具有体积小、重量轻、耐压高、容量大,使用维护简单、控制灵敏等优点,所以在生产上得到了广泛应用。
一、可控硅的用途1、可控整流把交流电变换为大小可调的直流电称为可控整流。
例如,直流电动机调压、调速,电解、电镀电源均可采用可控整流供电。
2、有源逆变有源逆变是指把直流电变换成与电网同频率的交流电,并将电能返送给交流电源。
例如,高压输电工程将三相交流电先变换成高压直流电,再进行远距离输送,到达目的地后,再利用有源逆变技术把直流电变换成与当地电网同频率的交流电供给用户。
3、交流调压交流调压是指把不变的交流电压变换成大小可调的交流电压。
例如,用于灯光控制、温度控制及交流电动机的调压、调速。
4、变频器把某一频率的交流电变换成另一频率交流电的设备称为变频器。
例如,可控硅中频电源、不间断电源(UPS)、异步电动机变频调速中均含有变频器。
5、无触点功率开关用可控硅可组成无触点功率开关,取代接触器、继电器,用于操作频繁的场合。
例如,可用于控制电动机正反转和防爆、防火的场合。
二、可控硅的结构可控硅是用硅材料制成的半导体器件,它有3种结构形式:螺栓式、平板式和塑料封装式。
三、可控硅的工作原理上图所示的电路做实验说明。
可控硅与灯泡串联经开关S1接到电源Ea上,门极与阴极经开关S2接到电源Eg上。
开关S1、S2皆为双掷开关,可有正、零、反3种位置。
1、电源Ea的正极接阳极A、负极接阴极K,称可控硅承受正向阳极电压。
2、电源Ea的负极接阳极A、正极接阴极K,称可控硅承受反向阳极电压。
3、电源Eg的正极接门极G、负极接阴极K,称可控硅承受正向门极电压。
4、电源Eg的负极接门极G、正极接阴极K,称可控硅承受反向门极电压。
可控硅的主要参数
可控硅的主要参数
可控硅是一种由硅原料制成的,它可以按照设定的电压参数调节电流的元件。
这一特性使得可控硅在电力调节、恒流电源、电源供电、变压器补偿器等方面有着广泛应用,其优质性能得到应用者的认可。
一、结构
可控硅由两种主要结构组成:硅片和电子控制部件。
硅片由锆钨耦合结构,其结构决定了电路的功率调节能力。
电子控制部件是由一些简单的电路元件组成,它们可以控制电路中的电流强度,从而控制电流的大小。
二、工作原理
可控硅的工作原理是将一个恒定的电压输入到硅晶体中,然后使用电子控制元件控制电流的强度,从而调节电流的大小。
电路中的电流与电源电压之间存在着一定的关系,增加电源电压会增加电流的强度,减少电源电压会减少电流的强度。
三、主要参数
1.电压电流特性:可控硅的电压-电流特性曲线是其工作参数,其工作范围可以根据用户的要求来确定。
2.要求的操作电压:在进行工作评估时,要求的操作电压对可控硅的工作性能具有重要影响。
3.热特性:可控硅在工作时会发热,应注意使可控硅在工作状态下不会造成过热破坏。
4.噪声特性:可控硅在工作过程中可能会发生噪声,这可能会影响电路的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可控硅知识的问与答
一、可控硅的概念和结构?
晶闸管又叫可控硅。
自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。
今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。
从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。
图2
二、晶闸管的主要工作特性
为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。
晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。
注意阳极A是接电源的正极,阴极K接电源的负极,控制极G 通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V 直流电源的正极)。
晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。
现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。
这个演示实验给了我们什么启发呢?
图3
这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。
晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。
晶闸管的特点: 是“一触即发”。
但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。
控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。
那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。
如果晶闸管阳极和阴极之间外加的是交流电压或脉动直流电压,那么,在电压过零时,晶闸管会自行关断。
三、用万用表可以区分晶闸管的三个电极吗?怎样测试晶闸管的好坏呢?
普通晶闸管的三个电极可以用万用表欧姆挡R×100挡位来测。
大家知道,晶闸管G、K之间是一个PN结〔图2(a)〕,相当于一个二极管,G为正极、K为负极,所以,按照测试二极管的方法,找出三个极中的两个极,测它的正、反向电阻,电阻小时,万用表黑表笔接的是控制极G,红表笔接的是阴极K,剩下的一个就是阳极A了。
测试晶闸管的好坏,可以用刚才演示用的示教板电路(图3)。
接通电源开关S,按一下按钮开关SB,灯泡发光就是好的,不发光就是坏的
四、晶闸管在电路中的主要用途是什么?
