福州市2019-2020学年中考评测数学试题(一)A卷

合集下载

2019-2020学年人教版六年级下册期中测试数学试卷--附答案

2019-2020学年人教版六年级下册期中测试数学试卷--附答案

2019-2020学年人教版六年级下册期中测试数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx 题号一二三四五六总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.( )不是-4与-2之间的数.A.-3B.-2.5C.-1D.-3.52.()能与14∶13组成比例。

A.3∶4 B.4∶3 C.3∶14D.43∶343.等底等高的圆柱、长方体、正方体相比,()A.圆柱的体积最大B.长方体的体积最大C.正方体的体积最大D.体积相等4.下面两种量成反比例的是()。

A.比例尺一定,图上距离和实际距离B.总价一定,单价和数量C.利率一定,存款的利息和本金D.圆锥的体积一定,高和底面半径5.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,则圆锥的体积是圆柱体积的( )。

A.B.C.D.2倍评卷人得分二、填空题6.某市2016年11月20日的最高气温是3 ℃,记作(____),最低气温是零下2 ℃,记作(_______)。

7.如果将比平均成绩高5分记作+5分,那么-5分表示(______)。

8.买一件打八五折的衣服便宜了30元,这件衣服的原价是(____)元。

9.2017年张老师的月工资是4800元,按国家规定:超过3500元的部分要按3%缴纳个人所得税,张老师实际的月工资是(______)元。

10.一个圆柱的底面直径是8cm ,高是2.5dm ,这个圆柱的表面积是(______)cm 2,体积是(______)cm 3。

11.一个圆锥的体积是75.36cm 3,这个圆锥的底面直径是6cm ,高是(______)cm ,和它等底等高的圆柱的体积是(______)cm 3。

12.一个圆锥,如果将它的底面半径和高都扩大为原来的2倍,那么它的体积扩大到原来的(______)倍。

13.如果58x =y ,那么x ∶y =(______)∶(______)。

人教版2019-2020学年七年级上学期期中考试数学试题(II)卷

人教版2019-2020学年七年级上学期期中考试数学试题(II)卷

人教版2019-2020学年七年级上学期期中考试数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下面选项中符合代数式书写要求的是()A.ay·3B.C.D.a×b÷c2 . 一件工作,甲单独做需a天完成,乙单独做需b天完成,如果两人合作7天,完成的工作量是()A.B.7(a-b)C.7(a+b)D.3 . 下列说法错误的是()A.﹣xy的系数是﹣1B.3x3﹣2x2y2﹣y3的次数是4C.当a<2b时,2a+b+2|a﹣2b|=5bD.多项式中x2的系数是﹣34 . 在0,2,,-5这四个数中,最大的数是()A.0B.2C.D.-55 . 下列计算正确的是()A.a+2a=3B.C.D.6 . 2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为()A.B.C.D.7 . -的相反数是()A.2016B.﹣2016C.D.-8 . 若△ABC三条边的长度分别为m,n,p,且,则这个三角形为A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9 . 下列各组运算中,结果为负数的是()A.-(-3)B.(-3)×(-2)C.-|-3|D.10 . 下列各式符合代数式书写格式的为()A.B.C.D.二、填空题11 . 若数轴上点A与点B的距离是2018,点B表示的数为7,则点A表示的数是_______.12 . 单项式﹣x3y的系数是_____.13 . 张老师在黑板上写出以下四个结论:①−3的绝对值为;②一个负数的绝对值一定是正数;③若=−a,则a一定是负数;④一个五棱柱的截面最多是七边形. 认为张老师写的结论正确的有_______.(填序号)14 . 如果,那么代数式的值为______.15 . 金砖五国成员国巴西的首都巴西利亚、新西兰的首都惠灵顿与北京的时差如下表:城市惠灵顿巴西利亚时差/h+4﹣11若现在的北京时间是11月16日8:00,请从A,B两题中任选一题作答.A.那么,现在的惠灵顿时间是11月_____日_____B.那么,现在的巴西利亚时间是11月_____日_____.16 . 单项式x2y的系数是_____;次数是______.17 . 李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款________元.18 . 若a、b为实数,且满足|a-2|+=0,则a=______ ,b=______.三、解答题19 . 计算下列各题:(1)(-9)-(-7)+(-6)-(+4)-(-5);(2)(+4.3)-(-4)+(-2.3)-(+4).20 . 已知:,且。

