湖北省七市(州)2017届高三下学期3月联合调考试题 数学(文) Word版含答案

合集下载

湖北省七市(州)教科研协作体2017届高三下学期3月联合调考试题 数学(文) 图片版含答案

湖北省七市(州)教科研协作体2017届高三下学期3月联合调考试题  数学(文) 图片版含答案

20 17年3月湖北省七市(州)教科研协作体高三联合考试文科数学参考答案及评分说明命题单位:荆门教研室十堰教科院审题单位:荆州教科院孝感教科院恩施教科院一、选择题(共12小题,每小题5分)1.B2.D3.A4. C5.B6.C7.C8.B9.C 10.D 11.B 12.A 二、填空题(共4小题,每小题5分) 13.1 14215.13 16.10三、解答题 17(12分)解:(Ⅰ)当1n =时,21124a S a a ==+=+,当2n ≥时,112(2)2n n n n n n a S S a a +-=-=+-+=, ………………………………3分{}n a 为等比数列,2223213(2)(4)2a a a a ∴=⋅⇒=+⋅,解得2a =-.………6分(Ⅱ)由(Ⅰ)知2n n a =,则322log 223n n b n =-=-,13n n b b +-=- 对一切n N *∈都成立,{}n b ∴是以11b =-为首项,3d =-为公差的等差数列 ,………………………………9分21(1)322n n n n n T nb d --∴=+=. …………………………………………………12分18(12分)解:(Ⅰ)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,∴总人数为7500.14=(人). ………………………………………………………………2分 ∴第4、5、6组成绩均进入决赛,人数为(0.28+0.30+0.14)×50=36(人)即进入决赛的人数为36. ………………………………………………………………6分 (Ⅱ)设甲、乙各跳一次的成绩分别为x 、y 米,则基本事件满足的区域为8109.510.5x y ⎧⎨⎩≤≤≤≤, 事件A “甲比乙远的概率”满足的区域为x y >,如图所示. ………………………10分∴由几何概型1111222()1216P A ⨯⨯==⨯. 即甲比乙远的概率为116. ………………12分 19(12分)解:(Ⅰ)证明:由题可知ABM DCP -是底面为直角三角形的直棱柱,AD ∴⊥平面MAB AD M A ∴⊥ , ……………………………………………2分又M A AB ⊥, , AD AB A AD = ,AB ⊂平面ABCD ,MA ∴⊥ABCD , …………………………………………………………4分 M A BD ∴⊥ 又AB AD =,∴四边形ABCD 为正方形,BD AC ∴⊥,又 , MA AC A MA = ,AC ⊂平面MAC ,BD ∴⊥平面MAC . …………………6分 (Ⅱ)设刍童1111ABCD A B C D -的高为h ,则三棱锥111A A B D -体积1122323V h =⋅⋅⋅⋅=,所以h =……………………………………………9分 故该组合体的体积为221111(1223236V =⋅+++=……………………12分 (注:也可将台体补形为锥体后进行计算) 20(12分)解:(Ⅰ)依题意知直线A 1N 1的方程为y x =① 直线A 2N 2的方程为y x = ②…………………………2分设M (x ,y )是直线A 1N 1与A 2N 2交点,①×②得 22(6)6mn y x =--, 由mn =2,整理得22162x y +=; …………………………4分 (Ⅱ)由题意可知,设:3l x ty =+,112211( , ),( , ),( , )P x y Q x y N x y -由 22223,(3)630162x ty t y ty x y =+⎧⎪⇒+++=⎨+=⎪⎩(*) ………………………6分 由1122( 3 , )( 3 , )RP RQ x y x y λλ=⇒-=-故12123(3),x x y y λλ-=-=, ………8分要证NF FQ λ=,即证1122(2,)(2,)x y x y λ-=-,只需证:122(2),x x λ-=-只需11223232x x x x --=---即证 121225()120x x x x -++=即212122()0t y y t y y ++=,…10分 由(*)得:22121222362()2033tt y y t y y t t t t ++=⋅-⋅=++,即证. ………………12分 21(12分)解: (Ⅰ)解法一:由题意得211()=(0)x ax f x x a x x x++'=++>, 令24a ∆=- (1)当240a ∆=-≤,即22a -≤≤时,210x ax ++≥对0x >恒成立即21()0x ax f x x++'=≥对0x >恒成立,此时()f x 没有极值点;…………2分 (2)当240a ∆=->,即22a a <->或①2a <-时,设方程21=0x ax ++两个不同实根为12,x x ,不妨设12x x < 则12120,10x x a x x +=->=>,故210x x >> ∴12x x x x <>或时()0f x >;在12x x x <<时()0f x < 故12,x x 是函数()f x 的两个极值点.②2a >时,设方程21=0x ax ++两个不同实根为12,x x ,则12120,10x x a x x +=-<=>,故210,0x x <<∴0x >时,()0f x >;故函数()f x 没有极值点. ……………………………5分 综上,当2a <-时,函数()f x 有两个极值点;当2a ≥-时,函数()f x 没有极值点. ………………………………………6分解法二:1()f x x a x'=++, ……………………………………………………………1分 0,()[2,)x f x a '>∴∈++∞ ,①当20a +≥,即[2,)a ∈-+∞时,()0f x '≥对0x ∀>恒成立,()f x 在(0,)+∞单调增,()f x 没有极值点; ……………………………………………………………3分②当20a +<,即(,2)a ∈-∞-时,方程210x ax ++=有两个不等正数解12 , x x ,212()()11()(0)x x x x x ax f x x a x x x x--++'=++==>不妨设120x x <<,则当1(0,)x x ∈时,()0,()f x f x '>增;12(,)x x x ∈时,()0,()f x f x '<减;2(,)x x ∈+∞时,()0,()f x f x '>增,所以12,x x 分别为()f x 极大值点和极小值点,()f x 有两个极值点.综上所述,当[2,)a ∈-+∞时,()f x 没有极值点;当(,2)a ∈-∞-时,()f x 有两个极值点. ………………………………6分(Ⅱ)2()()ln x f x g x e x x ax ≤⇔-+≥,由0x >,即2ln x e x xa x +-≤对于0x ∀>恒成立, ………………………………8分设2ln ()(0)x e x xx x xϕ+-=>, 2221(2)(ln )(1)ln (1)(1)()x x x e x x e x x e x x x x x x x x ϕ+--+--+++-'==, 0x > ,(0 , 1)x ∴∈时,()0,()x x ϕϕ'<减,(1 ,)x ∈+∞时,()0,()x x ϕϕ'>增,()(1)1x e ϕϕ∴=+≥,1a e ∴+≤.………………………………………………………12分第22、23题为选考题 22(10分)解:(Ⅰ)因为24(cos sin )3ρρθθ=+-,所以224430x y x y +--+=,即22(2)(2)5x y -+-=为圆C 的普通方程. ………………………………3分所以所求的圆C的参数方程为2,2x y θθ=+=+⎧⎪⎨⎪⎩(θ为参数) ……………………5分(Ⅱ)解法一:设2x y t +=,得2x t y =-代入224430x y x y +--+=整理得2254(1)430y t y t t +-+-+= (*),则关于y 方程必有实数根 …………7分 ∴2216(1)20(43)0t t t ∆=---+≥,化简得212110t t -+≤解得111t ≤≤,即2x y +的最大值为11. …………………………………………9分 将11t =代入方程(*)得28160y y -+=,解得4y =,代入211x y +=得3x = 故2x y +的最大值为11时,点P 的直角坐标为(3,4). ………………………10分解法二:由(Ⅰ)可得,设点(2 , 2)P θθ+,266)x y θθθθ+=+=++ ,设sin α=cos α= ,所以265sin()x y θα+=++ 当sin()1θα+=时,max (2)11x y +=,………………………………………………8分 此时,π2π,2k k Z θα+=+∈,即π2π()2k k Z θα=-+∈,所以sin cos θα==,cos sin θα== 点P 的直角坐标为(3,4). ……………………………………………10分 23(10分)解:(Ⅰ)由()5f x >,得23x ->,即23x -<-或23x ->, ………………………………………3分 1x ∴<-或5x >.故原不等式的解集为{}15x x x <->或………………………5分 (Ⅱ)由()()f x g x ≥,得22x m x --≥对任意x R ∈恒成立, 当0x =时,不等式22x m x --≥成立, 当0x ≠时,问题等价于22x m x -+≤对任意非零实数恒成立, ……………7分22221 , 1x x m x x -+-+=∴ ≥≤ ,即m 的取值范围是( , 1]-∞.…………10分。

