2018-2019学年度初二第二学期第一次月考试题及答案

合集下载

2018-2019学年第二学期八年级(下)第一次月考物理试卷(有答案含解析)

2018-2019学年第二学期八年级(下)第一次月考物理试卷(有答案含解析)

2018-2019学年第二学期八年级(下)第一次月考物理试卷一、选择题(每小题3分,共60分.其中18~20为多选题,至少有两个答案符合题意全部选对得3分,少选得2分,错选不得分)1.以下说法正确的是()A.只有人才能对物体施力B.施力的物体不一定受力C.不接触的物体只要能发生相互作用,就可能产生力D.以上说法都正确2.站在匀速上升的电梯里的人,受到的力是()A.重力、拉力B.重力、支持力C.压力、重力、支持力D.拉力、重力、支持力3.人在湖水中用桨划船时,使船前进的力是()A.人对船的推力B.桨对水的推力C.水直接对船的推力D.水对桨的推力4.一个成年人受到的重力大约是()A.6牛B.60牛C.600牛D.6000牛5.下列各现象中属于滑动摩擦的是()A.用笔写字时,手与笔杆之间B.用钢笔写字时,笔尖与纸面之间C.用手握住瓶子时,手与瓶子之间D.球在地面上向前滚动6.关于力和运动,下列说法中正确的是()A.物体静止不动时,一定不受力的作用B.物体只要运动,就一定受到力的作用C.物体速度改变时一定受到力的作用D.力是维持物体运动的原因7.以下措施中用来减小摩擦的是()A.上紧缝纫机的皮带B.在纲丝钳口刻上花纹C.在乒乓球拍上粘上带颗粒的胶皮D.在笔头上装上小钢珠,制成圆珠笔8.火车以2米/秒的速度匀速直线前进,一人在车厢地板上的P点竖直向上跳起0.5秒后落回到地板上。

这个人的落地点是()A.在P点前方1米处B.在P点后方1米处C.仍在P点处D.无法判断9.关于惯性的理解和现象解释,以下说法正确的是()A.航天员在空间站会失去惯性B.系安全带可以减少驾驶员的惯性C.飞行的子弹穿入木头静止后惯性消失D.运动员冲刺后不能马上停止是由于具有惯性10.目前人类发射的探测器已飞出了太阳系,如果探测器所受外力全部消失,那么探测器将()A.沿原路径返回地球B.沿原方向做减速直线运动C.沿原方向做加速直线运动D.沿原方向做匀速直线运动11.如图所示的情景中,属于二力平衡的是()A.B.C.D.12.有一弹簧测力计放在水平桌面上,两位同学各拉测力计的一端,使测力计在桌面上静止,测力计的示数为5N,忽略该测力计与桌面间的摩擦,则两位同学所用的力()A.均为2.5N B.均为5NC.均为10N D.分别为5N和10N13.如果物体受到力的作用,可以断定下列几种情况中物体一定是受到平衡力作用的是()A.物体在空中自由下落B.火车在平直的轨道上匀速运动C.将石块沿斜向上方向抛出D.电梯从静止状态加速上升14.用水平作用力F把物体压在竖直墙面上,物体处于静止状态,如图所示,当力F增大一点,物体仍然保持静止,则()A.物体所受重力增大B.物体所受摩擦力增大C.物体对墙面的压强增大D.物体所受合力增大15.如图是小君同学在大课间活动时踢毽子的情景,以下对毽子上下飞舞时所受合力的分析正确的是()A.上升过程合力方向向上B.最高点时处于静止状态合力为零C.下落过程合力越来越大D.上升过程合力大于下落过程合力16.在生物进化的过程中,动物身上的各种器官不断地完善,以适应生存的环境。

2018-2019学年(下)八年级第一次月考

2018-2019学年(下)八年级第一次月考

2018-2019学年(下)八年级第一次月考数学试卷(试卷满分:150分,考试时间:120分钟)班级 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.如果有意义,那么x 的取值范围是( ) A .x >1B .x ≥1C .x ≤1D .x <12.下列各组数中以a ,b ,c 为边的三角形不是直角三角形的是( ) A .a=2,b=3,c=4 B .a=7,b=24,c=25 C .a=6,b=8,c=10 D .a=1.5,b=2,c=2.5 3.下列二次根式中不能与3合并的是( )A .31B .31 C .32 D .124.如图1,在平行四边形ABCD 中,点E 在边AD 上,AB =AE ,则∠ABC =( ) A .∠A B .∠AEBC .∠DEBD .2∠AEB5.四边形ABCD 中,AB =CD ,AB ∥CD ,则下列结论中错误的是( ).A .∠A =∠B B .AD ∥BC C .∠A =∠CD .对角线互相平分 6.下列运算中错误的是( ) A .•=B .÷=2 C .+=D .(﹣)2=37.在Rt △ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( ) A . B . C . D .8.在四边形ABCD 中,∠A =∠C ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .∠B =∠D B .AB =CDC .AB∥CD D .AD ∥BC 9.化简(3―2)2002•(3+2)2003的结果为( )A .―1B .3―2C .3+2D .―3―2图110.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A .3cm 2 B .4cm 2 C .6cm 2 D .12cm 2二、填空题(本大题有6小题,第11题4分,其它各小题每题4分,共24分) 11.计算:(1) (-2= ;(2)2)3( = .12.命题“如果一个三角形中的两个锐角互余,那么这个三角形是直角三角形”的逆命题是 . 13.比较大小: 32 23(填“ > ” 或 “ < ”) 14.在□ABCD 中,如果∠A +∠C =140°,那么∠B = 度.15.如图,在□ABCD 中,AB =4,AC =6,BD =10,则□ABCD 的周长为 .16.△ABC 中,∠C=90°,AB= ,△ABC 的面积为4,则△ABC 的周长为三、解答题(本大题有9小题,共86分) 17.计算(本题10分)(1) (2)÷﹣×﹣.18. (本题7分)在Rt△ABC 中,∠C =90° , 若∠B =60°, BC =3 , 求△ABC 的周长.ABCDO19. (本题9分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点画一个三角形,使三角形三边长分别为AB=3,AC=10 , BC=13. 并求..AC ..上的高...20. (本题10分)已知:x =+1,y =﹣1,求下列代数式的值.(1)x 2+2xy +y 2(2)(4+ )y 221. (本题9分)如图,将长为2.5米长的梯子AB 斜靠在墙上,BE 长0.7米.如果梯子的顶端A 沿墙下滑0.4米(即AC=0.4米),则梯脚B 将外移(即BD 长)多少米?22. (本题9分)如图,AC 是平行四边形ABCD 的一条对角线,DE ⊥AC ,BF ⊥AC ,垂足分别是E ,F . 求证 四边形DEBF 是平行四边形.FECDBA图23. (本题9分)如图是一块地的平面图,AD=4m ,CD=3m ,AB=13m ,BC=12m ,∠ADC=90°,求这块地的面积.24. (本题11分)如图,在平行四边形ABCD 中, DE 垂直于对角线AC ,垂足是E ,连接BE , 若△ABE 是等边三角形,BC=73,(1)求证BE =2CE (2)求对角线AC 的长.25.(本题12分)如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒. (1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?DEABC。