普通晶闸管最基本的用途就是可控整流。
大家熟悉的二极管整流电路属于不可控整流电路。
如果把二极管换成晶闸管,就可以构成可控整流电路。
现在我画一个最简单的单相半波可控整流电路〔图4(a)〕。
在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。
现在,画出它的波形图〔图4(c)及(d)〕,可以看到,只有在触发脉冲Ug到来时,负载RL上才有电压UL输出(波形图上阴影部分)。
Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。
通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。
在电工技术中,常把交流电的半个周期定为180°,称为电角度。
这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内晶闸管导通的电角度叫导通角θ。
很明显,α和θ都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。
通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。
五、在桥式整流电路中,把二极管都换成晶闸管是不是就成了可控整流电路了呢?
在桥式整流电路中,只需要把两个二极管换成晶闸管就能构成全波可控整流电路了。
现在画出电路图和波形图(图5),就能看明白了。
六、晶闸管控制极所需的触发脉冲是怎么产生的呢?
晶闸管触发电路的形式很多,常用的有阻容移相桥触发电路、单结晶体管触发电路、晶体三极管触发电路、利用小晶闸管触发大晶闸管的触发电路,等等。
今天大家制作的调压器,采用的是单结晶体管触发电路。
七、什么是单结晶体管?它有什么特殊性能呢?
单结晶体管又叫双基极二极管,是由一个PN结和三个电极构成的半导体器件(图6)。
我们先画出它的结构示意图〔图7(a)〕。
在一块N型硅片两端,制作两个电极,分别叫做第一基极B1和第二基极B2;硅片的另一侧靠近B2处制作了一个PN结,相当于一只二极管,在P区引出的电极叫发射极E。
为了分析方便,可以把B1、B2之间的N型区域等效为一个纯电阻RBB,称为基区电阻,并可看作是
两个电阻RB2、RB1的串联〔图7(b)〕。
值得注意的是RB1的阻值会随发射极电流IE的变化而改变,具有可变电阻的特性。
如果在两个基极B2、B1之间加上一个直流电压UBB,则A点的电压UA为:若发射极电压UE<UA,二极管VD截止;当UE大于单结晶体管的峰点电压UP(UP=UD+UA)时,二极管VD 导通,发射极电流IE注入RB1,使RB1的阻值急剧变小,E点电位UE随之下降,出现了IE增大UE 反而降低的现象,称为负阻效应。
发射极电流IE继续增加,发射极电压UE不断下降,当UE下降到谷点电压UV以下时,单结晶体管就进入截止状态。
八、怎样利用单结晶体管组成晶闸管触发电路呢?
单结晶体管组成的触发脉冲产生电路在今天大家制作的调压器中已经具体应用了。
为了说明它的工作原理,我们单独画出单结晶体管张弛振荡器的电路(图8)。
它是由单结晶体管和RC充放电电路组成的。
合上电源开关S后,电源UBB经电位器RP向电容器C充电,电容器上的电压UC按指数规律上升。
当UC上升到单结晶体管的峰点电压UP时,单结晶体管突然导通,基区电阻RB1急剧减小,电容器C通过PN结向电阻R1迅速放电,使R1两端电压Ug发生一个正跳变,形成陡峭的脉冲前沿〔图8(b)〕。
随着电容器C的放电,UE按指数规律下降,直到低于谷点电压UV时单结晶体管截止。
这样,在R1两端输出的是尖顶触发脉冲。
此时,电源UBB又开始给电容器C充电,进入第二个充放电过程。
这样周而复始,电路中进行着周期性的振荡。
调节RP可以改变振荡周期。
九、在可控整流电路的波形图中,发现晶闸管承受正向电压的每半个周期内,发出第一个触发脉冲的时刻都相同,也就是控制角α和导通角θ都相等,那么,单结晶体管张弛振荡器怎样才能与交流电源准确地配合以实现有效的控制呢?
为了实现整流电路输出电压“可控”,必须使晶闸管承受正向电压的每半个周期内,触发电路发出第一个触发脉冲的时刻都相同,这种相互配合的工作方式,称为触发脉冲与电源同步。
怎样才能做到同步呢?大家再看调压器的电路图(图1)。
请注意,在这里单结晶体管张弛振荡器的电源是取自桥式整流电路输出的全波脉冲直流电压。
在晶闸管没有导通时,张弛振荡器的电容器C
被电源充电,UC按指数规律上升到峰点电压UP时,单结晶体管VT导通,在VS导通期间,负载RL 上有交流电压和电流,与此同时,导通的VS两端电压降很小,迫使张弛振荡器停止工作。
当交流电压过零瞬间,晶闸管VS被迫关断,张弛振荡器得电,又开始给电容器C充电,重复以上过程。
这样,每次交流电压过零后,张弛振荡器发出第一个触发脉冲的时刻都相同,这个时刻取决于RP的阻值和C的电容量。
调节RP的阻值,就可以改变电容器C的充电时间,也就改变了第一个Ug发出的时刻,相应地改变了晶闸管的控制角,使负载RL上输出电压的平均值发生变化,达到调压的目的。
双向晶闸管的T1和T2不能互换。
否则会损坏管子和相关的控制电路。