2019-2020学年福建省福州市九年级(上)期末数学试卷

2019-2020学年福建省福州市九年级(上)期末数学试卷

2019-2020学年福建省福州市九年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列图标中,是中心对称图形的是()A.B.C.D.2.(4分)下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是180°”3.(4分)若关于x的方程x2﹣m=0有实数根,则m的取值范围是()A.m<0B.m≤0C.m>0D.m≥04.(4分)在平面直角坐标系中,点(a,b)关于原点对称的点的坐标是()A.(﹣a,﹣b)B.(﹣b,﹣a)C.(﹣a,b)D.(b,a)5.(4分)从1,2,3,5这四个数字中任取两个,其乘积为偶数的概率是()A.B.C.D.6.(4分)若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=57.(4分)如图,点D为线段AB与线段BC的垂直平分线的交点,∠A=35°,则∠D等于()A.50°B.65°C.55°D.70°8.(4分)为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为t(单位:h),温度为y(单位:℃).当4≤t≤8时,y与t的函数关系是y=﹣t2+10t+11,则4≤t≤8时该地区的最高温度是()A.11℃B.27℃C.35℃D.36℃9.(4分)如图,五边形ABCDE内接于⊙O,若∠CAD=35°,则∠B+∠E的度数是()A.210°B.215°C.235°D.250°10.(4分)对于反比例函数,如果当﹣2≤x≤﹣1时有最大值y=4,则当x≥8时,有()A.最小值y=B.最小值y=﹣1C.最大值y=D.最大值y=﹣1二、填空题(本题共6小题,每小题4分,共24分)11.(4分)如图,AB∥CD,AD与BC相交于点E,若AE=2,ED=3,则的值是.12.(4分)圆心角为120°,半径为2的扇形的弧长是.13.(4分)如图,E,F,G,H分别是正方形ABCD各边的中点,顺次连接E,F,G,H.向正方形ABCD 区域随机投掷一点,则该点落在阴影部分的概率是.14.(4分)如图,将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,直线BC与直线DE 所夹的锐角是.15.(4分)若a是方程x2+x﹣1=0的一个根,则的值是.16.(4分)如图,在直角三角形ABC中,∠C=90°,D是AC边上一点,以BD为边,在BD上方作等腰直角三角形BDE,使得∠BDE=90°,连接AE.若BC=4,AC=5,则AE的最小值是.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.(8分)解方程:x2﹣6x﹣1=0.18.(8分)在一个不透明的袋子中装有红、黄、蓝三个小球,除颜色外无其它差别.从袋子中随机摸球三次,每次摸出一个球,记下颜色后不放回.请用列举法列出三次摸球的结果,并求出第三次摸出的球是红球的概率.19.(8分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.20.(8分)如图,已知⊙O,A是的中点,过点A作AD∥BC.求证:AD与⊙O相切.21.(8分)如图,△ABC中,AB=AC>BC,将△ABC绕点C顺时针旋转得到△DEC,使得点B的对应点E 落在边AB上(点E不与点B重合),连接AD.(1)依题意补全图形;(2)求证:四边形ABCD是平行四边形.22.(10分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.23.(10分)如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.24.(12分)如图,△ABC内接于⊙O,BC是⊙O的直径,E是上一点,弦BE交AC于点F,弦AD⊥BE 于点G,连接CD,CG,且∠CBE=∠ACG.(1)求证:CG=CD;(2)若AB=4,BC=2,求CD的长.25.(14分)已知抛物线C:y=ax2﹣4(m﹣1)x+3m2﹣6m+2.(1)当a=1,m=0时,求抛物线C与x轴的交点个数;(2)当m=0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m≠0时,过点(m,m2﹣2m+2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t+2,且点A在第三象限.以线段AB为直径作圆,设该圆的面积为S,求S的取值范围.2019-2020学年福建省福州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.2.【解答】解:A、可能性很大的事情也可能不会发生,故错误,不符合题意;B、可能性很小的事情是也可能发生的,故错误,不符合题意;C、掷一次骰子,向上一面的点数是6”是随机事件,故错误,不符合题意;D、“任意画一个三角形,其内角和是180°”,正确,符合题意,故选:D.3.【解答】解:∵x2﹣m=0,∴x2=m,由x2﹣m=0知m≥0,故选:D.4.【解答】解:点(a,b)关于原点对称的点的坐标是:(﹣a,﹣b).故选:A.5.【解答】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是=,故选:C.6.【解答】解:令y=0得:x2+bx=0.解得:x1=0,x2=﹣b.∵抛物线的对称轴为x=2,∴﹣b=4.解得:b=﹣4.将b=﹣4代入x2+bx=5得:x2﹣4x=5.整理得:x2﹣4x﹣5=0,即(x﹣5)(x+1)=0.解得:x1=5,x2=﹣1.故选:D.7.【解答】解:连DA,如图,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,即DA=DB=DC,∴点A、B、C三点在以D点圆心,DB为半径的圆上,∴∠BDC=2∠BAC=2×35°=70°.故选:D.8.【解答】解:∵y=﹣t2+10t+11=﹣(t﹣5)2+36,∴当t=5时有最大值36℃,∴4≤t≤8时该地区的最高温度是36℃,故选:D.9.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故选:B.10.