2018-2019年八年级下第一次月考数学试卷(含答案)

2018-2019年八年级下第一次月考数学试卷(含答案)

八年级数学下册期中复习题(含答案)一、选择题:1.要使函数y=有意义,自变量x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<12.在下列各式中,3的同类二次根式是()A.B.2C.D.3.计算的结果估计在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间4.关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③:y=|x|;④y=3x-1.其中y是x函数的是()A.①②③B.①②③④C.①③D.①③④5.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4 B.7,24,25 C.8,12,20 D.5,13,15.6.如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB长为()A.4 B.3 C.2.5 D.27.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形8.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75°B.60°C.55°D.45°函数y=﹣2x+3的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限10.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A.3 B.4 C.5 D.612.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为( )A.9 B.10 C.13 D.25二、填空题:13.式子在实数范围内有意义,则x的范围是.14.3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.15.如图,已知OA=OB,那么数轴上点A所表示的数是____________.如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是.17.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.18.如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为.三、作图题:19.在如图的直角坐标系中,画出函数y=-2x+3的图象,并结合图象回答下列问题:(1)y的值随x值的增大而(填“增大”或“减小”);(2)图象与x轴的交点坐标是;图象与y轴的交点坐标是;(3)当x 时,y <0 ;(4)直线y=-2x+3与两坐标轴所围成的三角形的面积是: .四、解答题:20.计算:21.计算:22.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.23.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.24.为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3元/m3,(1)根据题意,填写下表:(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.25.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.参考答案1.A.2.A.3.C4.D5.B6.B7.D8.B.9.D10.C11.C12.C.13.答案为:x≥1且x≠2.14.答案是:x和y;3和7;y=3x﹣7.15.略16.答案为:m>2;17.答案为:AD=BC;18.答案为:6;19.(1)减小;(2)(1.5,0)(0,3);(3)x>1.5;(4)2.25.20.解:原式=21.解:原式=122.解:(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+82=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×=2,∴四边形ABCD的面积为: AD•EB+DB•CD=×4×+×4×8=4+16.23.证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.24.25.解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴5k+b=0,k+b=4,解得k=-1,b=5,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴y=-x+5,y=2x-4.解得x=3,y=2,∴点C(3,2);(3)根据图象可得x>3.。

2018-2019学年度下学期八年级语文第一次月考试卷附答案解析

2018-2019学年度下学期八年级语文第一次月考试卷附答案解析

2018-2019学年度下学期八年级语文第一次月考试卷一、积累与运用1.下列加点字的注音全对的一项是()(3分)A.行(xíng)辈归省(shěng)絮(xù)叨挑衅(xìn)B.亢(kǎng)奋逻辑(jí)闲逛(guàng)旌(jīn)旗C.踊(yǒng)跃踱(dù)步家眷(juàn)脸颊(xiá)D.农谚(yàn)褶皱(zhě)陨石(yǔn )萌发(méng )2.下列句子中加点的词语使用不恰当的一项是 (D )(3分)A.行文至此,作者终于大彻大悟....,“心凝形释,与万化冥合”,真正进入了忘却自我、超越功利的自由自在的境界。

B.精彩的演奏戛然而止....,起先大厅里鸦雀无声,随即响起雷鸣般的掌声。

C.我们绝对不能因受人撺掇..,就去做些违法的事。

D.这起贪污案分布范围之广、团伙规模之大,令人叹为观止....。

3.下列句子没有语病的一项是(B)(3分)A.通过学校教育弘扬传统文化,对于奠定和谐社会基础,对于中华民族的伟大复兴具有不可替代的作用。

B.近日,贵州一女导游嫌游客购物少,与游客起冲突后将游客赶下车的恶劣行径在网络上热传,很多人看后都不敢再到贵州去旅游了。

C.昆明南二环高架改造工程将于2018年5月30日前完成施工相关准备工作,确保在2019年春节前完工实现通车,施工时间大约为8个月左右。

D.推动高质量发展是当前和今后一个时期实施宏观调控、确定发展思路、制定经济政策的根本要求。

4.下列括号中有关句子的解释不正确的一项是A. 苏州园林的设计绝不讲究对称。

(句子的主干是:设计不讲究对称)B. 我难道还不能照顾自己么?(“难道”“还”在句子中做状语;“不能”做定语)C. 面对枝头美丽的花儿,请你手下留情。

(本句为祈使句)D. 我觉得我们的战士太伟大了。

(句中的宾语是“我们的战士太伟大了”)5.下列解说正确的一项是()A.“即使风雨兼程,也不一定能到达远方”。

2018-2019学年度下学期八年级语文第一次月考试卷附答案解析

2018-2019学年度下学期八年级语文第一次月考试卷附答案解析

2018-2019学年度下学期八年级语文第一次月考试卷一、积累与运用1.下列加点字的注音全对的一项是()(3分)A.行(xíng)辈归省(shěng)絮(xù)叨挑衅(xìn)B.亢(kǎng)奋逻辑(jí)闲逛(guàng)旌(jīn)旗C.踊(yǒng)跃踱(dù)步家眷(juàn)脸颊(xiá)D.农谚(yàn)褶皱(zhě)陨石(yǔn)萌发(méng)2.下列句子中加点的词语使用不恰当的一项是(D)(3分)A.行文至此,作者终于大彻大悟....,“心凝形释,与万化冥合”,真正进入了忘却自我、超越功利的自由自在的境界。

