精品教学 中考数学经典题库(六个专题):精品教学 中考数学经典题库专题03 数与式.
中考数学专题分项汇总专项练习-专题03有理数的运算(1)

专题03有理数的运算(1)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(湖南娄底)2020年中央财政下达义务教育补助经费1695.9亿元,比上年增长8.3%.其中1695.9亿元用科学记数法表示为( )A .1016.95910⨯元B .81695.910⨯元C .101.695910⨯元D .111.695910⨯元2.(内蒙古通辽)2020年我市初三毕业生超过30000人,将30000用科学记数法表示正确的是( ) A .50.310⨯B .4310⨯C .33010⨯D .3万3.(广东广州)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为( ) A .5152.3310⨯B .615.23310⨯C .71.523310⨯D .80.1523310⨯4.(贵州毕节)中国的国土面积约为9600000平方千米,用科学记数法表示为( ) A .96×105 B .0.96×107 C .9.6×106 D .9.6×1075.(海南中考真题)从海南省可再生能源协会2020年会上获悉,截至4月底,今年我省风电、光伏及生物质能的新能源发电量约772000000千瓦时.数据772000000可用科学记数法表示为( ) A .677210⨯B .777.210⨯C .87.7210⨯D .97.7210⨯6.(山东东营)-6的倒数是( ). A .6B .16C .16-D .7.(吉林中考真题)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为( ) A .611.0910⨯B .71.10910⨯C .81.10910⨯D .80.110910⨯8.(黑龙江大庆)天王星围绕太阳公转的轨道半径长约为2 900 000 000km ,数字2 900 000 000用科学记数法表示为( ) A .82.910⨯B .92.910⨯C .82910⨯D .100.2910⨯9.(四川眉山)据世界卫生组织2020年6月26日通报,全球新冠肺炎确诊人数达到941万人,将数据941万人,用科学记数法表示为( ) A .29.4110⨯人B .59.4110⨯人C .69.4110⨯人D .70.94110⨯人10.(四川内江)12的倒数是( ) A .B .C .12D .12-11.(四川绵阳)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( ) A .0.69×107B .69×105C .6.9×105D .6.9×10612.(江苏无锡)﹣7的倒数是( ) A .17B .7C .-17D .﹣713.(四川凉山)(﹣1)2020等于( ) A .﹣2020B .2020C .﹣1D .114.(江西中考真题)3-的倒数是( ) A .3B .13 C .13-D .3-15.(江苏泰州)-2的倒数是( ) A .-2B .12-C .12D .216.(贵州毕节)3的倒数是( ) A .B .C .D .17.(湖北随州)2020的倒数是( ) A .12020B .12020-C .2020D .-202018.(四川宜宾)我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度是7100米/秒,将7100用科学记数法表示为( ) A .7100B .40.7110⨯C .27110⨯D .37.110⨯19.(广东深圳)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为( ) A .0.15×108B .1.5×107C . 15×107D .1.5×10820.(湖南永州)永州市现有户籍人口约635.3万人,则“现有户籍人口数”用科学记数法表示正确的是( ) A .56.35310⨯人B .563.5310⨯人C .66.35310⨯人D .70.635310⨯21.(广西中考真题)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为( ) A .388.910⨯B .488.910⨯C .58.8910⨯D .68.8910⨯22.(吉林长春)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为( ) A .37910⨯B .47.910⨯C .50.7910⨯D .57.910⨯23.(江苏南通)计算|﹣1|﹣3,结果正确的是( ) A .﹣4B .﹣3C .﹣2D .﹣124.(江苏南通)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( ) A .6.8×104B .6.8×105C .0.68×105D .0.68×10625.(辽宁沈阳)2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为( ) A .1.09×103B .1.09×104C .10.9×105D .0.109×10526.(云南中考真题)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( ) A .61510⨯ B .51.510⨯C .61.510⨯D .71.510⨯27.(山东泰安)12-的倒数是( ) A .B .C .12-D .1228.(广西玉林)2的倒数是( ) A .2B .12C .12-D .-229.(西藏中考真题)20+(﹣20)的结果是( ) A .﹣40B .0C .20D .4030.(西藏中考真题)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为( ) A .16×106B .1.6×107C .1.6×108D .0.16×10831.(湖南娄底)﹣2020的倒数是( )A.﹣2020 B.﹣12020C.2020 D.1202032.(山西中考真题)计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是()A.18-B.2C.18D.2-33.(内蒙古中考真题)2020年初,国家统计局发布数据,按现行国家农村贫困标准测算,截至2019年末,全国农村贫困人口减少至551万人,累计减少9348万人.将9348万用科学记数法表示为()A.80.934810⨯B.79.34810⨯C.89.34810⨯D.693.4810⨯二、填空题34.(广西河池)计算:3﹣(﹣2)=_____.35.(内蒙古呼伦贝尔)中国的领水面积约为370 000 km2,将数370 000用科学计数法表示为:__________.36.(辽宁鞍山)据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为________.37.(辽宁朝阳)在全国上下众志成城抗疫情、保生产、促发展的关键时刻,三峡集团2月24日宣布:在广东、江苏等地投资580亿元,开工建设25个新能源项目,预计提供17万个就业岗位将“580亿元”用科学记数法表示为____________元.38.(辽宁铁岭)伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000人,将数据450000000科学记数法表示为_____________.39.(江苏泰州)据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学计数法表示为_______.40.