【解答】解:由当﹣2≤x≤﹣1时有最大值y=4,得x=﹣1时,y=4.k=﹣1×4=﹣4,反比例函数解析式为y=﹣,当x≥8时,图象位于第四象限,y随x的增大而增大,当x=8时,y最小值=﹣,故选:A.二、填空题(本题共6小题,每小题4分,共24分)11.【解答】解:如图所示:∵AB∥CD,∴∠EAB=∠EDC,∠EBA=∠ECD,∴△EAB∽△EDC,∴,又∵AE=2,ED=3,∴,故答案为.12.【解答】解:l===π.故答案为:π.13.【解答】解:设AD=AB=BC=DC=2,则AH=GD=AE=BE=CF=BF=GC=DG=1,可得四边形HEFG是正方形,边长为:,故阴影部分面积为:2,∵正方形ABCD的面积为:4,∴该点落在阴影部分的概率是:.故答案为:.14.【解答】解:∵将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,∴直线BC与直线DE所夹的锐角=旋转角=55°,故答案为:55°.15.【解答】解:==,∵a是方程x2+x﹣1=0的一个根,∴a2+a﹣1=0,∴==1,故答案为1.16.【解答】解:如图,过点E作EH⊥AC于H,∵∠BDE=90°=∠C,∴∠EDA+∠BDC=90°,∠BDC+∠DBC=90°,∴∠DBC=∠EDA,且DE=BD,∠H=∠C=90°,∴△BDC≌△DEH(AAS)∴EH=CD,DH=BC=4,∴AH=DH﹣AD=CD﹣1,∵AE2=AH2+EH2=CD2+(CD﹣1)2=2(CD﹣)2+≥∴当CD=时,AE的最小值为,故答案为.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.【解答】解:x2﹣6x﹣1=0,移项得:x2﹣6x=1,配方得:x2﹣6x+9=10,即(x﹣3)2=10,开方得:x﹣3=±,则x1=3+,x2=3﹣.18.【解答】解:依题意得,共有6种结果,分别是(红,黄,蓝)(红,蓝,黄)(黄,红,蓝)(黄,蓝,红)(蓝,红,黄)(蓝,黄,红),所有结果发生的可能性都相等,其中第三次摸出的球是红球的结果又2种,则第三次摸出的球是红球的概率是=.19.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=0.9,BC=39.1,∴AC=16,∴=,∴CD=.∴白塔的高CD为米.20.【解答】证明:过点O作OF⊥BC于F,延长OF交⊙O于点E,如图所示:∴=,∠OFB=90°,∴E是的中点,∵A是的中点,∴点E与点A重合,∵AD∥BC,∴∠OAD=∠OFB=90°,∴OA⊥AD,∵点A为半径OA的外端点,∴AD与⊙O相切.21.【解答】解:(1)如图所示:(2)∵△ABC绕点C顺时针旋转得到△DEC,∴△ABC≌△DEC,DC=AC,EC=BC,∵AB=AC,∴DC=AB,∵△ABC≌△DEC,∴∠DCE=∠ACB,∵EC=BC,∴∠CEB=∠B,∵AB=AC,∴∠B=∠ACB,∴∠CEB=∠DCE,∴DC∥AB,又∵DC=AC,AB=AC,∴四边形ABCD是平行四边形.22.【解答】解:(1)∵50<60,∴120×50=6000元,答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗所需要支付的树苗款为120×60=7200元<8800元,∴该中学购买的树苗超过60棵,∴购买100棵树苗时每棵树苗的售价恰好将至100元,∵购买树苗超过100棵后,每棵树苗的售价为100元,此时所需支付的树苗款超过100000元,而100000>8800,∴该中学购买的树苗不过100棵,设购买了x(60<x≤100)棵,根据题意可知:x[20﹣0.5(x﹣60)]=8800,解得:x=220(舍去)或x=80,答:这所学校购买了80棵树苗23.【解答】解:(1)∵双曲线y=上的一点A(m,n),过点A作AB⊥x轴于点B,∴AB=n,OB=m,又∵△AOB的面积是3,∴mn=3,∴mn=6,∵点A在双曲线y=上,∴k=mn=6;(2)如图,延长DC交x轴于E,由旋转可得△AOB≌△ACD,∠BAD=90°,∴AD=AB=n,CD=OB=m,∠ADC=90°,∵AB⊥x轴,∴∠ABE=90°,∴四边形ABED是矩形,∴∠DEB=90°,∴DE=AB=n,CE=n﹣m,OE=m+n,∴C(m+n,n﹣m),∵点A,C都在双曲线上,∴mn=(m+n)(n﹣m),即m2+mn﹣n2=0,方程两边同时除以n2,得+﹣1=0,解得=,∵n>m>0,∴=.24.【解答】解:(1)如图,∵BC是⊙O的直径,∴∠1+∠2=90°∵AD⊥BE于点G,∴∠1+∠5=90°∴∠2=∠5∵∠CBE=∠ACG.即∠4=∠3∠DGC=∠2+∠3=∠5+∠4=∠ABC∵∠ABC=∠D∴∠DGC=∠D∴CG=CD;(2)如图.连接AE、CE,在Rt△ABC中,∠BAC=90°,AB=4,BC=2,根据勾股定理,得AC==6,∵BC是直径,∴∠BEC=90°,∴∠AGE=∠BEC,∴AD∥CE,∵∠CAE=∠4,∠3=∠4,∴∠CAE=∠3,∴AE∥CG,∴四边形AGCE是平行四边形,∴AF=FC=3,在Rt△ABF中,BF==5,∵S△ABF=BF•AG=AB•AF∴AG=.过点C作CI⊥AD于点I,得矩形GICE,∴EC=GI,∵CG=CD,∴GI=DI∵四边形AGCE是平行四边形,∴EC=AG=,∵∠D=∠ABC,∠CID=∠BAC=90°,∴△CID∽△CAB,∴=,即=,∴CD=.答:CD的长为.25.【解答】解:(1)当a=1,m=0时,抛物线的表达式为:y=x2﹣4x+2,△=8>0,故C与x轴的交点个数为2;(2)当m=0时,判断抛物线C的顶点为:(﹣,﹣+2),假设点C在第四象限,则﹣>0,且﹣+2<0,解得:0>且>0,故a无解,故顶点不能落在第四象限;(3)将点(m,m2﹣2m+2)代入抛物线表达式并整理得:(a﹣2)m2=0,∵m≠0,故a=2;则抛物线的表达式为:y=2x2﹣4(m﹣1)x+(3m2﹣6m+2),则顶点坐标为:(m﹣1,m2﹣2m),当m﹣1=t时,m=t+1,则点A(t,t2﹣1);当m﹣1=t+1时,m=t+3,点B(t+2,t2+4t+3);点A在第三象限,即t<0且t2﹣1<0,解得:﹣1<t<0;y B﹣y A=4t+4>0,故点B在点A的右上方,AB2=22+(4t+4)2=16(t+1)2+4,﹣1<t<0时,4<AB2<20;S=π()2=,故π<S<5π.。