【高考模拟试题及答案】2017年3月湖北七市州高三联考试题及答案汇总

【高考模拟试题及答案】2017年3月湖北七市州高三联考试题及答案汇总
2017年3月湖北七市州高三联考于3月7日8日考试出国留学网高考网小编整理了2017年3月湖北七市州高三联考试题及答案供同学们参考学习
【高考模拟试题及答案】2017年3月湖北七市州高三联考试题及答案汇总
2017年3月湖北七市州高三联考于3月7日-8日考试,高考网小编整理了2017年3月湖北七市州高三联考试题及答案,供同学们参考学习。
2017年3月湖北七市州高三联考试题及答案汇总
科目
试题及答案
语文
2017年3月湖北七市州高三联考语文试题及答案
文科数学
2017年3月湖北七市州高三联考文科数学试题及答案
理科数学
2017年3月湖北七市州高三联考理科数学试题及答案
英语
2017年3月湖北七市州高三联考英语试题及答案
2017年3月湖北七市州高三联考理综试题及答案
2017年3月湖北七市州高三联考政治试题及答案
2017年3月湖北七市州高三联考试题及答案正在整理中,请等待……
以上是高考网为大家整理的2017年3月湖北七市州高三联考试题及答案,更多高考语文、高考数学、高考英语、高考理综、高考文综、高考真题、高考模拟、满分作文、高考分数线、高考招生简章及招生计划、全国大学排名、专业信息解读等最新高考信息,请关注高考网)。
生物
2017年3月湖北七市州高三联考生物试题及答案
化学
2017年3月湖北七市州高三联考化学试题及答案
物理
2017年3月湖北七市州高三联考物理试题及答案
2017年3月湖北七市州高三联考文综试题及答案
地理
2017年3月湖北七市州高三联考地理试题及答案
历史
2017年3月湖北七市州高三联考历史试题及答案
政治
高考备考辅导;高考食谱大全;高考前必须做的事

2017届湖北省七市(州)高三第一次联合调考(3月联考)文科综合试题 扫描版

2017届湖北省七市(州)高三第一次联合调考(3月联考)文科综合试题 扫描版

2017年3月湖北省七市(州)教科研协作体高三联合考试文科综合政治参考答案及评分说明12.答案B。

购房政策的调整目的在于减少需求,稳定房价,在不考虑其他条件的前提下,需求减少,价格降低,只有B符合条件。

A表示价格上涨需求减少,C表示价格不变,需求减少,D表示需求不变,价格下降。

13.答案B。

生产决定消费的结构说法错误,①排除,消费为生产创造出新的劳动力,促进生产的发展与材料无关,不能说明,因此排除④。

②③说法正确且符合题意,因此选B。

14.答案B。

通过财政补贴培育战略性新兴产业和加强节能减排工作,①④说法正确。

材料反映市场调节的自发性而非盲目性,排除②,材料中“骗补”行为并不属于“骗税”,排除③,故选①④,B。

15.答案C。

优质农产品的供求矛盾将得到根本解决,②说法太绝对。

标准化生产的推行与满足个性化的需求并不矛盾,④排除。

①③说法正确且符合题意,因此选C。

16.答案A。

小偷虽然可恨,但罪不至死,也有自身的权利和自由,对小偷的处罚要经过法定的程序,由相应的机关予以处罚,①②说法正确。

③④说法正确,但与题无关,选A。

17.答案C。

人大有全国人大和地方各级人大之分,①排除。

审议权属于人大代表的权利,全国人大及其常委会行使立法权、决定权、任免权和监督权,②说法错误。

③④说法正确且符合题意,因此选C。

18.答案B。

冲突、竞争和合作是国家关系的基本形式,而非内容,①说法错误,维护世界和平、促进共同发展是我国外交政策的基本宗旨,而不是基本目标,④说法错误,②③说法正确,选B。

19.答案C。

②说法正确,但不符合题意。

传统中医药文化有精华和糟粕之分,说全面继承错误,③排除。

①④说法正确且符合题意,因此选C。

20.答案D。

帐篷理论揭示的是如何解决矛盾,在解决矛盾时强调必须抓住主要矛盾,而把握矛盾的主要方面侧重认识矛盾,因此①不选;抓住帐篷的中心支柱即是抓住主要矛盾的体现,同时又要照顾到四周的支柱即是抓次要矛盾的体现,因此②正确,③不选;必须用多个支柱使帐篷伸展在空中,说明无视次要矛盾的解决就不能顺利地解决矛盾,所以④入选。