(辽宁丹东)据有关报道,2020年某市斥资约5 800 000元改造老旧小区,数据5 800 000科学记数法表示为_________.41.(黑龙江鹤岗)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为________.42.(江苏镇江)23倒数是________.43.(江苏镇江)2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为_____.44.(江苏无锡)2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000 是__________. 45.(内蒙古鄂尔多斯)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.46.(江苏宿迁)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为_____.47.(辽宁营口)长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为_____. 48.(山东烟台)5G 是第五代移动通信技术,5G 网络下载速度可以达到每秒1300000KB 以上,这意味着下载一部高清电影只需1秒,将1300000用科学记数法表示应为__________. 49.(广西玉林)计算:()06--=_________.50.(重庆中考真题)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人,请把数94000000用科学记数法表示为____.51.(湖南益阳)我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定位于距离地球36000千米的地球同步轨道,将"36000"用科学计数法表示为__________.52.(内蒙古呼和浩特)“书法艺求课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为___________,并可推断出5月30日应该是星期几____________. 53.(内蒙古通辽)计算:(1)0(3.14)π-= ______;(2)2cos45︒=______;(3)21-= ______.54.(湖北黄石)据报道,2020年4月9日下午,黄石市重点园区(珠三角)云招商财富推介会上,我市现场共签项目20个,总投资137.6亿元,用科学计数法表示137.6亿元,可写为_____元.55.(黑龙江穆棱�朝鲜族学校中考真题)一周时间有604800秒,604800用科学记数法表示为______.56.(四川宜宾)定义:分数nm(m ,n 为正整数且互为质数)的连分数(其中为整数,且等式右边的每一个分数的分子都为1),记作1211....n m a a ∆++=:例如711111....19511119222221177111515222∆====++++++++=,719的连分数是11211122+++,记作71111192122∆+++=,则________________111123∆++=.三、解答题57.(黑龙江大庆)计算:115(1)3π-⎛⎫---+ ⎪⎝⎭58.(广西中考真题)计算:()()213142--+÷-⨯.59.(湖南益阳)“你怎么样,中国便是怎么样:你若光明,中国便不黑暗”。
中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
初中数学(初升高)中考全国真题题库3(含解析)

初中数学初升高(中考)全国真题题库3(含解析)一、选择题1.(2023·大庆)端午节是我国传统节日,端午节前夕,某商家出售粽子的标价比成本高25%,当粽子降价出售时,为了不亏本,降价幅度最多为( )A.20%B.25%C.75%D.80% 2.(2023·大庆)下列说法正确的是( )A.一个函数是一次函数就一定是正比例函数B.有一组对角相等的四边形一定是平行四边形C.两条直角边对应相等的两个直角三角形一定全等D.一组数据的方差一定大于标准差3.(2023·大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A.B.C.D.4.(2021·河池)如图是由几个小正方体组成的几何体,它的左视图是( )A.B.C.D.5.(2021·河池)下列各式中,与 2a2b 为同类项的是( )A.−2a2b B.−2ab C.2a b2D.2a2 6.(2021·河池)二次函数 y=a x2+bx+c(a≠0) 的图象如图所示,下列说法中,错误的是( )A.对称轴是直线 x=12B.当−1<x<2 时, y<0C.a+c=b D.a+b>−c7.(2021·河池)下列图形中,既是轴对称图形又是中心对称图形的是( ) A.B.C.D.8.(2020·攀枝花)下列式子中正确的是( ).A.a2−a3=a5B.(−a)−1=a C.(−3a)2=3a2D.a3+2a3=3a3 9.(2020·攀枝花)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019−nCoV .该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为 a×10n 的形式,则 n 为( ).A.-8B.-7C.7D.8 10.(2020·徐州)3的相反数是( ).A.-3B.3C.−13D.1311.(2020·攀枝花)若关于 x 的方程 x2−x−m=0 没有实数根,则m的值可以为( ).A.-1B.−14C.0D.112.(2020·攀枝花)下列说法中正确的是( ).A.0.09的平方根是0.3B.√16=±4C.0的立方根是0D.1的立方根是 ±1 13.(2020·攀枝花)实数a、b在数轴上的位置如图所示,化简 √(a+1)2+√(b−1)2−√(a−b)2 的结果是( ).A.-2B.0C.-2a D.2b 14.(2020·攀枝花)如图,直径 AB=6 的半圆,绕B点顺时针旋转 30° ,此时点A到了点 A′ ,则图中阴影部分的面积是( ).A.π2B.3π4C.πD.3π二、填空题15.(2023·大庆)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,¿展开的多项式中各项系数之和为 .16.(2023·大庆)一个圆锥的底面半径为5,高为12,则它的体积为 .17.(2023·大庆)若关于x的不等式组{3(x−1)>x−68−2x+2a≥0有三个整数解,则实数a的取值范围为 .18.(2023·大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是 .19.(2023·大庆)已知(x−2)x+1=1,则x的值为 .20.(2021·河池)分式方程3x−2=1 的解是 x=¿ .21.(2021·河池)在平面直角坐标系中,一次函数 y=2x 与反比例函数 y=kx(k≠0) 的图象交于A(x1,y1) , B(x2,y2) 两点,则 y1+y2 的值是 .22.(2020·攀枝花)因式分解:a-ab2= .23.(2020·攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门反而合算.三、计算题24.(2021·河池)先化简,再求值:(x+1)2−x(x+1) ,其中 x=2021.四、解答题25.(2023·大庆)为营造良好体育运动氛围,某学校用800元购买了一批足球,又用1560元加购了第二批足球,且所购数量是第一批购买数量的2倍,但单价降了2元,请问该学校两批共购买了多少个足球五、综合题26.