2019-2020学年人教版五年级下册期末模拟测试数学试卷(一)

2019-2020学年人教版五年级下册期末模拟测试数学试卷(一)
【详解】
因为这个数同时是2和5的倍数,所以个位上是0。又因为这个数是3的倍数,各个数位上数的和能被3整除即可,最小填1。所以这个四位数最小是2190。
【点睛】
本题主要考查2、3、5的倍数特征,注意2、3、5的倍数个位上一定是0,然后根据3的倍数特点确定最小四位数。
8.6432
【解析】
【分析】
图示中给出的是长方体的展开图,既可以通过数出所占小方格个数来得出长方体的表面积;也可以观察展开图,设想其围成长方体的样子,根据长、宽、高定义确定长、宽、高的数值。再利用这些数据求其表面积。第2个空,用确定的长、宽、高来求其体积。
A.1B.2C.3D.4
18.下列各数中,( )与下图A点所表示的数相差最大。
A. B. C.1.28D.
19.下图的涂色部分用分数表示为( )。
A. B. C. D.
20.下列说法中,能表示出 千克的是( )。
①1千克的 ②5千克的 ③6千克的 ④5个 千克
A.①②③B.②③④C.①②④D.①②③④
【点睛】
本题考查了长方形的周长和面积及质数,除了1和它本身没有别的因数的数叫质数。
11.√
【解析】
【分析】
先求出盐水的总重量,然后用盐的重量除以盐水的总重量即可。
【详解】
40÷(200+40),
=40÷240,
= ;
故答案为:√
【点睛】
看清题意,找准盐水的量是关键。
12.×
【解析】
【分析】
钟面上一个大格是30度,求出逆时针旋转了几个大格,倒回去即可。
10.用一根长32m的绳子围一块长方形草坪,要求长和宽都是整米数,且都是质数,围出的草坪面积最大是(________)m²。

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

2019-2020学年九年级(华师大版)数学上册期末综合练习卷(含答案) (1)

九年级上册期末综合练习卷一.选择题1.下列各式①;②;③;④;⑤;其中一定是最简二次根式的有()A.4个B.3个C.2个D.1个2.在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值是()A.B.C.D.3.四边形ABCD在平面直角坐标系中的位置如图3所示,若AD⊥CD,AB∥CD,AB=5,A点坐标为(﹣2,7),则点B坐标为()A.(﹣2,2)B.(﹣2,12)C.(3,7)D.(﹣7,7)4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.5.已知方程x2﹣4x+2=0的两根是x1,x2,则代数式的值是()A.2011B.2012C.2013D.20146.如图,在△ABC中,点D在边AB上,则下列条件中不能判断△ABC∽△ACD的是()A.∠ABC=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AE 7.若分式的值是正整数,则m可取的整数有()A.4个B.5个C.6个D.10个8.一枚均匀的正方体骰子,六个面上分别刻有1,2,3,4,5,6个点.甲乙两人各掷一次,如果朝上一面的两个点数之和为奇数,则甲胜;若为偶数,则乙胜,下列说法正确的是()A.甲获胜的可能性大B.乙获胜的可能性大C.甲乙获胜的可能性一样大D.乙一定获胜9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=210二.填空题10.已知==,且a+b﹣2c=6,则a的值为.11.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.12.把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是.13.如图,ED为△ABC的中位线,点G是AD和CE的交点,过点G作GF∥BC交AC于点F,如果GF=4,那么线段BC的长是.14.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.三.解答题(共8小题,满分75分)15.计算下列各题(1)(2)(3)(4)16.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.17.已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.18.在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,求他演唱歌曲“1”和“4”的概率.19.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C 港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?20.如图,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在BC、AC上,且∠ADE =45°.(1)求证:△ABD∽△DCE;(2)若AB=2,BD=1,求CE的长.参考答案一.选择题1.C.2.B.3.C.4.B.5.D.6.C.7.A.8.C.9.B.二.填空题10.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.11.解:如图,tanα==故答案为:.12.解:根据“上加下减,左加右减”的原则可知,把二次函数y=(x﹣1)2+2的图象向左平移3个单位,再向下平移2个单位,所得函数的表达式是y=(x﹣1+3)2+2﹣2,即y=(x+2)2,故答案为y=(x+2)2.13.解:∵ED为△ABC的中位线,∴AD、CE为△ABC的中线,∴点G为△ABC的重心,∴AG=2GD,∵GF∥BC,∴△AGF∽△ADC,∴==,∴CD=GF=×4=6,∴BC=2CD=12.故答案为12.14.解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD的对称轴,∴AM=BN=AD=1,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=1,∴A′N==0,即A′与N重合,∴A′M=1,∴A′E2=EM2+A′M2,∴A′E2=(1﹣A′E)2+12,解得:A′E=1,∴AE=1;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ是矩形ABCD的对称轴,∴PQ⊥AB,AP=PB,AD∥PQ∥BC,∴A′B=2PB,∴∠P A′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1×=;综上所述:AE的长为1或;故答案为:1或.三.解答题15.解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.16.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.17.解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.18.解:(1)∵转动转盘①一共有3种可能,∴转盘指针指向歌曲“3”的概率是:;故答案为:;(2)分别转动两个转盘一次,列表:(画树状图也可以)45 6BA11,41,51,622,42,52,633,43,53,6共有9种,它们出现的可能性相同.由于指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”,所以所有的结果中,该歌手演唱歌曲“1”和“4”(记为事件A)的结果有2种,所以P(A )=.(说明:通过枚举、画树状图或列表得出全部正确情况得(4分);没有说明等可能性扣(1分).)19.解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD =,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.20.解:(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,又因为∠DEC=∠ADE+∠CAD=45°+∠CAD(三角形的外角等于不相邻的两个内角之和),同理∠ADB=∠C+∠CAD=45°+∠CAD,∴∠DEC=∠ADB,又∠ABD=∠DCE=45°,∴△ABD∽△DCE;(2)∵AB=2,∴BC=2,∵△ABD∽△DCE,∴=,即=,=,CE=﹣.。