湖北省七市(州)教科研协作体2017届高三下学期3月联合调考试题 语文 图片版含答案

湖北省七市(州)教科研协作体2017届高三下学期3月联合调考试题  语文 图片版含答案

2017年3月七市(州)教科研协作体高三联合调考语文参考答案选择题(39分1-4、10-12、17-19每小题3分;7题4分,每项2分;14题5分,B项2分、E项3分)1.C(题干要求是人品为诗品的条件,而C项却说成了诗品为人品的条件。

诗品不一定能带动人品提升。

2.D(逻辑有误。

据原文“尽管言非心声的现象并不罕见,也许永远无法杜绝,但我们仍然倡导坚守文如其人的传统……”可见,“言非心声”的现象并非只要倡导坚守“文如其人”的传统就可以解决的。

“只要……就”过于绝对。

)3.D(有了好的人品,就能创造出优秀的作品,此推断于文无据。

“诗如其人”,文中说“相当一部分诗人的诗品和人品是割裂的”)4.B(从“保是第一要紧的事情,但我更要扬”这段话可看出她认为“扬比保”更重要。

)5.①樊锦诗担任敦煌研究院院长,一生致力于敦煌文物保护,让敦煌遗产保护翻开了新篇章。

②她是一名卓越的敦煌学者,在她的带领下,敦煌学研究取得了重大突破,敦煌石窟考古进入了一个新的阶段,敦煌学又进一境,在国际上弘扬了敦煌学。

(共4分,每点2分。

如答具体措施“引进先进保护理念和技术”“坚持走国际合作之路”“数字敦煌”等可酌情给分)6.陈寅恪曾悲叹的原因一是保护不力,文物流失和损毁严重;二是研究乏力,“敦煌在中国,敦煌学研究在国外”;(2分,每个要点1分)转悲为喜:①敦煌遗产保护得力。

在“莫高窟人”的带领下,一代代人在敦煌坚守,把文物保护作为自己一生的任务,同时还开辟了“数字敦煌”这样永久的科学保护之路。

②敦煌研究成果喜人。

在“敦煌学在国外”已成为历史。

在樊锦诗的带领下,敦煌学各个领域都取得了重大成就,并在国际产生了重大影响。

③敦煌研究前景广阔。

国际合作使敦煌研究达到一个新的高度,同时培养了一大批青年骨干,为敦煌研究提供了坚实的基础。

(3分,每个要点1分,意对即可,酌情给分)7.CD(C项“侯三生性懦弱”错,侯三怕老婆是宽仁,不打瞎子是仁厚。

D项“老板是个黑社会的头目”说法绝对,“卖艺瞎子”是老板派人化装的,不是“无辜的”。

湖北省七市(州)2017届高三第一次联合调考(3月)英语试题(含答案)

湖北省七市(州)2017届高三第一次联合调考(3月)英语试题(含答案)

湖北省七市(州)2017届高三第一次联合调考(3月)英语试题(含答案)2017年3月湖北省七市(州)教科研协作体高三联合考试英语命题:荆州教科院孝感教科院审题:宜昌教科院荆门教研室襄阳教科室本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

共12页,81题,全卷满分150分,考试用时120分钟。

★祝考试顺利★注意事项:1.答题前,请考生认真阅读答题卡上的注意事项。

务必将自己的姓名、考号填写在答题卡上指定位置,贴好考号条形码或将考号对应数字凃黑。

用2B铅笔将试卷类型A填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B铅笔把对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.非选择答题用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的清洁。

考试结束后,监考人员将答题卡和试卷一并收回。

第Ⅰ卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. How did the man know about the club?A. On the radio.C. From a friend.2. Why can’t the man return his camera?A. It is broken.B. It was bought on sale.C. It was bought last week.3. What is the weather like?A. Cloudy.B. Sunny.C. Windy.4. Where does the conversation probably take place?A. At an airport.B. At home.C. At a drugstore.5. What are the speakers talking about?A. A club.B. A theft.C. A cupboard.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

湖北省七市(州)2017届高三毕业生第一次联合调考(3月联考)试题语文试卷-Word版含答案

湖北省七市(州)2017届高三毕业生第一次联合调考(3月联考)试题语文试卷-Word版含答案

湖北省七市(州)2017届高三毕业生第一次联合调考(3月联考)语文试题本试题卷共10页,22题。

全卷满分150分。

考试用时150分钟。

★祝考试顺利★【注意事项】1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用合乎要求的2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷阅读题(70分)一、现代文阅读(35分)(一)论述类文本阅读(9分,每小题3分)阅读下面的文字,完成1-3题。

诗品和人品肖瑞峰我们经常说两句话,“文如其人”“言为心声”。

中国古代传统诗论习惯于将诗品与人品相联系,以为人品决定诗品,诗品出于人品,因而总是强调“有第一等襟抱,第一等学识,才有第一等真诗”。

考察中国古典诗歌的历史流程,“文如其人”确实是比较普遍的现象,这是一种史实,但我要向大家揭示的另一史实是,在中国古代诗歌史上,也不难找到“言非心声”的例证,在一些诗人那里,诗品和人品其实是割裂的,背离的,永选无法契合的。