B.精彩的演奏戛然而止....,起先大厅里鸦雀无声,随即响起雷鸣般的掌声。

C.我们绝对不能因受人撺掇..,就去做些违法的事。

D.这起贪污案分布范围之广、团伙规模之大,令人叹为观止....。

3.下列句子没有语病的一项是(B)(3分)A.通过学校教育弘扬传统文化,对于奠定和谐社会基础,对于中华民族的伟大复兴具有不可替代的作用。

B.近日,贵州一女导游嫌游客购物少,与游客起冲突后将游客赶下车的恶劣行径在网络上热传,很多人看后都不敢再到贵州去旅游了。

C.昆明南二环高架改造工程将于2018年5月30日前完成施工相关准备工作,确保在2019年春节前完工实现通车,施工时间大约为8个月左右。

D.推动高质量发展是当前和今后一个时期实施宏观调控、确定发展思路、制定经济政策的根本要求。

4.下列括号中有关句子的解释不正确的一项是A.苏州园林的设计绝不讲究对称。

(句子的主干是:设计不讲究对称)B.我难道还不能照顾自己么?(“难道”“还”在句子中做状语;“不能”做定语)C.面对枝头美丽的花儿,请你手下留情。

(本句为祈使句)D.我觉得我们的战士太伟大了。

(句中的宾语是“我们的战士太伟大了”)5.下列解说正确的一项是()A.“即使风雨兼程,也不一定能到达远方”。

【试卷】2018~2019学年第二学期八年级第一次月考生物试卷及答案

【试卷】2018~2019学年第二学期八年级第一次月考生物试卷及答案

2018~2019学年第二学期八年级第一次月考生物试卷一、选择题(共25小题,每小题2分,满分50分。

请将正确答案填写到表格中)1.关于地球上生命起源的观点,下列哪一项的科学依据最充分?()A.化学进化论B.自然发生论C.生生论D.宇宙生命论2.始祖鸟在进化上可能是处于哪两种动物之间()A.无脊椎动物和脊椎动物B.爬行动物和鸟类C.鸟类和哺乳类D.两栖类和爬行类3.米勒实验结束后,在实验装置的水溶液中不可能发现()A.水B.无机物C.有机小分子D.有机大分子4.用达尔文进化学说的观点来判断下列叙述,其中正确的是()A.长颈鹿经常努力伸长颈和前肢去吃树上的叶子,因此颈和前肢都变得很长B.青霉素的效果越来越差是病菌对青霉素选择的结果C.兔的保护色和鹰锐利的目光,是它们长期相互选择的结果D.北极熊生活在冰天雪地的环境里,它们的身体都产生了定向变异5.如图表示几类哺乳动物的起源情况,对此图的分析正确的是()A.原始哺乳动物为适应不同的环境而进化为现存各类哺乳动物B.现存各类哺乳动物的出现是自然选择的结果C.生物通过定向的变异适应变化的环境D.在现有条件下,原始哺乳动物也可进化为现代哺乳动物6.通过对各种生物化石的研究可以证实()①地球上的各种生物之间有一定的亲缘关系;②地球上的各种生物是同时出现的;③现在的各种生物是经过漫长的地质年代逐渐进化而来的;④生物进化的顺序是从低等到高等,从简单到复杂。

A.①③④B.②③④C.①②④D.①②③7.人类与现代类人猿的共同祖先是()A.拉玛古猿 B.森林古猿 C.南方古猿 D.类人猿8.生物分类的基本单位和最高单位分别是()A. 种和界B. 属和界C. 界和种D. 纲和界9.利用孢子进行繁殖,并且有根、茎、叶分化的植物类群是()A.苔藓植物B.蕨类植物C.裸子植物 D.被子植物10.下面不属于我国特有珍稀树种的是()A.水杉B.银杉C.秃杉D.油松11.鲍鱼是营养丰富的海鲜,它的贝壳可以做中药,它属于()A.甲壳动物B.鱼类C.软体动物D.腔肠动物12.现在地球上进化程度最高的,种类最多、分布最广的植物类群是()A.蕨类植物B.苔藓植物C.裸子植物D.被子植物13.下列关于原生生物说法,错误的是()A.原生生物个体微小,多数为单细胞生物B.原生生物对人都是有益的C.自然界中的原生生物大约11万种D.原生生物细胞中都有真正的细胞核14.一种动物,体表覆盖鳞片,体内受精,受精卵有卵壳保护;它应该属于()A.鱼类B.节肢动物C.鸟类D.爬行动物15.两栖动物是由水生向陆生过渡的类型,它不是真正陆地动物的原因是()A.四肢不够发达B.体表没有鳞片C.受精离不开水D.仍然用鳃呼吸16.绝大多数鸟是善于飞翔的,下列各项中与鸟类适于飞行无关的是()A.体温恒定B.身体呈流线型C.前肢变成翼D.食量大,消化能力强17.蝙蝠能够飞行,但不属于鸟类,而是属于哺乳动物,这是由于()A.蝙蝠能用超声波定位B.蝙蝠能滑翔C.蝙蝠四肢有爪D.蝙蝠有胎生,哺乳的特征。

八年级2018-2019第二学期第一次月考数学试卷

2018-2019学年度第二学期八年级自主检测数学试卷一、选择题(共8小题,满分24分,每小题3分)1.以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高2.列一组数据的频数分布表时,落在各个小组内的数据的个数叫做()A. 组距B. 频数C. 频率D. 样本容量3. 下列事件中的不可能事件是()。

A: 通常加热到100℃时,水沸腾B: 抛掷2枚正方体骰子,都是6点朝上C: 经过有交通信号灯的路口,遇到红灯D: 任意画一个三角形,其内角和是360°4.某校对初三年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为()。