名校调研系列卷(省命题A)2019-2020学年七年级上学期期中测试数学试题

名校调研系列卷(省命题A)2019-2020学年七年级上学期期中测试数学试题

)))))、)9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费 元(用含a 、b 的式子表示). 10.2xy-的系数是a ,次数是b ,则a +b = . 11.若313m x y +与126n x y +是同类项,则m +n = .12.把多项式x 2-2-3x 3+5x 按x 的升幂排列为 . 13.已知多项式3x 2-4x 的值为9,则6x 2-8x -6的值为 .14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤ y 时,x ★y = x 2;x >y 时,x ★y = y . 则(-2★-4)★1的值为 .15.计算:(-3. 14)+(+4. 96)+(+2. 14)+(-7. 96).16.计算:(-3)2-60 ÷22×110+|-2|.17.计算:2x2y3+(-4 x2y3)-(-3 x2y3). 18.计算:(3a2-2a)-2(a2-a-1).19.已知A = 3x2+4xy,B = x2+3xy-y2,求2B-A.20.先化简,再求值:5x2-[3x-2(2x-3)+7x2],其中x=1 2 .得分评卷人四、解答题(每小题7分,共28分)21.小明做了如下一道有理数混合运算的题目:﹣34÷(﹣27)-[(﹣2)×(﹣43)+(﹣2)]3= 81÷(﹣27)-[ 83+(-8)]= ……思考:(1)请用圆圈圈出小明第一步计算中的错误;(2)正确的解答这道题.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的整式的卡片,规则是两位同学的整式相减等于第三位同学的整式,则实验成功. 甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉琪发现丙减甲可以使实验成功,请求出丙的整式.甲乙丙(第22题)2x2-3x-1x2-2x+3+223.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,15 个站点如图所示. 某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A 站下车时,本次志愿者服务活动结束. 约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,-2,-6,+8,+3,-4,-9,+8. (1)请通过计算说明A 站是哪一站;(2)若相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?(第23题)24.如图,长为50 cm ,宽为x cm 的大长方形被分割为8小块,除阴影A 、B 外,其余6块是形状、大小完全相同的小长方形,其较短一边长为a cm.(1)由图可知,每个小长方形较长的一边长是 cm (用含a 的代数式表示); (2)当x = 40时,求图中两块阴影A 、B 的周长和. (第24题)红咀子南部新城市政府卫星广场繁荣路工农广场东北师大儿童公园人民广场胜利公园长春站长春站北一匡街庆丰路北环25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒). (1)当t = 0.5时,求点Q 到原点O 的距离; (2)当t = 2.5时,求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.(第25题)QP OA26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x筒(x>30). 经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒,现有甲、乙两家体育用品商店有如下优惠方案:方案一:甲商店:买一支网球拍送一筒网球;方案二:乙商店:网球拍与网球均按定价90%付款.(1)方案一:到甲商店购买,需要支付元;方案二:到乙商店购买,需要支付元(用含x的代数式表示);(2)若x = 10,请通过计算说明学校采用以上哪个方案较为优惠;(3)已知x = 100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以更省钱,请直接写出比方案一省多少钱?名校调研系列卷·七年上期中测试 数学(人教版)参考答案一、1. A 2. C 3. B 4. D 5. C 6. B 二、填空题:7. > 8. 5.619. (4a +10b ) 10.11. 312. -2+5x +x 2-3x 313. 1214. 16三、15. 解:原式=(-3. 14+2. 14)+(+4. 96-7. 96)= -1-3 =-4. 16. 解:原式= 9-60×14×110+2 = 9-32+2 =192. 17. 解:原式= 2x 2y 3-4x 2y 3+3x 2y 3 = x 2y 3. 18. 解:原式= 3a 2-2a -2a 2+2a +2 = a 2+2.四、19. 解:2B -A =2(x 2+3xy -y 2)-(3x 2+4xy )= 2x 2+6xy -2y 2-3x 2-4xy =-x 2+2xy -2y 2 .20. 解:5x 2-[3x -2(2x -3)+7x 2] = 5x 2-(3x -4x +6+7x 2)= 5x 2-3x +4x -6-7x 2=-2x 2+x -6.当x =12时,原式=-2×(12)2+12-6 =12 +12-6 =-6. 21. 解:(1) ; (2)﹣34÷(﹣27)- [(﹣2)×(﹣43)+(﹣2)]3=-81÷(﹣27)-(83-2)3 = 3-(23)3 = 3-827=19227.22. 解:(1)根据题意,得:2x 2-3x -1-(x 2-2x +3)= 2x 2-3x -1-x 2+2x -3 = x 2-x -4,则甲减乙不能是实验成功;(2)根据题意,得,丙表示的整式为2x 2-3x -1+ x 2-2x +3 = 3x 2-5x +2.五、23. 解:(1)+5-2-6+8+3-4-9+8= 3,答:A 站是工农广场站;(2)(5+2+6+8+3+4+9+8)×1. 3 = 45×1. 3 = 58. 5(千米), 答:这次王红志愿服务期间乘坐地铁行进的路程是58. 5千米.24. 解:(1)(50-3a );(2)2 [50-3a +(x -3a )]+2 [3a +x -(50-3a )]= 2(50+x -6a )+2(6a +x -50) = 100+2x -12a +12a +2x -100 = 4x .当x = 40时,原式= 4×40 = 160 .32= 81÷(-27)-[83+(-8)]= ……六、25. 解:(1)当t = 0. 5时,AQ = 4t = 4×0. 5= 2,∵OA = 8,∴OQ = OA-AQ = 8-2 = 6,∴点Q到原点O的距高为6;(2)当t = 2. 5时,点Q运动的距离为4t = 4×2. 5 = 10,∴OQ =10-8 = 2,∴点Q到原点O的距离为2;(3)当点Q到原点O的距离为4时,∵OQ = 4,∴当点Q向左运动时,OA = 8,则AQ = 4,∴t = 1,∴OP = 2;当点Q向右运动时,OQ = 4,∴点Q运动的距离是8+4 = 12,∴运动时间t=12÷4 = 3,∴OP = 2×3 = 6,∴点P到原点O的距离为2或6.26. 解:(1)甲商店购买需付款30×100+(x-30)×20 = 20x+30×(100-20)=(20x+2400)元;乙商店购买需付款100×90%×30+20×90%×x =(18x+2700)元.故答案为:(20x+2400),(18x+2700);(2)当x = 100时,甲商店需20×100+2400 = 4400(元);乙商店需18×100+2700 = 4500(元);所以甲离店购买合算;(3)先在甲商店购买30支球拍,送30筒球需3000元,差70筒球在乙商店购买需1260元,共需4260元,4400-4260 = 140(元),比方案一省140元钱.。