如果坚持认为“诗品醇者,人品必正”,显然是一种罔顾文学史实的想当然的误判。

提及“诗品”,熟悉中国文学史的很容易联想到梁代钟嵘和唐代司空图的两部同名著作,所谓“品”,是就区分诗歌的不同风格、境界而言的,可以理解为类别。

今天我们讨论的“诗品”,有别于钟嵘、司空图的指称,指的是诗的品质、品格和品味;与此相应,所谓“人品”指的是人的品行、品性、品德。

人们常常将诗品与人品相提并论。

二者之间确实有密切的联系,但却不能等同,也无法对应。

湖北省七市州2024届高三下学期3月联合统一调研测试数学试题含答案

湖北省七市州2024届高三下学期3月联合统一调研测试数学试题含答案

2024年湖北省七市州高三年级3月联合统一调研测试数学试卷命题单位:荆州市教育科学研究院2024.3本试卷共4页,19题,全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,log 1A xx x B x x =-<=>∣∣,则()R A B ⋂=ð()A.()0,2 B.(]0,2 C.(]1,2 D.()2,32.已知复平面内坐标原点为O ,复数z 对应点,Z z 满足()43i 34i z -=+,则OZ =()A.45B.34C.1D.23.已知正方形ABCD 的边长为2,若BP PC = ,则AP BD ⋅=()A.2B.-2C.4D.-44.已知椭圆22:1x C y m +=,则“2m =”是“椭圆C 的离心率为22”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.过点()1,1P -的直线l 与圆22:410C x y x ++-=交于,A B 两点,则AB 的最小值为()A. D.26.已知公差为负数的等差数列{}n a 的前n 项和为n S ,若347,,a a a 是等比数列,则当n S 取最大值时,n =()A.2或3B.2C.3D.47.若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A.718-B.718C.18+-D.18-8.能被3个半径为1的圆形纸片完全覆盖的最大的圆的半径是()A.263B.62C.233D.3132+二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.已知,A B 为随机事件,()()0.5,0.4P A P B ==,则下列结论正确的有()A.若,A B 为互斥事件,则()0.9P A B +=B.若,A B 为互斥事件,则()0.1P A B +=C.若,A B 相互独立,则()0.7P A B +=D.若()0.3P BA =∣,则()0.5P B A =∣10.如图,棱长为2的正方体1111ABCD A B C D -中,E 为棱1DD 的中点,F 为正方形11C CDD 内一个动点(包括边界),且1B F ∥平面1A BE ,则下列说法正确的有()A.动点FB.三棱锥11B D EF -体积的最小值为13C.1B F 与1A B 不可能垂直D.当三棱锥11B D DF -的体积最大时,其外接球的表面积为25π211.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.已知函数()422xf x =+,则下列结论正确的有()A.函数()f x 的值域为(]0,2B.函数()f x 的图象关于点()1,1成中心对称图形C.函数()f x 的导函数()f x '的图象关于直线1x =对称D.若函数()g x 满足()11y g x =+-为奇函数,且其图象与函数()f x 的图象有2024个交点,记为()(),1,2,,2024i i i A x y i =,则()202414048i i i x y =+=∑三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()πsin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭满足()2π3f x f ⎛⎫ ⎪⎝⎭ 恒成立,且在区间π,π3⎛⎫ ⎪⎝⎭上无最小值,则ω=__________.13.已知双曲线22:13y C x -=的左右顶点分别为,A B ,点P 是双曲线C 上在第一象限内的点,直线,PA PB 的倾斜角分别为,αβ,则tan tan αβ⋅=__________;当2tan tan αβ+取最小值时,PAB 的面积为__________.14.已知函数()1ln 3f x ax b ⎛⎫=+- ⎪⎝⎭22a b +取最小值时,b a 的值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)如图,四棱锥P ABCD -的底面是矩形,2,AB BC PBC == 是等边三角形,平面PBC ⊥平面,,ABCD O F 分别是,BC PC 的中点,AC 与BD 交于点E .(1)求证:BD ⊥平面PAO ;(2)平面OEF 与直线PD 交于点Q ,求直线OQ 与平面PCD 所成角θ的大小.某高中学校为了解学生参加体育锻炼的情况,统计了全校所有学生在一年内每周参加体育锻炼的次数,现随机抽取了60名同学在某一周参加体育锻炼的数据,结果如下表:一周参加体育锻炼次数01234567合计男生人数1245654330女生人数4556432130合计579111086460(1)若将一周参加体育锻炼次数为3次及3次以上的,称为“经常锻炼”,其余的称为“不经常锻炼”.请完成以下22⨯列联表,并依据小概率值0.1α=的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;性别锻炼合计不经常经常男生女生合计(2)若将一周参加体育锻炼次数为0次的称为“极度缺乏锻炼”,“极度缺乏锻炼”会导致肥胖等诸多健康问题.以样本频率估计概率,在全校抽取20名同学,其中“极度缺乏锻炼”的人数为X ,求()E X 和()D X ;(3)若将一周参加体育锻炼6次或7次的同学称为“运动爱好者”,为进一步了解他们的生活习惯,在样本的10名“运动爱好者”中,随机抽取3人进行访谈,设抽取的3人中男生人数为Y ,求Y 的分布列和数学期望.附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++α0.10.050.01x α2.7063.8416.63517.(本小题15分)已知各项均不为0的数列{}n a 的前n 项和为n S ,且1111,4n n n a a a S ++==.(1)求{}n a 的通项公式;(2)若对于任意*,2nn n S λ∈⋅N成立,求实数λ的取值范围.如图,O 为坐标原点,F 为抛物线22y x =的焦点,过F 的直线交抛物线于,A B 两点,直线AO 交抛物线的准线于点D ,设抛物线在B 点处的切线为l.(1)若直线l 与y 轴的交点为E ,求证:DE EF =;(2)过点B 作l 的垂线与直线AO 交于点G ,求证:2||AD AO AG =⋅.19.(本小题17分)微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段.对于函数()()1(0),f x x f x x=>在区间[],a b 上的图像连续不断,从几何上看,定积分1b a dx x ⎰便是由直线,,0x a x b y ===和曲线1y x=所围成的区域(称为曲边梯形ABQP )的面积,根据微积分基本定理可得1ln ln b a dx b a x=-⎰,因为曲边梯形ABQP 的面积小于梯形ABQP 的面积,即ABQP ABQP S S <曲边梯形梯形,代入数据,进一步可以推导出不等式:211ln ln a b a b a b->-+.(1)请仿照这种根据面积关系证明不等式的方法,证明:ln ln 2a b a ba b -+<-;(2)已知函数()2ln f x ax bx x x =++,其中,a b R ∈.(i )证明:对任意两个不相等的正数12,x x ,曲线()y f x =在()()11,x f x 和()()22,x f x 处的切线均不重合;(ii )当1b =-时,若不等式()()2sin 1f x x -恒成立,求实数a 的取值范围.数学参考答案及评分标准2024.31-8BCBA ABDC9.ACD10.ABD11.BCD12.1413.3;(填对一空得3分)14.24±15.解析:要求出被完全覆盖的最大的圆的半径,由圆的对称性知只需考虑三个圆的圆心构成等边三角形的情况,设三个半径为1的圆的圆心分别为123,,O O O ,设被覆盖的圆的圆心为O ,如图所示,设圆1O 与2O 交于12,,A B O O 交AB 于,H AB 交圆3O 于C ,方法1:设12313,,22x OO OO OO x O H OH ===∴==,:22x x OA OH HA =+=+=,又331OC OO O C x OA =+=+>,所以圆O 的最大半径为OA ,下求OA 的最大值,设()()2x f x f x =+'=,所以()f x 在30,3⎛⎫⎪ ⎪⎝⎭为增函数,在323,33⎛⎫ ⎪ ⎪⎝⎭为减函数,max 323()33f x f ⎛⎫== ⎪ ⎪⎝⎭,即被完全覆盖的最大的圆的半径为233.此时1223311O O O O O O ===,即圆1O 、圆2O 、圆3O 中的任一圆均经过另外两圆的圆心.方法2:同上,设11,1AO H O A ∠θ== ,113cos ,sin ,O H AH OH OO OO θθ∴==∴===331,sinOC OO O C OA OH HA OCθ∴=+==+=<πsin sin,363OA OH HAθθ⎛⎫=+==+≤⎪⎝⎭即当π3θ=时,OA的最大值为3,即被完全覆盖的最大的圆的半径为3.此时1223311O O O O O O===,即圆1O、圆2O、圆3O中的任一圆均经过另外两圆的圆心.14.