(2023·大庆)如图,二次函数y=a x2+bx+c的图象与x轴交于A,B两点,且自变量x的部分取值与对应函数值y如下表:x⋯−101234⋯y⋯0−3−4−305⋯(1)求二次函数y=a x2+bx+c的表达式;(2)若将线段AB向下平移,得到的线段与二次函数y=a x2+bx+c的图象交于P,Q两点(P在Q 左边),R为二次函数y=a x2+bx+c的图象上的一点,当点Q的横坐标为m,点R的横坐标为m+√2时,求tan∠RPQ的值;(3)若将线段AB先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数y=1t(a x2+bx+c)的图象只有一个交点,其中t为常数,请直接写出t的取值范围.27.(2021·河池)如图,在 Rt△ABC 中, ∠A=90° , AB=4 , AC=3 ,D,E分别是AB,BC边上的动点,以BD为直径的 ⊙O交BC于点F.(1)当 AD=DF 时,求证:△CAD≅△CFD;(2)当 △CED 是等腰三角形且△DEB 是直角三角形时,求AD的长.28.(2021·河池)为了解本校九年级学生的体质健康情况,李老师随机抽取35名学生进行了一次体质健康测试,根据测试成绩制成统计图表.组别分数段人数A x<602B60≤x<755C75≤x<90aD x≥9012请根据上述信息解答下列问题:(1)本次调查属于 调查,样本容量是 ;(2)表中的 a=¿ ,样本数据的中位数位于 组;(3)补全条形统计图;(4)该校九年级学生有980人,估计该校九年级学生体质健康测试成绩在D组的有多少人?29.(2021·河池)如图, ∠CAD 是 △ABC 的外角.(1)尺规作图:作 ∠CAD 的平分线AE(不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若 AE/¿BC ,求证:AB=AC.30.(2020·攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线 MN 的距离皆为 100cm .王诗嬑观测到高度 90cm矮圆柱的影子落在地面上,其长为 72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线 MN互相垂直,并视太阳光为平行光,测得斜坡坡度 i=1:0.75 ,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为 150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否符合题意?(3)若同一时间量得高圆柱落在坡面上的影子长为 100cm ,则高圆柱的高度为多少cm?答案解析部分1.【答案】A【解析】【解答】解:设粽子的降价幅度为x,成本价为a元,则标价为(1+25%)m元,根据题意得(1+25%)m(1-x)≥m,解之:x≥20%,∴当粽子降价出售时,为了不亏本,降价幅度最多为20%.故答案为:A.【分析】设粽子的降价幅度为x,成本价为a元,根据当粽子降价出售时,为了不亏本,可得到关于x的不等式,然后求出不等式的最小值即可.2.【答案】C【解析】【解答】解:A、一个函数是正比例函数就一定是一次函数,故A不符合题意;B、有一组对角相等的四边形不是平行四边形,故B不符合题意;C、两条直角边对应相等的两个直角三角形一定全等,故C符合题意;D、一组数据的方差不一定大于标准差,故D不符合题意;故答案为:C.【分析】利用一次函数不一定是正比例函数,可对A作出判断;利用平行四边形的判定定理可对B 作出判断;利用SAS可对C作出判断;利用一组数据的方差不一定大于标准差,可对D作出判断. 3.【答案】A【解析】【解答】解:从上往下看是一个矩形.故答案为:A.【分析】俯视图就是从几何体的上面往下看,所看到的平面图形,根据几何体可得到是俯视图的选项.4.【答案】A【解析】【解答】解:主视图是由前向后看得到的物体的视图,由前向后看共3列,中间一列有3个小正方形,左右两列各一个小正方形.故从坐左边看只有1列,三行,每一行都只有一个小正方形,故答案为:A.【分析】左视图是由视线从左向右看在侧面所得的视图,从左边看只有1列,三行,每一行都只有一个小正方形,则可解答.5.【答案】A【解析】【解答】与 2a2b 是同类项的特点为含有字母a,b ,且对应 a 的指数为2, b 的指数为1,只有A选项符合;故答案为:A.【分析】字母相同,并且相同字母的指数也相同的两个式子叫同类项. 同类项的条件有两个:1、所含的字母相同;2、相同字母的指数也分别相同. 根据条件分别判断即可.6.【答案】D【解析】【解答】解:A、对称轴为:直线 x=−1+22=12 ,故答案为:A正确,不符合题意;B、由函数图象知,当-1<x<2时,函数图象在x轴的下方,∴当-1<x<2时,y<0,故答案为:B正确,不符合题意;C、由图可知:当x=-1时,y=a-b+c=0,∴a +c=b,故答案为:C正确,不符合题意;D、由图可知:当x=1时,y=a+b+c<0∴a+b<-c,故答案为:D错误,不符合题意;故答案为:D.【分析】根据抛物线与x轴的交点坐标求对称轴方程判断A;在图象中找出x下方部分x的范围判断B;根据x=-1时,y=a-b+c=0,变形可判断C;根据当x=1时,y=a+b+c<0,变形可判断D.7.【答案】B【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既是轴对称图形,又是中心对称图形,故B符合题意;C、是中心对称图形,不是轴对称图形,故C不符合题意;D、是轴对称图形,不是中心对称图形,故A不符合题意;故答案为:B.【分析】根据轴对称和中心对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,中心对称图形绕其中心点旋转180°后图形仍和原来图形重合。
精品教学 中考数学经典题库(六个专题):精品教学 中考数学经典题库专题06 三角形

专题六 三角形 三角形01 有关的角和边1.三角形的分类: (1)按边分类: (2)按角分类:2. 三角形的边与边之间的关系:(1)三角形两边的和大于第三边;(2)三角形两边的差小于第三边; 3. 三角形的角与角之间的关系:(1) 三角形三个内角的和等于180︒;(2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余. 4.n 边形内角和=(n -2)·180;n 边形对角线个数:2)3(-n n 条 5.边与角的关系① 在一个三角形中,等边对等角,等角对等边;大边对大角,大角对大边。