A. 640人B. 480人C. 400人D. 40人5. 下列所给图形中是中心对称图形但不是轴对称图形的是()。

A: B: C: D:6.如图,在□ABCD中,AB>AD,按以下步骤作图:以点A为圆心,,小于AD的长为半径画弧,分别交AB,AD于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DABB.AD=DHC.DH=BCD.CH=DH7.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为()A. 5cmB. 10cmC. 4.8cmD. 9.6cm8. (B题)如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是( )A. 15B. 16C. 19D. 208. (A题)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为 ,另两张直角三角形纸片的面积都为 ,中间一张正方形纸片的面积为 ,则这个平行四边形的面积一定可以表示为()A:B:C:D:二、填空题(共8小题,满分24分,每小题3分)9.五十中数学教研组有25名教师,将他们按年龄分组,在38-45岁组内的教师有8名教师,那么这个小组的频率是10.一个口袋里装有只有颜色不同的红球和蓝球,已知红球30个,蓝球20个.闭上眼睛从口袋里拿出一个球是蓝球的可能性是11. 下列事件: 其中是随机事件①掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上;②抛出的篮球会下落;③任意选择电视的某一频道,正在播放动画片;④在同一年出生的367名学生中,至少有两人的生日是同一天.有(只需填写序号).12.为估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,每条鱼做好标记后放回,再从鱼塘中打捞出50条鱼,发现只有1条鱼是有记号的,假设鱼在鱼塘是均匀分布的,则可估计该鱼塘的条数约为.13.在平面直角坐标系中,点P(1,1),N(2,0),和的顶点都在格点上,与是关于某一点中心对称,则对称中心的坐标为.14.如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是__________.15.如图,在Rt△ABC中,,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是 ________16.(B题)已知菱形ABCD的两条对角线长分别是3和4,M,N分别是边BC、CD的中点,点P是对角线BD上的一点,则PM+PN的最小值是16.(A题)如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68∘,则∠CHN=_______.三、解答题(共12小题,满分102分)17. (5分)小明家的鱼塘养了某种鱼2000条,现准备打捞出售,为了估计鱼塘中的这种鱼的总质量,现从鱼塘中捕捞了3次,得到数据如下:(1)鱼塘中这种鱼平均每条质量约是___千克,鱼塘中所有这种鱼的总质量约是___千克;若将这些鱼不分大小,按每千克7.5元的价格出售,小明家约可收入___元;(2)若鱼塘中这种鱼的总质量是(1)中估计的值,现在鱼塘中的鱼分大鱼和小鱼两类出售,大鱼每千克10元,小鱼每千克6元,要使小明家的此项收入不低于(1)中估计的收入,问:鱼塘中大鱼总质量应至少有多少千克?18.(5分)望江中学为了了解学生每天“朗诵经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≦20分钟的学生记为A类,20分钟<t≦40分钟的学生记为B类,40分钟<t≦60分钟的学生记为C类,t>60分钟的学生记为D类四种。

最新西片18—19学年下学期八年级第一次月考数学试题(附答案)

2018-2019学年度第二学期第一次月考八年级数学试卷一.选择题(共8小题)1.下列交通标志是中心对称图形的为()A.B.C.D.2.下列调查中,最适合采用全面调查(普查)方式的是()A.对中央电视台2019年春节联欢晚会满意度的调查B.对某品牌手机电池待机时间的调查C.对全国中学生观看电影《流浪地球》情况的调查D.对“神州十一号”飞船零部件安全性的调查3.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.随机事件B.确定事件C.必然事件D.不可能事件4.如图,点A、B、C、D、O都在方格纸上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°5.已知平行四边形ABCD,对角线AC,BD相较于点O,要使▱ABCD为矩形,需添加下列的一个条件是()A.OA=OB B.∠BAC=∠DAC C.AC⊥BD D.AB=BC6.如图,在平行四边形ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB7.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)8.如图,将△ABC绕点C顺时针旋转m°得到△EDC,若点A、D、E在同一直线上,∠ACB=n°,则∠ADC的度数是()A.(m﹣n)°B.C. D.(180﹣2n﹣m)°二.填空题(共8小题)9.如图是某中学七、八、九年级为贫困山区儿童捐款的统计图,已知该校七、八、九年级共有学生2000人,请根据统计图计算七、八、九年级共捐款元.10.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加上述同种型号的1个球,使得从中随机抽取1个球,白颜色的球被抽到的可能性是,那么添加的球是.11.在平面直角坐标系xOy中,若点B与点A(﹣2,3)关于点O中心对称,则点B的坐标为.12.“Iamagoodstudent.”这句话的所有字母中,字母“a”出现的频率是13.矩形两条对角线的夹角是60°,一条边长为4cm,则此矩形的对角线最长.14.已知,如图在平行四边形ABCD中,对角线AC、BD相交于点O,且AC+BD=18,△AOB的周长为13,则CD=.15.如图,在△ABC中,BC=9,AD是BC边上的高,M、N分别是AB、AC边的中点,DM=5,DN=3,则△ABC的周长是.16.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=,平行四边形CDEB为菱形.三.解答题(共10小题)17.下面第一排表示十张扑克牌的不同情况,任意摸一张.请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.18.某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:(1)本次调查采用的调杳方式是(填“普査”或“抽样调查”),样本容量是;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?19.如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.20.某公司的一批某品牌衬衣的质量抽检结果如下:(1)求从这批衬衣中任抽1件是次品的概率.(2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?21.如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,E,F分别为垂足.(1)求证:四边形AECF是平行四边形;(2)如果AE=3,EF=4,求AF、EC所在直线的距离.22.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E,若AB=10,AC=12,求四边形CODE的周长.23.已知:▱ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.24.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.25.如图,在▱CBCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.26.如图所示,四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是36,求DP的长.2018-2019学年度第二学期第一次月考八年级数学答题纸一.选择题(每题4分,共32分)二.填空题(每题4分,共32分)9._____ _.10._____ _.11.______ .12.______ .13.______ .14.______ .15.______ .16.______ .三.解答题(共10小题)17.(5分)18.(8分)(1)本次调查采用的调杳方式是(填“普査”或“抽样调查”),样本容量是;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?19.(6分)20.(8分)(1)求从这批衬衣中任抽1件是次品的概率.(2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换? 21.(10分)(1)求证:四边形AECF是平行四边形;(2)如果AE=3,EF=4,求AF、EC所在直线的距离.22.(8分)23.(8分)24.(12分)(1)(2)(3)25.(10分)(1)(2)26.(11分)参考答案1、C2、D3、A4、D5、A6、B7、B8、B9、25180 10、红球或黄球11、(2,﹣3)12、13、814、415、2516、17、略18、解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.32=16,补全直方图如下:(3)∵n=10÷50=0.2,∴月均用水量“15<x≤20”的圆心角度数是360°×0.2=72°,故答案为:72°;(4)该小区月均用水量超过20t的家庭大约有5000×(0.08+0.04)=600(户).19、解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.20、略21、(1)证明:∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,∴AE∥CF,在▱ABCD中,∵AD∥BC,∴∠ADE=∠CBF,又∵AD=CB,∴△ADE≌△CBF(AAS),∴AE=CF,∴四边形AECF是平行四边形;(2)解:在▱AECF中,AF∥EC,设AF、EC所在直线的距离为h,∵AE⊥BD,∴∠AEF=90°,∴AF=,∵S四边形AECF=AE•EF=AF•h,∴h==2.4,∴AF、EC所在直线的距离是2.4.22、解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是菱形∴∠DOC=90°,∴四边形CODE是矩形;∵四边形ABCD为菱形,∴AO=OC=AC=6,OD=OB,∠AOB=90°,由勾股定理得:BO2=AB2﹣AO2,而AB=10,∴DO=BO==8,由(1)得四边形CODE是矩形,∴四边形CODE的周长=2(6+8)=28.23、解:根据题意得:点B的坐标为(5,0),过点D作DE⊥x轴于点E,在Rt△ADE中,∠DAE=60°,AD=2,∴AE=1,DE=,故可得点D的坐标为(﹣1,),又∵四边形ABCD是平行四边形,CD=AB=5,∴点C的坐标为(4,);综上可得:B(5.0)、C(4,)、D(﹣1,).24、解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.25、证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中,∴△ADE≌△BCF(SAS).(2)四边形ABFE是菱形理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.26、解:作DE⊥BC,交BC延长线于E,如图,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,∴DP2=36,∴DP=6.。