解析:设()f x的零点为t,则1ln03at b⎛⎫+-⎪⎝⎭,即()10*3at b+-=,设(),P a b为直线1:03l tx y+-=上任意一点,坐标原点O到直线l的距离为h=,因为(),P a bh≥,下求h13m m⎛⎫=≥⎪⎝⎭,则()()()21,mm e meg m g mm m'-==()g m∴在1,13⎛⎫⎪⎝⎭为减函数,在()1,∞+为增函数,即()min()1g m g e==,此时22l3t=⇒=±,所以l的斜率为k=±,124ba k∴=-=±(此时22,33ea b=±=).15.(1)证明:因为PBC为正三角形,O是BC中点,所以PO BC⊥,又因为平面PBC⊥平面ABCD,所以PO⊥平面,.ABCD PO BD⊥()2211440,22BD AO BC BA BC BA BC BA BD AO⎛⎫⋅=+⋅-=-=-=⊥⎪⎝⎭,.AO BD∴⊥又,PO AO在平面POA内且相交,故BD⊥平面PAO(2)解:,E O分别为,BD BC的中点,EO∴∥DC,又平面PDC过DC且不过EO,EO∴∥平面,PDC.又平面OEF交平面PDC于QF,故EO∥QF,进而QF∥DC,因为F 是PC 中点,所以Q 是PD 的中点.方法1:以O 为原点,,,OE OC OP 所在直线分别为,,x y z 轴建立空间直角坐标系,则()()()260,0,6,0,2,0,2,2,0,1,,22P C D Q ⎛⎫⎪ ⎪⎝⎭,()()2,0,0,0,2,6CD PC ==-设平面PCD 法向量为(),,n x y z = ,由00CD n PC n ⎧⋅=⎪⎨⋅=⎪⎩,20260x y z =⎧⎪⎨-=⎪⎩取()0,3,1n = ,26621,,sin cos ,22223OQ n OQ θ⎛⎫==== ⎪ ⎪⎝⎭所以π4θ=方法2:过点O 作PC 的垂线,垂足为H ,连接QH .因为DC BC ⊥且PO ⊥平面,ABCD PO DC ⊥,故有DC ⊥平面BPC ,平面PCB 与平面PCD 垂直且交线为PC ,故OH ⊥平面DPC ,故直线OQ 与平面PCD 所成角O OQH ∠=在直角三角形OHC 巾,60,2OCH OC ∠== 所以62OH =因为DC ⊥半面PBC ,故DC PC ⊥,又QF ∥DC ,所以QF PC ⊥.任直角三角形QFH 中,21,2QF FH ==,所以62QH =在直角三角形OQH 中62OH QH ==,所以45θ= 16.解:(1)列联表性别锻炼合计不经常经常男生72330女生141630合计213960零假设为0H :性别与锻炼情况独立,即性别因素与学生体育锻炼的经常性无关;根据列联表的数据计算2220.160(7162314)60(730)140 3.590 2.706213930302139303039x χ⨯-⨯⨯⨯===≈>=⨯⨯⨯⨯⨯⨯根据小概率值0.1α=的独立性检验,推断0H 不成立,即性别因素与学生体育锻炼的经常性有关系,此推断犯错误的概率不超过0.1(2)因学校总学生数远大于所抽取的学生数,故X 近似服从二项分布,随机抽取一人为“极度缺乏锻炼”者的概率51.6012p ==.120,12X B ⎛⎫~ ⎪⎝⎭故()1520123E X =⨯=()1115520121236D X =⨯⨯=.(3)10名“运动爱好者”有7名男生,3名女生,Y 服从超几何分布:()()0312737333101012170,112012040C C C C P Y P Y C C =======()()2130737333101021321357231204012024C C C C P Y P Y C C ⨯========故所求分布列为Y0123P11207402140724()37 2.110E Y ⨯==17.解析:(1)当2n ≥时,11141,41n n n n n n S a a S a a +--=+=+两式相减得()114n n n n a a a a +-=-⋅因为0n a ≠,故114n n a a +--=.所以1321,,,,n a a a -及242,,,,n a a a 均为公差为4的等差数列:当1n =时,由11a =及12114a a S +=,得23a =.()()211412211n a n n -∴=+-=--()()2341221n a n n =+-=-所以21n a n =-(2)由已知,2n S n =即22n n λ≥恒成立,设22n n n b =,则222111(1)21.222n n n n n n n n n b b ++++-++-=-=当11n -<<+1,2n =时110,n n n n b b b b ++-><当1n >*3,n n N ≥∈时110,n n n n b b b b ++<>-所以12345b b b b b <<>>> ,故()3max 98n b b ==,所以9,8λ∞⎡⎫∈+⎪⎢⎣⎭18.解:设直线AB 的方程为()()11221,,,,,2x my A x y B x y =+联立2122x my y x⎧=+⎪⎨⎪=⎩得:2210y my --=.1212Δ021y y m y y >⎧⎪+=⎨⎪⋅=-⎩(1)不妨设A 在第一象限,B在第四象限,对于y y =='l ∴的斜率为21y =l ∴的方程为()2221y y x x y -=-,即为221.2y y x y =+.令0x =得20,2y E ⎛⎫ ⎪⎝⎭直线OA 的方程为:121122y y x x y x x y ===-,令12x =-得21,2D y ⎛⎫- ⎪⎝⎭.又1,02F ⎛⎫ ⎪⎝⎭,所以DE EF = 即DE EF =得证.(2)方法1:过点B 的l 得垂线的方程为:()222y y y x x -=--,即222212y y y x y ⎛⎫=-++ ⎪⎝⎭则22222122y y y x y y y x ⎧⎛⎫=-++⎪ ⎪⎨⎝⎭⎪=-⎩,解得G 的纵坐标为()2222G y y y =+要证明2||AD AO AG =⋅,因为,,,A O D G 三点共线,只需证明:22111G y y y y y -=⋅-(*)..()2222221222211y y y y y y +-=+= ()()222211221222112G y y y y y y y y y +⋅-=-+-=.所以(*)成立,2||AD AO AG =⋅得证方法2:由()2221,,,2D y B x y ⎛⎫- ⎪⎝⎭知DB 与x 轴平行AFAOAB AD∴=①又DF 的斜率为2,y BG -的斜率也为2y -,所以DF 与BG 平行AFADAB AG ∴=②由①②得AOADAD AG ∴=,即2||AD AO AG =⋅得证19.解:(1)在曲线1y x =取一点2,2a b M a b +⎛⎫⋅ ⎪+⎝⎭.过点2,2a b M a b +⎛⎫ ⎪+⎝⎭作()f x 的切线分别交,AP BQ 于12,M M 囚为21ABQP ABM M S S >曲边梯形梯形()()12112ln ln 222b a AM BM AB b a a b ∴->⋅+⋅=⋅⋅⋅-+即ln ln 2a b a b a b -+<-.(2)方法1:由题意得:()2ln 1f x ax x b =+++'不妨设120x x <<,曲线()y f x =在()()11,x f x 处的切线方程为:()()()1111:l y f x f x x x '-=-,即()()()1111y f x x f x x f x '=+'-同理曲线()y f x =在()()22,x f x 处的切线方程为:()()()22222:7l y f x x f x x f x +'-'=分假设1l 与2l 重合,则()()()()()()12111222f x f x f x x f x f x x f x ⎧=⎪⎨-=-⎪'''⎩',代入化简可得:()()212121ln ln 201(0)x x a x x a x x a ⎧-+-=⎪⎨+=-<⎪⎩两式消去a 可得:212121ln ln 20x x x x x x ---=+,得到212121ln ln 2x x x x x x -+=-由(1)的结论知212121ln ln 2x x x x x x -+<-,与上式矛盾即:对任意实数,a b 及任意不相等的正数121,,x x l 与2l 均不重合.方法2:同方法1得到2212111ln 201x x x x x x --=+设21(1)x t t x =>,即()()222114(1)ln 20,01(1)(1)t t g t t g t t t t t t --=-==-+++'=>()g t 在()1,∞+为增函数,()()10g t g ∴>=,矛盾.即:对任意实数,a b 及任意不相等的正数121,,x x l 与2l 均不重合(3)即:当1b =-时,不等式()()2sin 1f x x ≥-恒成立,()()2ln 2sin 10h x ax x x x x ∴=-+--≥在()0,∞+恒成立,()101h a ∴≥⇒≥⋯下证:当1a ≥时,()0h x ≥恒成立.因为1a ≥,所以()()2ln 2sin 1h x x x x x x ≥-+--设()()()()2ln 2sin 1,2ln 2cos 1H x x x x x x H x x x x =-+--='+--①当[)1,x ∞∈+时,由()22,,ln 0,2cos 12x x x ≥≥--≥-知()0H x '≥恒成立,即()H x 在[)1,∞+为增函数,()()10H x H ∴≥=成立;②当()0,1x ∈时,设()()2ln 2cos 1G x x x x =+--,()()122sin 1G x x x =++-'由()12sin 12,0x x -≥->知()0G x '≥恒成立,即()()G x H x ='在()0,1为增函数.()()10H x H ''∴<=,即()H x 在()0,1为减函数,()()10H x H ∴>=成立.综上所述:实数a 的取值范围是[)1,.∞+。