练习题一、选择题:1. 已知有长为1,2,3的线段若干条,任取其中3样构造三角形,则最多能构成形状或大小不同的三角形的个数是( )A. 5B. 7C. 8D. 102. 如图所示:AB 是圆O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( ) A. 2个 B. 3个 C.4个 D.5个3. 如图,△ABC 中BC 边上的高为h 1,△DEF 中DE 边上的高为h 2,下列结论正确的是( ) A. h 1>h 2 B. h 1<h 2 C. h 1=h 2 D.无法确定4. 已知△ABC 中,∠B =600,∠C >∠A ,且(∠C )2=(∠A )2+(∠B )2,则△ABC 的形状是( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定5. 一个等腰三角形如图所示,顶角为∠A ,作∠A 的三等分线AD 、AE (即∠1=∠2=∠3),若BD =x ,DE =y ,EC =z ,则有( )A. x >y >zB.x =y >zC.x =z >yD.x =y =z三角形 直角三象形 斜三角形 锐角三角形 钝角三角形6.如图,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )7.如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14cm 2 8. 如图所示,将△ABC 的三边AC 、BA 、CB 分别延长至D ,E ,F ,且AC =CD ,EA =2BA ,FB =3B C.若S △ABC =1,那么S △DEF 的面积为( )A. 15B. 16C. 17D. 189.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位臵,且ED BC ⊥,则CE 的长是( ) A.10315- B.1053- C.535- D.20103-10.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当P A =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定 11.如图所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用2011个这样的三角形镶嵌而成的四边形的周长是( )A. 2011B. 2012C. 2013D. 2014二、填空题:12. 如图,点A ,B 是圆O 上两点,AB =10,点P 是圆O 上的动点(P 与A ,B 不重合),连接AP ,PB ,过点O 分别作OE ⊥AP 于点E ,OF ⊥PB 于点F ,则EF =13.在△ABC 中,∠A =Rt ∠,∠B =60,∠B 的平分线交AC 于D ,点D 到边BC 的距离为2cm ,则边AC 的长是__cm14.已知△ABC 的两边长a 和b (a <b ),则这个三角形的周长L 的取值范是____15. 如图,CE 平分∠ACB ,且CE ⊥DB ,∠DAB =∠DBA ,AC =18cm ,△CBD 的周长为28cm ,则DB = 16.一个多边形截去一个角后,所得的新多边形的内角和为2520°,则原多边形有____条边。
专题03 列方程解决应用题(解析版)-2021年中考数学必考的十五种类型大题夺分技巧再训练

专题03 列方程解决应用题1.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【答案】见解析。
【分析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26, 解得:{x =5y =3. 答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.2.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a %,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a %.求a的值.【答案】见解析。
中考数学几何最值模型 专题03 辅助圆模型(学生版+解析版)

辅助圆模型模型讲解一、定点定长1、O为定点,OA=OB,且长度固定,那么O、A、B三点可以确定一个圆,动点P在圆弧AB上运动,如图所示,Q为圆外一定点,当P运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,PQ最小。
二、定弦定角2、线段AB固定,Q为动点,且∠AQB为定值,那么Q、A、B三点可以确定一个圆,动点Q在圆弧AB上运动,如图所示,R为圆外一定点,当Q运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,RQ最小。
方法点拨一、题型特征:①动点的运动轨迹为圆②圆外一点到圆上一点的距离最短:即圆外一点与圆心连线与圆的交点③常见确定圆的模型:定点定长、定弦定角。
二、模型本质:两点之间,线段最短。
例题演练1.如图,已知AB=AC=BD=6,AB⊥BD,E为BC的中点,则DE的最小值为()A.3﹣3B.3C.3﹣3D.2【解答】解:取AB的中点O,连接AE,OE,OD.∵AB=AC,BE=EC,∴AE⊥BC,∴∠AEB=90°,∵OA=OB,∴OE=AB=3,∵AB⊥BD,∴∠OBD=90°,∵OB=3,BD=6,∴OD===3,∵DE≥OD﹣OE,∴DE≥3﹣3,∴DE的最小值为3﹣3,故选:C.强化训练1.如图,矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足∠PBC =∠PCD,则线段PD的最小值为()A.5B.1C.2D.3 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE ⊥BE,则线段CE的最小值为.3.如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB =∠ACP,则线段PB长度的最小值为.4.如图,在矩形ABCD中,AB=4,BC=6,E是平面内的一个动点,且满足∠AEB=90°,连接CE,则线段CE长的最大值为.5.如图1,P是⊙O外的一点,直线PO分别交⊙O于点A,B,则P A是点P 到⊙O上的点的最短距离.(1)探究一:如图2,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(2)探究二:如图3,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值.(3)探究三,在正方形ABCD中,点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=4,试求出线段CP的最小值.1.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.辅助圆模型模型讲解一、定点定长1、O为定点,OA=OB,且长度固定,那么O、A、B三点可以确定一个圆,动点P在圆弧AB上运动,如图所示,Q为圆外一定点,当P运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,PQ最小。
初三数学专题练习题库
初三数学专题练习题库1.多项式1.1 多项式的基本概念多项式是由若干单项式相加或相减得到的代数表达式。
其中,每个单项式称为多项式的项,项中的字母和它的整数指数的乘积称为这个项的次数。
多项式按照次数的降序排列,称为多项式的标准形式。
1.2 多项式的运算(1) 多项式的加法与减法:将对应次数的项相加或相减。
(2) 多项式的乘法:将多项式的每一项与乘法器进行乘法运算,然后将所得的项相加。
练习题1:计算多项式$(3x^{2}-4x+5)-(5x^{2}-7x+3)$。
2.方程与不等式2.1 一元一次方程与不等式(1) 一元一次方程:形如$ax+b=c$的方程,其中a、b和c是已知数,且a不等于0。
(2) 一元一次不等式:形如$ax+b>c$或$ax+b<c$的不等式,其中a、b和c是已知数且a不等于0。
练习题2:解方程$2x-3=5x+2$。
2.2 一元二次方程与不等式(1) 一元二次方程:形如$ax^{2}+bx+c=0$的方程,其中a、b和c是已知数,且a不等于0。
(2) 一元二次不等式:形如$ax^{2}+bx+c>0$或$ax^{2}+bx+c<0$的不等式,其中a、b和c是已知数,且a不等于0。
练习题3:解方程$3x^{2}-4x-5=0$。
3.几何3.1 几何图形的分类几何学研究的对象是几何图形,几何图形可以分为二维几何图形和三维几何图形。
二维几何图形包括点、线、线段、射线、角、多边形等。
三维几何图形包括立体图形、曲面图形等。
3.2 三角形的性质与计算(1) 三角形的内角和为180度。