人教版2019-2020学年五年级上学期数学9月月考试卷(I)卷

人教版2019-2020学年五年级上学期数学9月月考试卷(I)卷

人教版2019-2020学年五年级上学期数学9月月考试卷(I)卷小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、认真思考,仔细填写。

(共7题;共11分)1. (3分)推算:________、________、________2. (1分)写出下表中各数的近似数.________3. (1分)一个因数扩大10倍,要使积不变,另一个因数要________4. (3分)算出第1题的积,然后很快地写出下面两题的积63×3=________63×30=________63×300=________5. (1分)计算(能简便计算的就用简便方法计算):0.2×136×5=________6. (1分)计算.4.9×10.1=________7. (1分)农场有一个边长300米的正方形实验田,每公顷产小麦6000千克,这块麦田产小麦________千克.二、判断正误 (共5题;共10分)8. (2分)下面计算得对吗?9. (2分)判断对错.120乘一个小数的积小于120.10. (2分)判断对错.2.6×3.1=1.3×6.211. (2分)在计算3.6×4×2.5= 3.6×(4×2.5)利用的是乘法分配律。

12. (2分)近似值是0.6的两位小数最大是0.59,最小是0.55。

(判断对错)三、仔细选一选 (共5题;共10分)13. (2分)0.65×108=()A . 70.2B . 702C . 60.2 D,7.0214. (2分)0.78×2.5=()A . 0.64B . 1.95C . 3.6D . 19.3815. (2分)3.996精确到百分位是()A . 3.99B . 4C . 4.0016. (2分)4.8÷25÷4=4.8÷(25×4)=4.8÷100=0.048,这是运用了()A . 乘法结合律B . 除法结合律C . 除法的运算性质17. (2分)能简算的要用简便方法计算.()A . 4.6B . 2.5C . 2.6D . 5.2四、认真计算。

2019-2020学年人教版九年级数学上册 第二十一章 一元二次方程 达标测试卷(含答案)

2019-2020学年人教版九年级数学上册 第二十一章 一元二次方程 达标测试卷(含答案)