湖北省七市(州)教科研协作体高三下学期3月联合调考——数学文(数学文)

湖北省七市(州)教科研协作体高三下学期3月联合调考——数学文(数学文)

湖北省七市(州)教科研协作体2017届高三下学期3月联合调考数学(文)试题注意事项:1.答题前,请考生认真阅读答题卡上的注意事项。

务必将自己的姓名、考号填写在答题卡上指定位置,贴好考号条形码或将考号对应数字凃黑。

用2B铅笔将试卷类型A填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B铅笔把对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.非选择答题用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的清洁。

考试结束后,监考人员将答题卡收回。

第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合,,则等于A.B.C.D.2.设为虚数单位,则复数的虚部为A. B. C. D.3. 要得到函数的图象,只需将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位4.在数字中任取两个数相加,和是偶数的概率为A.B.C.D.5. 设直线与平面相交但不.垂直,则下列说法中正确的是A.在平面内有且只有一条直线与直线垂直B.过直线有且只有一个平面与平面垂直C.与直线垂直的直线不可能...与平面平行D.与直线平行的平面不.可能与平面垂直6.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值分别为,则输出的值为A .B .C .D .7.如右图是一个几何体的三视图,其中正视图和侧视图是两个全等的等腰三角形,底边长为4,腰长为3,则该几何体的表面积为A .B .C .D .8.已知是定义在上的偶函数,且在区间上单调递增,若实数满足,则的取值范围是A. B. C. D.9.已知圆222:(1)(0)C x y r r -+=>.设条件,条件圆上至多有个点到直线的距离为,则是的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.函数为上的偶函数,函数为上的奇函数,,,则可以是A .B .C .D . 11.双曲线离心率为,左右焦点分别为,为双曲线右支上一点,的平分线为,点关于的对称点为,,则双曲线方程为A .B .C .D .12.已知函数22()(8)12(0)f x x a x a a a =++++-<,且,则的最小值为A .B .C .D .第Ⅱ卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年3月湖北省七市(州)教科研协作体高三联合考试文 科 数 学命题单位:荆门教研室 十堰教科院审题单位:荆州教科院 孝感教科院 恩施教科院本试卷共6页,23题(含选考题),全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答题前,请考生认真阅读答题卡上的注意事项。

务必将自己的姓名、考号填写在答题卡上指定位置,贴好考号条形码或将考号对应数字凃黑。

用2B 铅笔将试卷类型A 填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.非选择答题用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的清洁。