(2) 等腰三角形的底角相等,等边三角形的三个角都相等。
(3) 根据三角形的边长关系,可以使用勾股定理、正弦定理、余弦定理等计算三角形的边长和角度。
练习题4:已知三角形的两边长分别为4cm和5cm,夹角为60度,求第三边的长度。
4.函数与图像4.1 函数的定义和性质(1) 函数是一个映射关系,表示自变量和因变量之间的关系。
中考数学题库(含答案和解析)
中考数学题库(含答案和解析)一、选择题(本题有10小题.每小题3分.共30分) 1.实数﹣2的绝对值是A .﹣2B .2C .12D .12-【答案】B【解析】22-=.故选B 2A .4B .±4C .D .±【答案】C=故选C .3.不等式315x ->的解集是A .2x >B .2x <C .43x > D .43x < 【答案】A【解析】315x ->.移项得36x >.解得2x >.故选A . 4.下列事件中.属于不可能事件的是 A .经过红绿灯路口.遇到绿灯 B .射击运动员射击一次.命中靶心 C .班里的两名同学.他们的生日是同一天D .从一个只装有白球和红球的袋中摸球.摸出黄球 【答案】D【解析】从一个只装有白球和红球的袋中摸球.可能摸出白球或红球.不可能摸出黄球.故选D.5.将如图所示的长方体牛奶包装盒沿某些棱剪开.且使六个面连在一起.然后铺平.则得到的图形可能是【答案】A【解析】本题考查长方体的展开图问题.属于基础题.选项A符合题意.6.如图.已知点O是△ABC的外心.∠A=40°.连结BO.CO.则∠BOC 的度数是A.60°B.70°C.80°D.90°【答案】C【解析】本题考查同弧所对圆周角与圆心角的关系.∠BOC=2∠A=80°.选C.1<b.则a.b分别是7.已知a.b是两个连续整数.a≈.与0.7相邻的连续整数是0和1.选C.10.78.如图.已知在△ABC中.∠ABC<90°.AB≠BC.BE是AC边上的中线.按下列步骤作图:①分别以点B.C为圆心.大于线段BC长度一半的长为半径作弧.相交于点M.N;②过点M.N作直线MN.分别交BC.BE于点D.O;③连结CO.DE.则下列结论错误的是A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE【答案】D【解析】∵OD垂直平分BC.所以OB=OC.故A正确;根据三线合一可知OD平分∠BOC.故B正确;易知DE是三角形的中位线.所以有DE∥AB.故C正确.综上.选D.9.如图.已知在矩形ABCD中.AB=1.BC点P是AD边上的一点C1也随之运动.若点P从点A运动到点D.则线段CC1扫过的区域的面积是A.πB.πC D.2π【答案】B【解析】如图.C1运动的路径是以B 为圆心.圆心角为120°的弧上运动.故线段CC 1扫过的区域是一个圆心角为120°的扇形+一个以为边长的等边三角形.故S =2π=.故选B .10.已知抛物线2y ax bx c =++(a ≠0)与x 轴的交点为A(1.0)和B(3.0).点P 1(1x .1y ).P 2(2x .2y )是抛物线上不同于A.B 的两个点.记△P 1AB 的面积为S 1.△P 2AB 的面积为S 2.有下列结论:①当122x x >+时.12S S >;②当122x x <-时.12S S <;③当1x 2221x ->->时.12S S >;④当12221x x ->+>时.12S S <.其中正确结论的个数是A .1B .2C .3D .4 【答案】A【解析】由于1S .2S 的底相同.当1x 2221x ->->时.P 1到AB 的距离>P 2到AB 的距离.故③正确.其他选项无法比较P 1.P 2与x 轴距离的远近.故选A .卷 II二、填空题(本题有6小题.每小题4分.共24分) 11.计算:122-⨯= . 【答案】1【解析】111022221--⨯===.12.如图.已知在Rt △ABC 中.∠ACB =90°.AC =1.AB =2.则sinB 的值是 .【答案】12【解析】sinB =AC 1AB2=.13.某商场举办有奖销售活动.每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位.设5个一等奖.15个二等奖.不设其他奖项.则只抽1张奖券恰好中奖的概率是 . 【答案】150【解析】设恰好中奖为时间A.则P(A)=5151100050+=. 14.为庆祝中国共产党建党100周年.某校用红色灯带制作了一个如图所示的正五角星(A.B.C.D.E 是正五边形的五个顶点).则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式.求出每个内角的度数为108°.即∠ABC =∠BAE =108°.那么等腰△ABC 的底角∠BAC =36°.同理可求得∠DAE =36°.故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°.可以作为一个常识直接记住.15.已知在平面直角坐标系xOy 中.点A 的坐标为(3.4).M 是抛物线22y ax bx =++(a ≠0)对称轴上的一个动点.小明经探究发现:当b a的值确定时.抛物线的对称轴上能使△AOM 为直角三角形的点M 的个数也随之确定.若抛物线22y ax bx =++(a ≠0)的对称轴上存在3个不同的点M.使△AOM 为直角三角形.则b a的值是 .【答案】2或﹣8【解析】由题意知.以OA 的直径的圆与直线2bx a=-相切.则35222b a --=.解得b a=2或﹣8.16.由沈康身教授所著.数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图.三姐妹为了平分一块边长为1的祖传正方形地毯.先将地毯分割成七块.再拼成三个小正方形(阴影部分).则图中AB 的长应是 .1【解析】如图.CD =1.DG .则求得CG .根据△CDG ∽△DEG.可求得DE.∴AE =1.∴AB AE 1.三、解答题(本题有8小题.共66分) 17.(本小题6分)计算:(2)(1)(1)x x x x +++-. 【答案】21x +【解析】解:原式2221x x x =++-21x =+.18.(本小题6分)解分式方程:2113x x -=+.【答案】4x =【解析】解:213x x -=+4x =.经检验.4x =是原方程的解.19.(本小题6分)如图.已知经过原点的抛物线22y x mx =+与x 轴交于另一点A(2.0). (1)求m 的值和抛物线顶点M 的坐标; (2)求直线AM 的解析式.【答案】(1)﹣4.(1.﹣2);(2)24y x =-. 【解析】解:(1)∵抛物线22y x mx =+过点()2,0A .22220m ∴⨯+=.解得4m =-.224y x x ∴=-. 22(1)2y x ∴=--∴顶点M 的坐标是()1,2-.(2)设直线AM 的解析式为()0y kx b k =+≠. ∵图象过()()2,0,1,2A M -.202k b k b +=⎧∴⎨+=-⎩.解得24k b =⎧⎨=-⎩. ∴直线AM 的解析式为24y x =-.20.(本小题8分)为了更好地了解党的历史.宣传党的知识.传颂英雄事迹.某校团支部组建了:A .党史宣讲;B .歌曲演唱;C .校刊编撰;D .诗歌创作等四个小组.团支部将各组人数情况制成了如下统计图表(不完整).根据统计图表中的信息.解答下列问题:(1)求a和m的值;(2)求扇形统计图中D所对应的圆心角度数;(3)若在某一周各小组平均每人参与活动的时间如下表所示:求这一周四个小组所有成员平均每人参与活动的时间.【答案】(1)20.20;(2)36°;(3)2.6小时.【解析】解:(1)由题意可知四个小组所有成员总人数是1530%50÷=(人).∴=---=.a501015520m=÷⨯=.