第二十一章达标测试卷一、选择题(每题3分,共30分)1.下列方程是关于x的一元二次方程的是()A.ax2+2=x(x+1) B.x2+1x=3C.x2+2x=y2-1 D.3(x+1)2=2(x+1)2.如果2是方程x2-3x+k=0的一个根,那么常数k的值为()A.1 B.2 C.-1 D.-23.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x-2)2=3 C.(x-2)2=5 D.(x+2)2=54.方程x2-42x+9=0的根的情况是()A.有两个不相等的实根B.有两个相等的实根C.无实根D.以上三种情况都有可能5.等腰三角形的两边长为方程x2-7x+10=0的两根,则它的周长为() A.12 B.12或9 C.9 D.76.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行(或列),则列方程得() A.(8-x)(10-x)=8×10-40 B.(8-x)(10-x)=8×10+40C.(8+x)(10+x)=8×10-40 D.(8+x)(10+x)=8×10+40(第7题) 7.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x -3=0的根,则▱ABCD的周长为()A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 28.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()9.在直角坐标系xOy中,已知点P(m,n),m,n满足(m2+1+n2)(m2+3+n2)=8,则OP的长为()A. 5 B.1 C.5 D.5或110.如图,某小区规划在一个长为40 m,宽为26 m的矩形场地ABCD上修建三条同样宽的路,使其中两条与AB平行,另一条与AD平行,其余部分种植草坪,若使每块草坪(阴影部分)的面积都为144 m2,则路的宽为()(第10题) A.3 m B.4 mC.2 m D.5 m二、填空题(每题3分,共30分)11.方程(x-3)2+5=6x化成一般形式是__________________,其中一次项系数是________.12.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长为________________.13.已知x=1是一元二次方程x2+ax+b=0的一个根,则(a+b)2 019的值为________.14.若关于x的一元二次方程2x2-5x+k=0无实数根,则k的最小整数值为________.15.已知x1,x2是关于x的一元二次方程x2-5x+a=0的两个实数根,且x21-x22=10,则a=________.16.对于任意实数a,b,定义f(a,b)=a2+5a-b,如f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是________.17.下面是某同学在一次测试中解答的填空题:①若x2=a2,则x=a;②方程2x(x-2)=x-2的解为x=12;③已知x1,x2是方程2x2+3x-4=0的两根,则x1+x2=32,x1x2=-2.其中错误的答案序号是__________.18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是______三角形.19.若x2-3x+1=0,则x2x4+x2+1的值为________.20.如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15 m,一面利用墙,其余三面用篱笆围,篱笆长为24 m.当围成的花圃面积为40 m2时,平行于墙的边BC的长为________m.(第20题) 三、解答题(21、26题每题12分,22、23题每题8分,其余每题10分,共60分) 21.用适当的方法解下列方程:(1)x(x-4)+5(x-4)=0;(2)(2x+1)2+4(2x+1)+4=0;(3)x2-2x-2=0; (4)(y+1)(y-1)=2y-1.22.已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为倒数?请说明理由.23.已知关于x的方程(a-1)x2-4x-1+2a=0的一个根为x=3.(1)求a的值及方程的另一个根;(2)如果一个三角形的三条边长都是这个方程的根,求这个三角形的周长.24.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程的两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.25.为了贯彻党中央、国务院关于倡导开展全民阅读的重要部署,落实《关于实施中华优秀传统文化传承发展工程的意见》.某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7 500本,2017年图书借阅总量是10 800本.(1)求该社区从2015年至2017年图书借阅总量的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1 350人,预计2018年达到1 440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?26.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动.问:(1)P,Q两点出发多长时间后,四边形PBCQ的面积是33 cm2?(2)P,Q两点出发多长时间后,点P与点Q之间的距离是10 cm?(第26题)答案一、1.D 2.B 3.A 4.C 5.A 6.D7.A 8.B 9.B 10.C 二、11.x 2-12x +14=0;-1212.6或10或1213.-1 点拨:将x =1代入方程x 2+ax +b =0,得1+a +b =0,∴a +b =-1,∴(a +b )2 019=-1.14.415.214 点拨:由根与系数的关系,得x 1+x 2=5,x 1·x 2=a .由x 21-x 22=10得,(x 1+x 2)(x 1-x 2)=10,∴x 1-x 2=2,∴(x 1-x 2)2=(x 1+x 2)2-4x 1·x 2=25-4a =4,∴a =214.16.-6或1 17.①②③ 18.直角19.18 点拨:由已知x 2-3x +1=0得x 2=3x -1,则x 2x 4+x 2+1=x 2(3x -1)2+x 2+1=x 210x 2-6x +2=3x -110(3x -1)-6x +2=3x -124x -8=3x -18(3x -1)=18.20.4三、21.解:(1)原方程可化为(x -4)(x +5)=0,∴x -4=0或x +5=0, 解得x =4或x =-5. (2)原方程可化为(2x +1+2)2=0,即(2x +3)2=0, 解得x 1=x 2=-32. (3)∵a =1,b =-2,c =-2,∴Δ=4-4×1×(-2)=12>0, ∴x =2±122=2±232=1±3. ∴x 1=1+3,x 2=1- 3. (4)原方程化为一般形式为y 2-2y =0.因式分解,得y(y-2)=0.∴y1=2,y2=0.22.(1)证明:在关于x的一元二次方程x2-(t-1)x+t-2=0中,Δ=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)解:设方程的两根分别为m,n,则mn=t-2.∵方程的两个根互为倒数,∴mn=t-2=1,解得t=3.∴当t=3时,方程的两个根互为倒数.23.解:(1)将x=3代入方程(a-1)x2-4x-1+2a=0中,得9(a-1)-12-1+2a=0,解得a=2.将a=2代入原方程中得x2-4x+3=0,因式分解得(x-1)(x-3)=0,∴x1=1,x2=3.∴方程的另一个根是x=1.(2)∵三角形的三边长都是这个方程的根.∴①当三边长都为1时,周长为3;②当三边长都为3时,周长为9;③当两边长为3,一边长为1时,周长为7;④当两边长为1,一边长为3时,不满足三角形三边关系,∴不能构成三角形.故三角形的周长为3或9或7.24.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,解得k>3 4.(2)∵k>34,∴x1+x2=-(2k+1)<0.又∵x1·x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=-x1-x2=-(x1+x2)=2k+1.∵|x1|+|x2|=x1·x2,∴2k+1=k2+1,解得k1=0,k2=2.又∵k >34,∴k =2.25.解:(1)设该社区从2015年至2017年图书借阅总量的年平均增长率为x ,根据题意,得7 500(1+x )2=10 800, 即(1+x )2=1.44,解得x 1=0.2=20%,x 2=-2.2(舍去).因此该社区从2015年至2017年图书借阅总量的年平均增长率为20%. (2)10 800×(1+0.2)=12 960(本),10 800÷1 350=8(本),12 960÷1 440=9(本). (9-8)÷8×100%=12.5%. 故a 的值至少是12.5.26.解:(1)设P ,Q 两点出发x s 后,四边形PBCQ 的面积是33 cm 2,则由题意得(16-3x +2x )×6×12=33,解得x =5.即P ,Q 两点出发5 s 后,四边形PBCQ 的面积是33 cm 2.(2)设P ,Q 两点出发t s 后,点P 与点Q 之间的距离是10 cm ,过点Q 作QH ⊥AB 于点H .在Rt △PQH 中,有(16-5t)2+62=102,解得t 1=1.6,t 2=4.8.即P ,Q 两点出发1.6 s 或4.8 s 后,点P 与点Q 之间的距离是10 cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福州市2019-2020学年中考评测数学试题(一)A卷姓名:________ 班级:________ 成绩:________
一、单选题
1 . 2019年3月初,全国“两会”在北京人民大会堂隆重召开,李克强总理在《政府工作报告》中指出,过去的一年,我国为企业和个人减税降费约1300000000000元,数1300000000000用科学记数法表示为()A.13×108B.0.13×1013C.1.3×1012D.1.3×1013
2 . 小明在学了尺规作图后,通过“三弧法”作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是()
A.∠A=60°
B.△ACD
是直角
三角形C.BC=CD
D.点B是△ACD的外心
3 . 某次数学测试后,对九(1)班和九(2)班的50名同学进行成绩分析,甲说:“九(1)班同学的平均分比九(2)班高”,乙说:“第25名和第26名同学的平均分九(2)班比九(1)班高.”上面两名同学说法能反映出的统计量有()
A.平均数和众数B.众数和方差C.平均数和方差D.平均数和中位数
4 . 母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.请你根据图中提供的信息,若全校共有990名学生,估计这所学校所有知道母亲的生日的学生有()名
A.440B.495C.550D.660
5 . 下列轴对称图形中,对称轴条数最多的是()
A.线段B.等边三角形C.正方形D.圆
6 . 2019的绝对值等于()
A.﹣2019B.2019
C.﹣D.
7 . 下列式子变形正确的()
A.(a-b)= -(b-a)B.(a-b)=-(a+b)C.(a-b)=(b-a)D.(a-b)=(a+b)
8 . 一个正十边形的某一边长为8cm,其中一个内角的度数为144º,则这个正十边形的周长和内角和分别为()
A.64cm,1440ºB.80cm,1620ºC.80cm,1440ºD.88cm,1620º
9 . 如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是
A.B.C.D.
10 . 若一个数的绝对值是5,则这个数是()
A.5B.﹣5C.±5D.以上都不对
11 . 在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的表达式为()A.B.C.D.
12 . 下列命题:①有一个外角是120°的等腰三角形是等边三角形;②全等的两个三角形一定关于某条直线对称;③等腰三角形的高线、中线、角平分线互相重合;④圆是轴对称图形,有无数条对称轴,直径就是它的对称轴。