考试结束后,监考人员将答题卡收回。

第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合{}1 , 0 , 1 , 2 , 3A =-,{}2log (1)2B x x =+<,则A B 等于A .{}1 , 0 , 1 , 2-B .{}0 , 1 , 2C .{}1 , 0 , 1 , 2 , 3-D .{}0 , 1 , 2 , 3 2.设i 为虚数单位,则复数1+2i z i=的虚部为A . 2-B . i -C . iD . 1-3. 要得到函数πsin(2)3y x =+的图象,只需将函数sin 2y x =的图象A .向左平移π6个单位B .向右平移π3个单位C .向左平移π3个单位 D .向右平移π6个单位4.在数字1 ,2 ,3 ,4 ,5中任取两个数相加,和是偶数的概率为机密★启用前 试卷类型:A俯视图侧视图正视图第7题图A .15B .310C .25D .125. 设直线m 与平面α相交但不垂直,则下列说法中正确的是 A .在平面α内有且只有一条直线与直线m 垂直 B .过直线m 有且只有一个平面与平面α垂直 C .与直线m 垂直的直线不可能与平面α平行 D .与直线m 平行的平面不可能与平面α垂直 6.秦九韶是我国南宋时期的数学家,他在所著的 《数书九章》中提出的多项式求值的秦九韶算法, 至今仍是比较先进的算法.如图所示的程序框图 给出了利用秦九韶算法求某多项式值的一个实例, 若输入 ,n x 的值分别为3 ,4,则输出v 的值为 A .6 B .25C .100D .4007.如右图是一个几何体的三视图,其中正视图和侧视图是两个全等的等腰三角形,底边长 为4,腰长为3,则该几何体的表面积为 A .6π B .8π C .10π D .12π8.已知()f x 是定义在R 上的偶函数,且在区间(, 0]-∞上单调递增,若实数a 满足3log (2)(a f f >,则a 的取值范围是A. (-∞B.C. )∞D.9.已知圆222:(1)(0)C x y r r -+=>.设条件:03p r <<,条件:q 圆C 上至多有2个点到直线30x +=的距离为1,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件第6题图10.函数()y f x =为R 上的偶函数,函数()y g x =为R 上的奇函数,()(2)f x g x =+,(0)4f =-,则()g x 可以是A .π4tan8x B .π4sin2x - C .π4sin4x D .π4sin4x -11.双曲线22221( ,0)x y a b ab-=>离心率为12 ,F F ,P 为双曲线右支上一点,12F PF ∠的平分线为l ,点1F 关于l 的对称点为Q ,22F Q =,则双曲线方程为A .1222=-y xB .1222=-y x C .22124x y -= D .12422=-y x 12.已知函数22()(8)12(0)f x x a x a a a =++++-<,且2(4)(28)f af a -=-,则*()4()1f n a n N n -∈+的最小值为A .374B .358C .328D .274第Ⅱ卷本卷包括必考题和选考题两部分。

第13~21题为必考题,每个试题考生都必须作答。

第22~23题为选考题,考生根据要求作答。

二、填空题:本题共4小题,每小题5分。

13.平面向量 , , a b c不共线,且两两所成的角相等,若||||2,||1a b c === ,则||a b c ++=▲ .14. 已知ABC △中,角 , ,A B C 对边分别为 , ,a b c ,120 , 2C a b == ,则tan A = ▲ .D 1C 1PM D C BA 15.已知实数y x ,yx 的最小值为 ▲ .16. 某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为0ktP P e-=.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为 ▲ 小时.三、解答题:解答应写出文字说明,证明过程或演算步骤。

17(本题满分12分)已知等比数列{}n a 的前n 项和为12n n S a +=+,数列{}n b 满足322log n n b a =-. (Ⅰ)求常数a 的值;(Ⅱ)求数列{}n b 的前n 项和n T .18(本小题满分12分)某校举行运动会,其中三级跳远的成绩在8.0米 (四舍五入,精确到0.1米) 以上的进入决赛,把所得数据进行整理后,分成6组画出 频率分布直方图的一部分(如图),已知从左到右 前5个小组的频率分别为0.04,0.10,0.14, 0.28,0.30 ,第6小组的频数是7 .(Ⅰ)求进入决赛的人数;(Ⅱ)经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.19(本小题满分12分)《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM DCP -与刍童1111ABCD A B C D -的组合体中AB AD =,1111A B A D =.第18题图台体体积公式:1()3V S S h '=+,其中 ,S S '分别为台体上、下底面面积,h 为台体高.(Ⅰ)证明:直线BD ⊥平面MAC ;(Ⅱ)若1AB =,112A D =,MA =三棱锥111A A B D -的体积V =, 求该组合体的体积.20(本小题满分12分)在直角坐标系xOy 上取两个定点12(A A 再取两个动点1(0 , )N m ,2(0 , )N n ,且2mn =.(Ⅰ)求直线11A N 与22A N 交点M 的轨迹C 的方程;(Ⅱ)过(3 , 0)R 的直线与轨迹C 交于P ,Q ,过P 作PN x ⊥轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若(1)RP RQ λλ=> ,求证:NF FQ λ=.21(本小题满分12分)函数21()ln ()2f x x x ax a R =++∈,23()2x g x e x =+. (Ⅰ)讨论()f x 的极值点的个数;(Ⅱ)若对于任意(0,)x ∈+∞,总有()()f x g x ≤成立,求实数a 的取值范围. 请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分。