%1050100%20%m∴=.20(2)55036036÷⨯︒=︒.∴扇形统计图中D所对应的圆心角度数是36︒.(3)1(10 2.520315253) 2.6x=⨯⨯+⨯+⨯+⨯=(小时).50∴这一周四个小组所有成员平均每人参与活动的时间是2.6小时.21.(本小题8分)如图.已知AB是⊙O的直径.∠ACD是AD所对的圆周角.∠ACD =30°.(1)求∠DAB的度数;(2)过点D 作DE ⊥AB.垂足为E.DE 的延长线交⊙O 于点F .若AB =4.求DF 的长.【答案】(1)60°;(2)【解析】解:(1)连结BD .30ACD ∠=︒. 30B ACD ∴∠=∠=︒.AB 是O 的直径.90ADB ∴∠=︒.9060DAB B ∴∠=︒-∠=︒.(2)90,30,4ADB B AB ∠=︒∠=︒=.122AD AB ==. 60,DAB DE AB ∠=︒⊥.且AB 是直径.sin 60EF DE AD ︒∴===2DF DE =∴=22.(本小题10分)今年以来.我市接待的游客人数逐月增加.据统计.游玩某景区的游客人数三月份为4万人.五月份为5.76万人.(1)求四月和五月这两个月中.该景区游客人数平均每月增长百分之几;(2)若该景区仅有A.B 两个景点.售票处出示的三种购票方式如下表所示:据预测.六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时.丙种门票价格每下降1元.将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元.求景区六月份的门票总收人;②问:将丙种门票价格下降多少元时.景区六月份的门票总收入有最大值?最大值是多少万元? 【答案】(1)20%;(2)①798;②24.817.6【解析】解:(1)设四月和五月这两个月中.该景区游客人数的月平均增长率为x .由题意.得24(1) 5.76x +=解这个方程.得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中.该景区游客人数平均每月增长20%.(2)①由题意.得()()()()1002100.06803100.0416*******.06100.04⨯-⨯+⨯-⨯+-⨯+⨯+⨯=(万元)798答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元.景区六月份的门票总收人为W 万元.由题意.得()()()() =-+-+-++W m m m m m10020.068030.0416020.060.04化简.得2=--+.W m0.1(24)817.6-<.0.10∴当24m=时.W取最大值.为817.6万元.答:当丙种门票价格降低24元时.景区六月份的门票总收人有最大值.为817.6万元.23.(本小题10分)已知在△ACD中.P是CD的中点.B是AD延长线上的一点.连结BC.AP.(1)如图1.若∠ACB=90°.∠CAD=60°.BD=AC.AP求BC的长;(2)过点D作DE∥AC.交AP延长线于点E.如图2所示.若∠CAD=60°.BD=AC.求证:BC=2AP;(3)如图3.若∠CAD=45°.是否存在实数m.当BD=m AC时.BC =2AP?若存在.请直接写出m的值;若不存在.请说明理由.【答案】(1)(2)略;(3. 【解析】(1)解:90,60ACB CAD ∠=∠=︒︒.2cos60ACAB AC ︒==. BD AC =. AD AC ∴=.ADC ∴是等边三角形. 60ACD ∴∠=︒Р是CD 的中点.AP CD ∴⊥.在Rt APC 中.AP =2sin 60APAC ∴==︒.tan 60BC AC =︒=∴(2)证明:连结BE .DE AC ∥.CAP DEP ∴∠=∠.,CP DP CPA DPE =∠=∠.()CPA DPE AAS ∴≌. 1,2AP EP AE DE AC ∴===. BD AC =.BD DE ∴=.又DE AC ∥.60BDE CAD ∴∠=∠=︒.BDE ∴是等边三角形.,60∴=∠=︒BD BE EBD=.BD ACAC BE∴=.又60,∠=∠=︒=.CAB EBA AB BA()∴≌. AE BCCAB EBA SAS∴=.BC AP∴=.2(3)存在这样的m m=,24.(本小题12分)已知在平面直角坐标系xOy中.点A是反比例函数1=(x>0)图象yx上的一个动点.连结AO.AO的延长线交反比例函数ky=(k>0.x<0)的x图象于点B.过点A作AE⊥y轴于点E.(1)如图1.过点B作BF⊥x轴于点F.连结EF.①若k=1.求证:四边形AEFO是平行四边形;②连结BE.若k=4.求△BOE的面积.(2)如图2.过点E作EP∥AB.交反比例函数k=(k>0.x<0)的yx图象于点P.连结OP.试探究:对于确定的实数k.动点A在运动过程中.△POE的面积是否会发生变化?请说明理由.【答案】(1)①略;②1;(2)不变.【解析】解:(1)①证明 设点A 的坐标为1(,)a a.则当1k =时.点B 的坐标为1(,)a a--.AE OF a ∴==.AE y ⊥轴.AE OF ∴∥.∴四边形AEFO 是平行四边形. ②解 过点B 作BD y ⊥轴于点D .AE y ⊥轴.AE BD ∴∥.AEO BDO ∴∽.2()AEO BDOS AO SBO∴=. ∴当4k =时.212()2AOBO=.即12AO BO =. 21BOEAOESS∴==.(2)解:不改变.理由如下:过点P 作PH x ⊥轴于点,H PE 与x 轴交于点G . 设点A 的坐标为1(,)a a.点P 的坐标为(,)k b b. 则1,,,k AE a OE PH ab ===-.由题意.可知AEO GHP ∽.四边形AEGO 是平行四边形.,AE EOGH b a GH PH=--=. 即1a a kb a b=---. 1b a k a b += 2()0b bk a a∴+-=.解得12b a -±=. ,a b 异号.0k ≥.12b a -∴=.1111()224POEb Sb a a ∴=⨯⨯-=-⨯=. ∴对于确定的实数k .动点A 在运动过程中.POE 的面积不会发生变化.。
专题03二次根式(优选真题60道)三年(2021-2023)中考数学真题分项汇编【全国通用】(原卷版
三年(2021-2023)中考数学真题分项汇编【全国通用】专题03二次根式(优选真题60道)一.选择题(共24小题)1.(2023•烟台)下列二次根式中,与√2是同类二次根式的是()A.√4B.√6C.√8D.√122.(2023•岳阳)对于二次根式的乘法运算,一般地,有√a•√b=√ab.该运算法则成立的条件是()A.a>0,b>0B.a<0,b<0C.a≤0,b≤0D.a≥0,b≥03.(2023•金华)要使√x−2有意义,则x的值可以是()A.0B.﹣1C.﹣2D.24.(2023•巴中)下列运算正确的是()A.x2+x3=x5B.√3×√2=√6C.(a﹣b)2=a2﹣b2D.|m|=m5.(2023•江西)若√a−4有意义,则a的值可以是()A.﹣1B.0C.2D.66.(2023•临沂)设m=5√15−√45,则实数m所在的范围是()A.m<﹣5B.﹣5<m<﹣4C.﹣4<m<﹣3D.m>﹣37.(2023•天津)sin45°+√22的值等于()A.1B.√2C.√3D.28.(2023•扬州)已知a=√5,b=2,c=√3,则a、b、c的大小关系是()A.b>a>c B.a>c>b C.a>b>c D.b>c>a9.(2023•台州)下列无理数中,大小在3与4之间的是()A.√7B.2√2C.√13D.√1710.(2023•云南)按一定规律排列的单项式:a,√2a2,√3a3,√4a4,√5a5,…,第n个单项式是()A.√n B.√n−1a n−1C.√na n D.√na n−111.