2018—2019学年度八年级下学期第一次月考数学试卷

2018—2019学年度八年级下学期第一次月考数学试卷一.选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确答案。

1.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°2.在平面直角坐标系中,若点P(m﹣1,m+2)在第二象限,则m的取值范围是()A.m<﹣2B.m>1C.m>﹣2D.﹣2<m<1 3.已知a>b,则下列不等式变形正确的是()A.ac>bc B.﹣2a>﹣2b C.﹣a>﹣b D.a﹣2>b﹣2 4.下列说法正确的是()A.x=﹣3是不等式x>﹣2的一个解B.x=﹣1是不等式x>﹣2的一个解C.不等式x>﹣2的解是x=﹣3D.不等式x>﹣2的解是x=﹣15.到三角形三边的距离都相等的点是这个三角形的()A.三条高的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条角平分线的交点6.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△P AB,△PBC,△P AC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个二.填空题(本大题共6小题,每小题3分,共18分)7.满足不等式1﹣x<0的最小整数解是.8.“x的3倍与y的和不小于2”用不等式可表示为.9.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是.10.如图,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于点E,若DE=6cm,AE =5cm,则AC=cm.11.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对题.12.如果一次函数y=kx+b(k≠0)的图象与x轴交点坐标为(﹣2,0),如图所示.则下列说法:①y随x的增大而减小;②关于x的方程kx+b=0的解为x=﹣2;③kx+b>0的解是x>﹣2;④b<0.其中正确的说法有.(只填你认为正确说法的序号)三.(本大题共5小题,每小题6分,共30分)13.解不等式(组):(1)3﹣2x<6(2)14.若方程组的解满足﹣1<x+y<1,求k的取值范围.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.已知:如图,∠DAC是△ABC的外角,AB=AC,AE∥BC.求证:AE是∠DAC的平分线.17.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.四.(本大题共3小题,每小题8分,共24分)18.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?19.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM=2,CN=3,求线段MN的长.20.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.五.(本大题共2小题,每小题9分,共18分)21.如图,“中国海监50”于上午11时30分在南海海域A处巡逻,观测到岛礁B在北偏东60°,该船以每小时10海里的速度向正东航行到C处,观测岛礁B在北偏东30°,继续向正东航行到D处时,再观测到岛礁B在北偏西30°,当海监船到达C处时恰与岛礁B相距20海里,请你分别确定“中国海监50”从A处到达C处和D处所用的时间.22.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A(1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;六.(本大题12分)23.先阅读,再完成练习.一个数在数轴上所对应的点到原点的距离叫做这个数的绝对值.若|x|<3则x表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x|<3的解集是﹣3<x<3;若|x|>3则x表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数和大于3的数,它们到原点距离大于3,所以|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为.不等式|x|>a(a>0)的解集为.(2)解不等式|x﹣3|>5.(3)求不等式|x﹣1|+|x+2|<5的解集;(4)不论x取所有的数都有|x﹣1|+|x+2|﹣2t>4恒成立,求t的取值范围.2018—2019学年度八年级下学期第一次月考数学参考答案与试题解析一.选择题(共6小题)1.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°【解答】解:∵在一个直角三角形中,有一个锐角等于35°,∴另一个锐角的度数是90°﹣35°=55°.故选:C.2.在平面直角坐标系中,若点P(m﹣1,m+2)在第二象限,则m的取值范围是()A.m<﹣2B.m>1C.m>﹣2D.﹣2<m<1【解答】解:根据题意,得:,解得﹣2<m<1,故选:D.3.已知a>b,则下列不等式变形正确的是()A.ac>bc B.﹣2a>﹣2b C.﹣a>﹣b D.a﹣2>b﹣2【解答】解:A、不等式的两边都乘以不为0的数,不等号的方向不变,故A错误;B、不等式的两边都乘以﹣2,不等号的方向改变,故B错误;C、不等式的两边都乘以﹣1,不等号的方向改变,故C错误;D、不等式的两边都减去2,不等号的方向不改变,故D正确;故选:D.4.下列说法正确的是()A.x=﹣3是不等式x>﹣2的一个解B.x=﹣1是不等式x>﹣2的一个解C.不等式x>﹣2的解是x=﹣3D.不等式x>﹣2的解是x=﹣1【解答】解:A.x=﹣3不是不等式x>﹣2的一个解,此选项错误;B.x=﹣1是不等式x>﹣2的一个解,此选项正确;C.不等式x>﹣2的解有无数个,此选项错误;D.不等式x>﹣2的解有无数个,此选项错误;故选:B.5.到三角形三边的距离都相等的点是这个三角形的()A.三条高的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条角平分线的交点【解答】解:到三角形三边的距离都相等的点是这个三角形的内心,即三个内角平分线的交点.故选:D.6.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△P AB,△PBC,△P AC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个【解答】解:如图,满足条件的所有点P的个数为2,故选:B.二.填空题(共6小题)7.满足不等式1﹣x<0的最小整数解是2.【解答】解:∵1﹣x<0,∴x>1,则不等式的最小整数解为2.故答案为:2.8.“x的3倍与y的和不小于2”用不等式可表示为3x+y≥2.【解答】解:“x的3倍与y的和不小于2”用不等式可表示为3x+y≥2,故答案为:3x+y≥2.9.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是30°.【解答】解:设较小的锐角为x,则较大的锐角为2x,则x+2x=90°,解得,x=30°,故答案为:30°.10.如图,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于点E,若DE=6cm,AE =5cm,则AC=11cm.【解答】解:∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠ECD,∴DE=EC=4cm,∵AE=5cm,∴AC=AE+EC=5+6=11(cm).故答案为:11.11.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对19题.【解答】解:设他至少应选对x道题,则不选或错选为25﹣x道题.依题意得4x﹣2(25﹣x)≥60得x≥又∵x应为正整数且不能超过25所以:他至少要答对19道题.12.如果一次函数y=kx+b(k≠0)的图象与x轴交点坐标为(﹣2,0),如图所示.则下列说法:①y随x的增大而减小;②关于x的方程kx+b=0的解为x=﹣2;③kx+b>0的解是x>﹣2;④b<0.其中正确的说法有①②④.(只填你认为正确说法的序号)【解答】解:由图可知k<0,①y随x的增大而减小,故本小题正确;②图象与x轴交于点(﹣2,0),故关于x的方程kx+b=0的解为x=﹣2,故本小题正确;③不等式kx+b>0的解集是x<﹣2,故本小题错误;④直线与y轴负半轴相交,b<0,故本小题正确;综上所述,说法正确的是①②④.故答案为:①②④.三.解答题(共11小题)13.解不等式(组):(1)3﹣2x<6(2)【解答】解:(1)3﹣2x<6,﹣2x<6﹣3,﹣2x<3,x>﹣;(2)解不等式2x﹣1>x+1,得:x>2,解不等式x+8>4x﹣1,得:x<3,则不等式组的解集为2<x<3.14.若方程组的解满足﹣1<x+y<1,求k的取值范围.【解答】解:①+②得:4x+4y=k+4∴x+y=,而﹣1<x+y<1∴﹣1<<1,∴﹣8<k<0.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.16.已知:如图,∠DAC是△ABC的外角,AB=AC,AE∥BC.求证:AE是∠DAC的平分线.【解答】解:∵AB=AC,∴∠B=∠C,∵AE∥BC,∴∠B=∠EAD,∠C=∠EAC,∴∠DAE=∠EAC,∴AE是∠DAC的平分线.17.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.【解答】解:(1)∵x@3<5,∴2x﹣3<5,解得:x<4;(2)解方程2(2x﹣1)=x+1,得:x=1,∴x@a=1@a=2﹣a<5,解得:a>﹣3.18.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?【解答】解:(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.19.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM=2,CN=3,求线段MN的长.【解答】解:∵MN∥BC,∴∠MEB=∠CBE,∠NEC=∠BCE,∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE,∴∠MEB=∠MBE,∠NEC=∠NCE,∴ME=MB,NE=NC,∴MN=ME+NE=BM+CN=5,故线段MN的长为5.20.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.【解答】解:(1)∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,∴点P运动的路程为6.5cm,∴x=6.5÷1=,此时CP=AB=cm;故答案为:,;(2)△ABP为等腰三角形,点P只能在AC上且P A=PB.设CP=x,则AP=BP=4﹣x,在Rt△BCP中,BC2+CP2=BP2,即32+x2=(4﹣x)2,解之得:x=,∴当x为时,△ABP为等腰三角形.21.如图,“中国海监50”于上午11时30分在南海海域A处巡逻,观测到岛礁B在北偏东60°,该船以每小时10海里的速度向正东航行到C处,观测岛礁B在北偏东30°,继续向正东航行到D处时,再观测到岛礁B在北偏西30°,当海监船到达C处时恰与岛礁B相距20海里,请你分别确定“中国海监50”从A处到达C处和D处所用的时间.【解答】解:∵在A处观测海岛B在北偏东60°方向,∴∠BAC=30°,∵C点观测海岛B在北偏东30°方向,∴∠BCD=60°,∴∠BAC=∠CBA=30°,∴AC=BC∵D点观测海岛B在北偏西30°方向,∴∠BDC=60°,∴∠BCD=60°,∴∠CBD=60°,∴△BCD为等边三角形,∴BC=BD,∵BC=20海里,∴BC=AC=CD=20(海里),∵船以每小时10海里的速度从A点航行到C处,又以同样的速度继续航行到D处,∴船从A点到达C点所用的时间为:20÷10=2(小时),船从C点到达D点所用的时间为:20÷10=2(小时),船从A点到达D点所用的时间为:4(小时).22.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A(1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;【解答】解:(1)把A(1,a)代入y=﹣x+4得a=﹣1+4=3,将A(1,3)代入y=kx+k+1得k+k+1=3,解得k=1;(2)不等式﹣x+4>kx+k+1的解集为x<1;(3)当x=2时,y=﹣x+4=﹣2+4=2,所以当x>2时,y<2.23.先阅读,再完成练习.一个数在数轴上所对应的点到原点的距离叫做这个数的绝对值.若|x|<3则x表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x|<3的解集是﹣3<x<3;若|x|>3则x表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数和大于3的数,它们到原点距离大于3,所以|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为﹣a<x<a.不等式|x|>a(a>0)的解集为x >a或x<﹣a.(2)解不等式|x﹣3|>5.(3)求不等式|x﹣1|+|x+2|<5的解集;(4)不论x取所有的数都有|x﹣1|+|x+2|﹣2t>4恒成立,求t的取值范围.【解答】解:(1)不等式|x|<a(a>0)的解集为﹣a<x<a;不等式|x|>a(a>0)的解集为x>a或x<﹣a.故答案为:﹣a<x<a,x>a或x<﹣a.(2)|x﹣3|>5,∴x﹣3>5或x﹣3<﹣5,∴x>8或x<﹣2;(3)在数轴上找出|x﹣1|+|x+2|=5的解.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.∵在数轴上1和﹣2对应的点的距离为3,∴满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,∴方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3,∴不等式|x﹣1|+|x+2|<5的解集为﹣3<x<2,故答案为﹣3<x<2;(4)∵|x﹣1|+|x+2|≥|﹣1﹣2|=3,根据题意则有4﹣2t>3,解得t<,∴t的取值范围是:t<.。

2018-2019第二学期八年级第一次月考数学试题(北师版)