作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑。

22(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,圆C 的极坐标方程为24(cos sin )3ρρθθ=+-.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系. (Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点( , )P x y 是圆C 上动点,试求2x y +的最大值,并求出此时点P 的直角坐标.23(本小题满分10分)选修4-5:不等式选讲已知函数()22f x x =-+,()()g x m x m R =∈. (Ⅰ)解关于x 的不等式()5f x >;(Ⅱ)若不等式()()f x g x ≥对任意x R ∈恒成立,求m 的取值范围.2017年3月湖北省七市(州)教科研协作体高三联合考试文科数学参考答案及评分说明命题单位:荆门教研室 十堰教科院 审题单位:荆州教科院 孝感教科院 恩施教科院 一、选择题(共12小题,每小题5分)1.B2.D3.A4. C5.B6.C7.C8.B9.C 10.D 11.B 12.A 二、填空题(共4小题,每小题5分)13.1 14215.13 16.10三、解答题17(12分)解:(Ⅰ)当1n =时,21124a S a a ==+=+,当2n ≥时,112(2)2n n n n n n a S S a a +-=-=+-+=, ………………………………3分{}n a 为等比数列,2223213(2)(4)2a a a a ∴=⋅⇒=+⋅,解得2a =-.………6分(Ⅱ)由(Ⅰ)知2n n a =,则322log 223n n b n =-=-,13n n b b +-=- 对一切n N *∈都成立,{}n b ∴是以11b =-为首项,3d =-为公差的等差数列 ,………………………………9分21(1)322n n n n n T nb d --∴=+=. …………………………………………………12分18(12分)解:(Ⅰ)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,∴总人数为7500.14=(人). ………………………………………………………………2分 ∴第4、5、6组成绩均进入决赛,人数为(0.28+0.30+0.14)×50=36(人)即进入决赛的人数为36. ………………………………………………………………6分 (Ⅱ)设甲、乙各跳一次的成绩分别为x 、y 米,则基本事件满足的区域为8109.510.5x y ⎧⎨⎩≤≤≤≤, 事件A “甲比乙远的概率”满足的区域为x y >,如图所示. ………………………10分∴由几何概型1111222()1216P A ⨯⨯==⨯. 即甲比乙远的概率为116. ………………12分 19(12分)解:(Ⅰ)证明:由题可知ABM DCP -是底面为直角三角形的直棱柱,AD ∴⊥平面MAB AD M A ∴⊥ , ……………………………………………2分又M A AB ⊥, , AD AB A AD = ,AB ⊂平面ABCD ,MA ∴⊥ABCD , …………………………………………………………4分M A BD ∴⊥ 又AB AD =,∴四边形ABCD 为正方形,BD AC ∴⊥,又 , MA AC A MA = ,AC ⊂平面MAC ,BD ∴⊥平面MAC . …………………6分 (Ⅱ)设刍童1111ABCD A B C D -的高为h ,则三棱锥111A A B D -体积1122323V h =⋅⋅⋅⋅=,所以h =……………………………………………9分 故该组合体的体积为221111(1223236V =⋅++==.……………………12分 (注:也可将台体补形为锥体后进行计算) 20(12分)解:(Ⅰ)依题意知直线A 1N 1的方程为y x =+ ①直线A 2N 2的方程为y x = ②…………………………2分设M (x ,y )是直线A 1N 1与A 2N 2交点,①×②得 22(6)6mn y x =--, 由mn =2,整理得22162x y +=; …………………………4分 (Ⅱ)由题意可知,设:3l x ty =+,112211( , ),( , ),( , )P x y Q x y N x y -由 22223,(3)630162x ty t y ty x y =+⎧⎪⇒+++=⎨+=⎪⎩(*) ………………………6分由1122( 3 , )( 3 , )RP RQ x y x y λλ=⇒-=-故12123(3),x x y y λλ-=-=, ………8分要证NF FQ λ=,即证1122(2,)(2,)x y x y λ-=-,只需证:122(2),x x λ-=-只需11223232x x x x --=---即证 121225()120x x x x -++=即212122()0t y y t y y ++=,…10分 由(*)得:22121222362()2033tt y y t y y t t t t ++=⋅-⋅=++,即证. ………………12分 21(12分)解: (Ⅰ)解法一:由题意得211()=(0)x ax f x x a x x x++'=++>, 令24a ∆=- (1)当240a ∆=-≤,即22a -≤≤时,210x ax ++≥对0x >恒成立即21()0x ax f x x++'=≥对0x >恒成立,此时()f x 没有极值点;…………2分 (2)当240a ∆=->,即22a a <->或①2a <-时,设方程21=0x ax ++两个不同实根为12,x x ,不妨设12x x <则12120,10x x a x x +=->=>,故210x x >> ∴12x x x x <>或时()0f x >;在12x x x <<时()0f x < 故12,x x 是函数()f x 的两个极值点.②2a >时,设方程21=0x ax ++两个不同实根为12,x x ,则12120,10x x a x x +=-<=>,故210,0x x <<∴0x >时,()0f x >;故函数()f x 没有极值点. ……………………………5分综上,当2a <-时,函数()f x 有两个极值点;当2a ≥-时,函数()f x 没有极值点. ………………………………………6分解法二:1()f x x a x'=++, ……………………………………………………………1分 0,()[2,)x f x a '>∴∈++∞ ,①当20a +≥,即[2,)a ∈-+∞时,()0f x '≥对0x ∀>恒成立,()f x 在(0,)+∞单调增,()f x 没有极值点; ……………………………………………………………3分 ②当20a +<,即(,2)a ∈-∞-时,方程210x ax ++=有两个不等正数解12 , x x ,212()()11()(0)x x x x x ax f x x a x x x x--++'=++==>不妨设120x x <<,则当1(0,)x x ∈时,()0,()f x f x '>增;12(,)x x x ∈时,()0,()f x f x '<减;2(,)x x ∈+∞时,()0,()f x f x '>增,所以12,x x 分别为()f x 极大值点和极小值点,()f x 有两个极值点.综上所述,当[2,)a ∈-+∞时,()f x 没有极值点;当(,2)a ∈-∞-时,()f x 有两个极值点. ………………………………6分(Ⅱ)2()()ln x f x g x e x x ax ≤⇔-+≥,由0x >,即2ln x e x xa x +-≤对于0x ∀>恒成立, ………………………………8分设2ln ()(0)x e x xx x xϕ+-=>, 2221(2)(ln )(1)ln (1)(1)()x x x e x x e x x e x x x x x x x x ϕ+--+--+++-'==, 0x > ,(0 , 1)x ∴∈时,()0,()x x ϕϕ'<减,(1 ,)x ∈+∞时,()0,()x x ϕϕ'>增,()(1)1x e ϕϕ∴=+≥,1a e ∴+≤.………………………………………………………12分第22、23题为选考题 22(10分)解:(Ⅰ)因为24(cos sin )3ρρθθ=+-,所以224430x y x y +--+=,即22(2)(2)5x y -+-=为圆C 的普通方程. ………………………………3分所以所求的圆C的参数方程为2,2x y θθ=+=⎧⎪⎨⎪⎩(θ为参数) ……………………5分(Ⅱ)解法一:设2x y t +=,得2x t y =-代入224430x y x y +--+=整理得2254(1)430y t y t t +-+-+= (*),则关于y 方程必有实数根 …………7分∴2216(1)20(43)0t t t ∆=---+≥,化简得212110t t -+≤解得111t ≤≤,即2x y +的最大值为11. …………………………………………9分 将11t =代入方程(*)得28160y y -+=,解得4y =,代入211x y +=得3x = 故2x y +的最大值为11时,点P 的直角坐标为(3,4). ………………………10分 解法二:由(Ⅰ)可得,设点(2 , 2)P θθ+,266)x y θθθθ+=++=++,设sin α=cos α= ,所以265sin()x y θα+=++ 当sin()1θα+=时,max (2)11x y +=,………………………………………………8分 此时,π2π,2k k Z θα+=+∈,即π2π()2k k Z θα=-+∈,所以sin cos θα==,cos sin θα==点P 的直角坐标为(3,4). ……………………………………………10分 23(10分)解:(Ⅰ)由()5f x >,得23x ->,即23x -<-或23x ->, ………………………………………3分 1x ∴<-或5x >.故原不等式的解集为{}15x x x <->或………………………5分(Ⅱ)由()()f x g x ≥,得22x m x --≥对任意x R ∈恒成立, 当0x =时,不等式22x m x --≥成立,当0x ≠时,问题等价于22x m x -+≤对任意非零实数恒成立, ……………7分2222 1 , 1x x m x x -+-+=∴≥≤ ,即m 的取值范围是( , 1]-∞.…………10分。

相关文档
最新文档