(2023•重庆)估计√5×(√6−1√5)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间12.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则√a2+1+|a﹣1|的化简结果是()A .1B .2C .2aD .1﹣2a 13.(2022•安顺)估计(2√5+5√2)×√15的值应在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 14.(2022•广州)代数式√x+1有意义时,x 应满足的条件为( ) A .x ≠﹣1 B .x >﹣1C .x <﹣1D .x ≤﹣1 15.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v =√2as 进行计算,其中a 为子弹的加速度,s 为枪筒的长.如果a =5×105m /s 2,s =0.64m ,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .0.4×103m /sB .0.8×103m /sC .4×102m /sD .8×102m /s 16.(2022•青岛)计算(√27−√12)×√13的结果是( )A .√33B .1C .√5D .3 17.(2022•绥化)若式子√x +1+x﹣2在实数范围内有意义,则x 的取值范围是( ) A .x >﹣1 B .x ≥﹣1 C .x ≥﹣1且x ≠0D .x ≤﹣1且x ≠0 18.(2021•内江)函数y =√2−x +1x+1中,自变量x 的取值范围是( )A .x ≤2B .x ≤2且x ≠﹣1C .x ≥2D .x ≥2且x ≠﹣119.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是( )A .√8与√3B .√2与√12C .√5与√15D .√75与√2720.(2021•大连)下列计算正确的是( )A .(−√3)2=﹣3B .√12=2√3C .√−13=1D .(√2+1)(√2−1)=3 21.(2021•益阳)将√452化为最简二次根式,其结果是( ) A .√452 B .√902 C .9√102 D .3√10222.(2021•娄底)2、5、m 是某三角形三边的长,则√(m −3)2+√(m −7)2等于( )A .2m ﹣10B .10﹣2mC .10D .423.(2021•河北)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣124.(2021•常德)计算:(√5+12−1)•√5+12=( )A .0B .1C .2D .√5−12二.填空题(共26小题)25.(2023•滨州)一块面积为5m 2的正方形桌布,其边长为 .26.(2023•陕西)如图,在数轴上,点A 表示√3,点B 与点A 位于原点的两侧,且与原点的距离相等.则点B 表示的数是 .27.(2023•枣庄)计算(√2023−1)0+(12)−1= .28.(2023•安徽)计算:√83+1= .29.(2023•广安)√16的平方根是 .30.(2023•自贡)请写出一个比√23小的整数 .31.(2023•天津)计算(√7+√6)(√7−√6)的结果为 .32.(2023•永州)已知x 为正整数,写出一个使√x −3在实数范围内没有意义的x 值是 .33.(2023•连云港)计算:(√5)2= .34.(2022•朝阳)计算:√63÷√7−|﹣4|= .35.(2022•日照)若二次根式√3−2x 在实数范围内有意义,则x 的取值范围为 .36.(2022•青海)若式子√x−1有意义,则实数x 的取值范围是 .37.(2022•北京)若√x −8在实数范围内有意义,则实数x 的取值范围是 .38.(2022•哈尔滨)计算√3+3√13的结果是 .39.(2022•包头)若代数式√x +1+1x 在实数范围内有意义,则x 的取值范围是 .40.(2022•荆州)若3−√2的整数部分为a ,小数部分为b ,则代数式(2+√2a )•b 的值是 .41.(2022•常德)要使代数式√x−4有意义,则x 的取值范围为 .42.(2022•随州)已知m 为正整数,若√189m 是整数,则根据√189m =√3×3×3×7m =3√3×7m 可知m 有最小值3×7=21.设n 为正整数,若√300n 是大于1的整数,则n 的最小值为 ,最大值为 .43.(2022•天津)计算(√19+1)(√19−1)的结果等于 .44.(2022•泰安)计算:√8•√6−3√43= .45.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简|a +1|−√(b −1)2+√(a −b)2= .46.(2022•内蒙古)已知x ,y 是实数,且满足y =√x −2+√2−x +18,则√x ⋅√y 的值是 .47.(2022•六盘水)计算:√12−2√3= .48.(2022•邵阳)若√x−2有意义,则x 的取值范围是 .49.(2021•铜仁市)计算(√27+√18)(√3−√2)= .50.(2021•荆州)已知:a =(12)﹣1+(−√3)0,b =(√3+√2)(√3−√2),则√a +b = . 三.解答题(共10小题)51.(2023•内江)计算:(﹣1)2023+(12)﹣2+3tan30°﹣(3﹣π)0+|√3−2|. 52.(2023•十堰)计算:|1−√2|+(12)﹣2﹣(π﹣2023)0. 53.(2023•岳阳)计算:|﹣3|+√4+(﹣2)×1.54.(2023•上海)计算:√83+12+√5−(13)﹣2+|√5−3|. 55.(2023•陕西)计算:√5×(−√10)−(17)−1+|−23|.56.(2023•岳阳)计算:22﹣tan60°+|√3−1|﹣(3﹣π)0.57.(2023•眉山)计算:(2√3−π)0﹣|1−√3|+3tan30°+(−12)﹣2. 58.(2023•武威)计算:√27÷√32×2√2−6√2.59.(2022•陕西)计算:5×(﹣2)+√2×√8−(13)﹣1. 60.(2022•襄阳)先化简,再求值:(a +2b )2+(a +2b )(a ﹣2b )+2a (b ﹣a ),其中a =√3−√2,b =√3+√2.。
中考数学题库(含答案和解析)
解得:
在数轴上表示其解集如下:
故选B
【点睛】本题考查的是一元一次不等式的解法.在数轴上表示不等式的解集.掌握“小于向左拐”是解本题的关键.
6.“方胜”是中国古代妇女的一种发饰.其图案由两个全等正方形相叠组成.寓意是同心吉祥.如图.将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形 .形成一个“方胜”图案.则点D. 之间的距离为()
13.小曹同学复习时将几种三角形的关系整理如图.请帮他在横线上____填上一个适当的条件.
中考数学题库(含答案和解析)
一、选择题(本题有10小题)
1.若收入3元记为+3.则支出2元记为()
A.1B.-1C.2D.-2
【答案】D
【解析】
【分析】根据正负数的意义可得收入为正.收入多少就记多少即可.
【详解】解:∵收入3元记 +3.
∴支出2元记为-2.
故选:D
【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时.通常把向指定方向变化的量规定为正数.而把向指定方向的相反方向变化的量规定为负数.
【答案】D
【解析】
【分析】根据同底数幂的乘法法则进行运算即可.
【详解】解:
故选D
【点睛】本题考查的是同底数幂的乘法.掌握“同底数幂的乘法.底数不变.指数相加”是解本题的关键.