2018-2019年度第二学期八年级第一次月考数学试题(北师版)(90分钟,120分)一、选择题:本大题共16个小题,1-10题每小题3分,11-16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如图,数轴上所表示的x的取值范围为()A.x≤3B.﹣1≤x<3C.x>1 D.﹣1<x≤32. 等腰三角形的底角为65°,则它的顶角为()A.40°B.50°C.60°D.80°3. 下列按要求列出的不等式中错误的是()A.m是非负数,则m≥0B.m是非正数,则m≤0C.m不大于﹣1,则m<﹣1 D.2倍m为负数,则2m<04. 有一直角三角板,30°角所对直角边长是6cm,则斜边的长是()A.3cm B.6cm C.10cm D.12cm5.若a>b,则下列不等式中,不成立的是()A.﹣3a>﹣3b B.a﹣3>b﹣3 C.D.﹣a<﹣b6. 已知一个等腰三角形的两边长分别是3和6,则该等腰三角形的周长为()A.15 B.12 C.12或15 D.9或157. 不等式3x+1>7最小整数解是()A.4 B.3 C.2 D.18. 关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1 B.m>﹣1 C.m>0 D.m<09. 如图,点P是∠AOB平分线IC上一点,PD⊥OB,垂足为D,若PD=3,则点P到边OA的距离是()A.1B.2C.3 D.410.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1800B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1.8D.90x+210(15﹣x)≤1.811. 如图,一根长为a的木棍(AB),斜靠在与地面(OM)垂直的墙上,设木棍的中点为P,若木棍A端沿墙下滑,且B端沿地面向右滑动,在滑动的过程中OP的长度()A.减小B.增大C.不变D.先减小再增大12. 已知:△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3C.3<x<6 D.x>613. 不等式>1去分母后得()A.2(x﹣1)﹣x﹣2>1 B.2(x﹣1)﹣x+2>1C.2(x﹣1)﹣x﹣2>4 D.2(x﹣1)﹣x+2>414. 如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC等于()A.8°B.9°C.10°D.11°解:连接OA,∵∠BAC=82°,∴∠ABC+∠ACB=180°﹣82°=98°,∵AB、AC的垂直平分线交于点O,∴OB=OA,OC=OA,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBC+∠OCB=98°﹣(∠OBA+∠OCA)=16°,∴∠OBC=8°,故选:A.15. 爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米16. 如图,O为线段AB的中点,AB=4cm,P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,下列四点中能与A、B构成直角三角形的顶点是()A.P1B.P2C.P3D.P4二、填空题(本题共有3个小题,17-18每小题3分,19小题4分,满分10分)17. 用不等式表示:x的两倍与4的差不小于6,则这个不等式是.18. 如图所示,∠C=60°,AC=BC=150m,则池塘的宽AB=m.19. 如图,在由25个边长均为1的小正方形组成的正方形网格中,网格线的交点称为格点,已知A、B是两个格点,如果C也是图中的格点,且使得△ABC为等腰三角形,那么符合条件的格点C的共有m个,这里的m=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)指出下列各式成立的条件:(1)由mx<n,得x>(2)由a<b,得m2a<m2b;(3)由a>﹣2,得a2≤﹣2a.21. (本题9分)在△ABC中,∠C=90°,BD平分∠ABC,CD=3cm,AB=10cm,求△ABD的面积.22. (本题9分)解不等式,并将不等式的解集表示在数轴上(1)3x﹣2>4+2(x﹣2)(2)≥3(x﹣1)﹣423(本题10分)如图,直线a、b相交于点A,C、E 分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.24. (本题10分)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAC=120°,求∠DAE的度数.25. (本题10分)节日期间,甲、乙两家超市以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲超市累计购物超过150元后,超出150元的部分按90%收费;在乙超市累计购物超过100元后,超出100元的部分按95%收费,顾客到哪家超市购物花费少?26.(本题12分)在等腰三角形ABC中,(1)若∠A=110°,则∠B=度;(2)若∠A=40°,则∠B=度.(3)通过上述解答,发现∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=α,求∠B的度数(用含α的式子表示).请你根据∠B的度数的个数探索α的取值范围.2018-2019年度第二学期八年级第一次月考数学试题(北师版)答案一、选择题:二、填空题17. 2x﹣4≥618. 150 19.10三、解答题:20.解:(1)当m<0时,由mx<n,得x>;(2)当m≠0时,由a<b,得m2a<m2b;(3)当a≤0时,由a>﹣2,得a2≤﹣2a.21.解:过点D作DE⊥AB,垂足为点E∵BD平分∠ABC,DE⊥AB DC⊥BC∴DE=DC又∵DC=3cm∴DE=3cm∴cm2.22.解:(1)3x﹣2>4+2x﹣4,3x﹣2x>4﹣4+2,x>2,将不等式解集表示在数轴上如下:(2)x+1≥6(x﹣1)﹣8,x+1≥6x﹣6﹣8,x﹣6x≥﹣6﹣8﹣1,﹣5x≥﹣15,x≤3,将不等式的解集表示在数轴上如下:23.证明:∵BC⊥a,DE⊥b,点M是EC的中点,∴DM=EC,BM=EC,∴DM=BM,∵点N是BD的中点,∴MN⊥BD.24.