其中正确的有()
A.1个B.2个C.3个D.4个
二、填空题
13 . 当x________时,分式有意义;当x_________时,分式无意义.
14 . 因式分解:=_____.
15 . 扇形AOB中,∠AOB=60°,OA=4,过A作AC⊥OB于点C,则图中阴影部分的面积为
______.
16 . 一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是____.
17 . 如图,在平面直角坐标系中,每个小方格的边长均为1.与是以原点为位似中心的位似
图形,且相似比为,点都在格点上,则点的坐标是.
18 . 某地区一天早晨气温是,中午上升,半夜下降,则半夜气温是________.
三、解答题
19 . 定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:
(1)试判断ac的符号;
(2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.
①求a的值;
②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.
20 . 已知:如图,正方形ABCD的边长为10 cm,点E在边AB上,且AE=4 cm,点P在线段BC上以每秒2 cm 的速度由点B向点C运动,同时点Q在线段CD上由点C向点D运动.设点P运动时间为t秒,若某一时刻△BPE
与△CQP全等,求此时t的值及点Q的运动速度.
21 . (1)计算:(﹣1)0﹣2sin30°+()﹣1+(﹣1)2019
(2)解不等式组:并把解集在数轴上表示出来.
22 . 先化简,再选取一个既使原式有意义,又是你喜欢的数代入求值.
23 . 学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A
级和B级)?
24 . 如图,在平面直角坐标系中,反比例函数的图象与一次函数的图象的一个交点为

求一次函数的解析式;
若点在直线上,且满足,直接写出点的坐标.
25 . 如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连接OD,AC.
(1)求证:△ABC∽△DCA;
(2)若AC=2,BC=4,求DO的长.
26 . 从甲地到乙地有一段上坡路与一段平路,如果保持上坡路每小时走3km,平路每小时走4km,下坡路每小时走5km,那么从甲地到乙地需40min,从乙地到甲地需30min,甲地到乙地的全程是多少?。

相关文档
最新文档