4.如图.在⊙O中.∠BOC=130°.点A在 上.则∠BAC的度数为( )
A.55°B.65°C.75°D.130°
【答案】B
12.不透明的袋子中装有5个球.其中有3个红球和2个黑球.它们除颜色外都相同.从袋子中随机取出1个球.它是黑球的概率是_____.
【答案】
【解析】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 三 数与式实数:1、实数的分类:实数0⎧⎧⎪⎨⎨⎩⎪⎩正实数有理数或无理数负实数2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数. 若a 、b 互为相反数,则a +b =0,1-=a b (a 、b ≠0)4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()m m mmn nmn m n m b a ab a a a a a ⋅===⋅+,, (a ≠0)负整指数幂的性质:pp pa a a ⎪⎭⎫⎝⎛==-11; 零整指数幂的性质:10=a (a ≠0) 8、实数的开方运算:()a a a a a =≥=22;0)( 9、实数的混合运算顺序*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2)带根号的数是无理数如;(3)两个无理数的和、差、积、商也还是无理数,如(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一位置,*11、实数的大小比较: (1).数形结合法;(2).作差法比较;(3).作商法比较;(4).倒数法: 如6756--与(5).平方法 整式1、代数式的有关概念.(1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代人 2、整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式. (2)多项式:几个单项式的和,叫做多项式 (3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷. 3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.(3)合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变. 4、乘法公式:(1).平方差公式:()()22b a b a b a -=-+ (2).完全平方公式:,2)(222b ab a b a +±=±5、因式分解(1)多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.(2)分解因式的常用方法有:提公因式法和运用公式法 分式:1.分式:整式A 除以整式B ,可以表示成的形式,如果除式B 中含有字母,那么称为分式. 注:(1)若B ≠0,则有意义;(2)若B =0,则无意义;(2)若A =0且B ≠0,则=0 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后 再与被除式相乘. 7.通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉. 8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值. 二次根式1.二次根式的有关概念(1)二次根式:)0(≥a a 叫做二次根式.注意被开方数只能是正数或O . (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式:化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式. 2.二次根式的性质:);0()(2≥=a a a ⎩⎨⎧<-≥==);0(),0(||2a a a a a a )0;0(≥≥⋅=b a b a ab ;)0;0(>≥=b a ba ba3.二次根式的运算(1)二次根式的加减:①先把各个二次根式化成最简二次根式;②再把同类二次根式分别合并(2) 二次根式的乘法 (3)二次根式的除法一、选择题:1.实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc >④ac ab >A.1个B.2个C.3个D.4个 2.已知,4a b m ab +==-,化简(2)(2)a b --的结果是( )A.6B.2m -8C.2mD.-2m 3.计算44()()xy xyx y x y x y x y-++--+的正确结果是( ) A.22y x - B.22x y - C.224x y - D.224y x - 4.若分式212x x m-+不论x 取何实数总有意义,则m 的取值范围是( ) A.m ≥1 B.m >1 C.m ≤1 D.m <15.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006B .2007C .2008D .20096.已知963222+---x x x x 的值为零,则x 2的值是( )A.1B.-1C.1/9或1D.1/9或-17.已知△ABC 的三边a 、b 、c 满足224210212--+=--++b a c b a ,则△ABC 为( ) A.等腰三角形 B.正三角形 C.直角三角形 D.等腰直角三角形 8.不等式组⎩⎨⎧-<+>232a x a x (x 为未知数)无解,则函数y =(3-a )x 2-x +41的图象与x 轴( )A.相交于一点B.没有交点C.相交于一点或两点D.相交于一点或无交点 二、填空题:9.81的平方根 ;若a <0,则2)(a --= 10.已知:|x |=3,|y |=2,且xy <0,则x +y 的值等于_______________11.已知三个互不相等的实数即可表示为1、a +b 、a ,也可表示为0、ab 、b , 则(a +b )2011+(ab )2012+(a +b -ab )x -x 2的值为 12.若523m x y +与3n x y 的和是单项式,则m n = 13.分解因式:2212a a b -+-=14.已知113x y -=,则分式2322x xy yx xy y+---的值为_________________15.设0a b >>,2260a b ab +-=,则a b b a+-的值等于16.已知224x ax --在整数范围内可以分解因式,则整数a 的值是_________ 17.如果x 2+(m -1)x +9是个完全平方式,那么m 的值为 18.若非零实数a ,b 满足2244a b ab +=,则b a=19.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”).20.如图,时钟的钟面上标有1,2,3…12共计12个数,一条直线把钟面分成了两部分,请你再用一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是21.如图,用同样规格的黑白两种颜色的正方形瓷砖按图1-1方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖 块(用含n 的代数式表示). 22.a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2011a =23.在方格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形.如图,在4×4的方格纸上,以AB 为边的格点三角形ABC 的面积为2个平方单位,则符合条件的C 点共有 个.三、计算证明题:24.因式分解:a 2-4ab +4b 2-16c 2 25.化简:)(2122n m n mn m nm ≠+--26.已知2514x x -=,求()()()212111x x x ---++的值。
27.若53=+xx ,求xx 3-的值。
28.已知:0152=+-x x ,计算:221xx +的值. 29.若a a x -=1,求x x 42+的值。
30.(1)已知x 2-2x -1=0,求2x 3-3x 2-4x +1的值. (2))12011)(201020111341231121(+++⋅⋅⋅++++++31.已知A =a +2,B = a 2-a +5,C =a 2+5a -19,其中a >2. (1)求证:B -A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由.32.已知x 、y 都是非负数,且满足4x+3y=8,求代数式562-+-x x 的最大值。
33.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,…(1)根据对上述式子的观察,你会发现1115=+O ,请写出W ,O 所表示的数;(2)进一步思考,单位分数n1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证. 智慧屋:1.如图,在△ABC 中,∠A =α,∠ABC 的平分线与∠ACD 的平分线交于点A 1 得∠A 1 ,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2 , 得∠A 2 , ……,∠A 2010BC 的平分线与∠A 2010CD 的平分线交于点A 2011 ,得∠A 2011 ,则∠A 2011= 。
2.若0)()()(222=-+-+-b a c a c b c b a ,求证:a 、b 、c 三个数中至少有两个数相等。
3.若2222009,2010,2011a x b x c x +=+=+=,且cb a abc ca b bc a abc 111,24---++=则的值是多少?4.已知a z y x =+,b x z y =+,c y x z =+,且0≠++z y x ,试求c c b b a a +++++111的值.5.已知:abc ≠0,且0=++c b a ,求222222222111cb a b ac a c b -++-++-+的值。