解:(1)∵边AB、AC的垂直平分线分别交BC于D、E,∴DA=DB,EA=EC,∴△ADE的周长=AD+DE+AE=DB+DE+EC=BC=5;(2)∵∠BAC=120°,∴∠B+∠C=60°,∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAE=∠BAC﹣(∠DAB+∠EAC)=∠BAC﹣(∠B+∠C)=60°.25.解:(1)当x≤100时,在甲、乙两个超市购物都不享受优惠,因此到两个商场购物花费一样;(2)当100<x≤150时,在乙超市购物享受优惠,在甲超市购物不享受优惠,因此在乙超市购物花费少;(3)当累计购物超过150元时,即x>150元,甲超市消费为:150+(x﹣150)×0.9元,在乙超市消费为:100+(x﹣100)×0.95元.当150+(x﹣150)×0.9>100+(x﹣100)×0.95,解得:x<200,当150+(x﹣150)×0.9<100+(x﹣100)×0.95,解得:x>200,当150+(x﹣150)×0.9=100+(x﹣100)×0.95,解得:x=200.综上所述,当累计消费大于100元少于200元时,在乙超市花费少;当累计消费大于200元时,在甲超市花费少;当累计消费等于200元或不超过100元时,在甲乙超市花费一样.26.解:(1)∵∠A=110°>90°,∴∠A为顶角,∴∠B=∠C=35°;故答案为:35;(2)若∠A为顶角,则∠B=(180°﹣∠A)=70°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×40°=100°;若∠A为底角,∠B为底角,则∠B=40°;故∠B=70或100或40;(3)分两种情况:①当90°≤α<180°时,∠A只能为顶角,∴∠B的度数只有一个;②当0°<α<90°时,若∠A为顶角,则∠B=(180°﹣α)=90°﹣;若∠A为底角,∠B为顶角,则∠B=(180﹣2α)°;若∠A为底角,∠B为底角,则∠B=α.当90°﹣≠180°﹣2α且180°﹣2α≠α且90°﹣≠α,即α≠60°时,∠B有三个不同的度数.∴当0°<α<90°且α≠60°时,∠B有三个不同的度数.综上所述,当90°≤α<180°时,∠B的度数只有一个;当0°<α<90°且α≠60°时,∠B有三个不同的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期第一次月考
初 二 数 学 试 题 得分
满分:120分, 时间:120分钟
一、选择题:(每小题3分,计45分)
1、下列各式中从左到右的变形,是因式分解的是( )
(A)(a +3)(a -3)=a 2-9 (B)x 2+x -5=(x -2)(x +3)+1 (C)a 2b +ab 2=ab (a +b ) (D)x 2+1=x (x +x
1
) 2、若0<k ,则下列不等式中不能成立的是( )
A .45-<-k k
B .k k 56>
C .k k ->-13
D .9
6k k ->- 3、不等式53>-
x
的解集是( ) A .35-<x B .3
5
->x C .15-<x D .15>-x
4、下列多项式能分解因式的是( )
A 、x 2-y
B 、x 2+1
C 、x 2+x y +y 2
D 、x 2-4x +4 5、已知点A (2-a ,a+1)在第一象限,则a 的取值范围是( ) A 、a>2 B 、-1<a<2 C 、a<-1 D 、a<1 6、下列说法①0=x 是012<-x 的解;②3
1
=x 不是013>-x 的解;③012<+-x 的解集是2>x ;④⎩⎨
⎧>>2
1
x x 的解集是1>x ,其中正确的个数是( )
A .1个
B .2个
C .3个
D .4个 7、下列多项式中不能用平方差公式分解的是( )
A 、-a 2+b 2
B 、-x 2-y 2
C 、49x 2y 2-z 2
D 、16m 4-25n 2p 2 8、两个连续的奇数的平方差总可以被 k 整除,则k 等于( ) A 、4 B 、8 C 、4或-4 D 、8的倍数 9、如图,用不等式表示数轴上所示的解集,正确的是( ) A .
31≥-<x x 或 B .31>-≤x x 或 C .31<≤-x D .31≤<-x
10、若不等式组⎩
⎨⎧<<-a x x 3
12的解集是x<2,则a 的取值范围是( )
A .2<a
B .2≤a
C .2≥a
D .无法确定
11、在m
a y x xy x x 1
,3;3,21,
21,12++∏+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个 12、把分式
b
a a
+2中a 、b 都扩大2倍,则分式的值( ) A 、扩大4倍 B 、扩大2倍 C 、缩小2倍 D 、不变 13、已知(x+3)2+|x+y+m|=0中,y 为负数,则m 的取值范围是( ) A 、m>3 B 、m<3 C 、m>-3 D 、m<-3 14、如果关于x 的不等式(m+1)x>m+1的解集为x<1,则m 的取值范围是( ) A 、m<0 B 、m<-1 C 、m>1 D 、m>-1 15、分解因式b 2
(x-3)+b(3-x)的结果应为( )
A 、(x-3)(b 2
+b) B 、b(x-3)(b+1) C 、(x-3)(b 2
-b) D 、b(x-3)(b-1)
二、填空题:(每小题3分,计30分) 1、分解因式:m 3-4m = ;
2、观察图形,根据图形面积的关系,不需要连其他的线,便可以得到 一个用来分解因式的公式,这个公式是 ; x>1
3、不等式组 的解集是 ; x<4
4、根据分式的基本性质填空:()c
a a a 1
2+=+
5、计算:2
22003
20052004
-= ; 6、不等式3x-2≥4(x-1)的所有非负整数解的和等于 ;
7、利用因式分解计算:13.1×3.14+314×0.715+1.54×31.4= ; 8、若x 2
+mx+16是完全平方公式,则m 的值为 ; 9、已知:y 1=2-3x ,y 2=x-6,当 时,y 1≥y 2;
2x+y=1-m
10、在方程组 中,若未知数x 、y 满足x+y>0,则m 的取值范围
x+2y=2
是 ;
三、解答题:(每小题5分,计45分,要写出解题过程,直接写答案不得分)
1、解不等式组,并把解集表示在数轴上: 5x -2>3(x +1) 121-x ≤7-x 2
3
2、列不等式组解应用题:一群女生住若干间宿舍,每间住4人,剩19人无人住;每间住6人,有一间宿舍住不满,可能有多少间宿舍,多少名学生?
3、解方程:(x -4)2-(4-x)(8-x)=12
4、利用因式分解证明:257-512能被120整除。

5、化简:y x y xy x -+-24422÷(4x 2-y 2
) 6、因式分解:(x+1)(x+2)+4
1
7、化简求值:2x-y=2
1,xy=2,求2x 4y 3-x 3y 4
的值,
8、下右图是杨辉三角系数表,它的作用是指导读者按规律写出行如(a+b)n展开式的系数,请你仔细观察下表中的规律,填出展开式中所缺的系数。

(1)、(a+b)=a+b 1
(2)、(a+b)2=a2+2ab+b2 1 1
(3)、(a+b) 3=a3+3a2b+3ab2+b3 1 2 1
(4)、(a+b)4=a4+ a3b+6a2b2+4ab3+b4
1 3 3 1
(5)(a+b)5=a5+ a4b+ a3b2+ a2b3+ ab4+b5
9、阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是,共应用了次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法次,结果是 .
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).
初二数学月考试题答案
二、填空题:(每小题3分,计30分)
1、m(m +2)(m -2);
2、a 2+2ab+b 2=(a+b)2;
3、1<x<4;
4、ac ;
5、
4
1
; 6、x ≤2; 7、314; 8、m=±8 9、x ≤2; 10、m<3。

三、解答题: 1、
25<x ≤4; 2、0<4x+19-6(x-1)<6 2
19
<x<225
当x=10时,有49个同学; 当x=11时,有63个同学; 当x=12时,有67个同学。

3、x=7;
4、解:原式=(52)7-512=514-512=512(25-1)= 512×24=511×120
能被120整除。

5、
y x +21; 6、(x +2
3)2
7、4; 8、4,5,10,10,5
9、(1)、提公因式,两次,(2)、2004次,(x +1)2005;(3)、(x +1)1+n。

相关文档
最新文档