空间直角坐标系与空间向量典型例题
1.3 空间直角坐标及空间向量运算的坐标表示坐标系(解析版)

1.3 空间向量的坐标与空间直角坐标系基础达标练1.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于 ( ) A.(2,-4,2) B .(-2,4,-2) C.(-2,0,-2) -3)2.向量a =(1,2,x ),b =(2,y ,-1),若|a |=√5,且a ⊥b ,则x+y 的值为( ) A.-2 B .2 D .1{√12+22+x 2=√5,2+2y -x =0,即{x =0,y =-1,,∴x+y=-1. 3.若△ABC 中,∠C=90°,A (1,2,-3k ),B (-2,1,0),C (4,0,-2k ),则k 的值为( )A.√10B.-√10 √5 D.±√10⃗⃗ =(-6,1,2k ),CA ⃗⃗⃗⃗⃗ =(-3,2,-k ),则CB ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =(-6)×(-3)+2+2k (-k )=-2k 2+20=0,∴k=±√10. a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则( ) A.x=12,y=-4 B .x=12,y=4 C.x=2,y=-14y=-1a +2b =(1+2x ,4,4-y ),2a -b =(2-x ,3,-2y -2),且(a +2b )∥(2a -b ),∴3(1+2x )=4(2-x ),且3(4-y )=4(-2y -2),解得x=12,y=-4.5.若△ABC 的三个顶点坐标分别为A (1,-2,1),B (4,2,3),C (6,-1,4),则△ABC 的形状是( ) A.锐角三角形 B .直角三角形 C.钝角三角形⃗ =(3,4,2),AC ⃗⃗⃗⃗⃗ =(5,1,3),BC ⃗⃗⃗⃗⃗ =(2,-3,1).由AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ >0,得A 为锐角;由CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ >0,得C 为锐角;由BA ⃗⃗⃗⃗⃗ ·BC>0,得B 为锐角.所以△ABC 为锐角三角形. 6.已知向量a =(1,2,3),b =(-2,-4,-6),|c |=√14,若(a +b )·c =7,则a 与c 的夹角为( ) A.π6B .π3C.2π3 D .5π6+b =(-1,-2,-3)=-a ,故(a +b )·c =-a ·c =7,得a ·c =-7,而|a |=√12+22+32=√14, 所以cos<a ,c >=a ·c|a ||c |=-12,又因为<a ,c >∈[0,π],所以<a ,c >=2π3.a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x+y 的值为 .a ∥b , 所以x 1=x 2+y -22=y 3,即{y =3x ,①x 2+y -2=2x ,②把①代入②得x 2+x -2=0,即(x+2)(x -1)=0, 解得x=-2或x=1. 当x=-2时,y=-6; 当x=1时,y=3.则当{x =-2,y =-6时,b =(-2,-4,-6)=-2a ,向量a ,b 反向,不符合题意,故舍去. 当{x =1,y =3时,b =(1,2,3)=a , a 与b 同向,符合题意,此时x+y=4. 8.已知向量a =(5,3,1),b =-2,t ,-25,若a 与b 的夹角为钝角,则实数t 的取值范围为 .答案-∞,-65∪-65,5215解析由已知得a ·b =5×(-2)+3t+1×-25=3t -525,因为a 与b 的夹角为钝角,所以a ·b <0,即3t -525<0,所以t<5215.若a 与b 的夹角为180°,则存在λ<0,使a =λb (λ<0), 即(5,3,1)=λ-2,t ,-25,所以{5=-2λ,3=tλ,1=-25λ,解得{λ=-52,t =-65, 故t 的取值范围是-∞,-65∪-65,5215.9.已知O 为坐标原点,OA ⃗⃗⃗⃗⃗ =(1,2,3),OB ⃗⃗⃗⃗⃗ =(2,1,2),OP⃗⃗⃗⃗⃗ =(1,1,2),点Q 在直线OP 上运动,则当QA ⃗⃗⃗⃗⃗ ·QB ⃗⃗⃗⃗⃗ 取得最小值时,求Q 的坐标.解析设OQ ⃗⃗⃗⃗⃗⃗ =λOP ⃗⃗⃗⃗⃗ ,则QA ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ -λOP ⃗⃗⃗⃗⃗ =(1-λ,2-λ,3-2λ), QB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ -λOP ⃗⃗⃗⃗⃗ =(2-λ,1-λ,2-2λ),所以QA ⃗⃗⃗⃗⃗ ·QB ⃗⃗⃗⃗⃗ =(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=23λ-432-13.当λ=43时,QA ⃗⃗⃗⃗⃗ ·QB ⃗⃗⃗⃗⃗ 取得最小值,此时点Q 的坐标为43,43,83.10.已知正三棱柱ABC -A 1B 1C 1的底面边长AB=2,AB 1⊥BC 1,点O ,O 1分别是棱AC ,A 1C 1的中点.建立如图所示的空间直角坐标系.(1)求该三棱柱的侧棱长;(2)若M 为BC 1的中点,试用向量AA 1⃗⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 表示向量AM ⃗⃗⃗⃗⃗⃗ ;<AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >设该三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (√3,0,0),C (0,1,0),B 1(√3,0,h ),C 1(0,1,h ),则1=(√3,1,h ),BC 1⃗⃗⃗⃗⃗⃗⃗ =(-√3,1,h ),因为AB 1⊥BC 1,所以AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =-3+1+h 2=0,所以h=√2. (2)AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12BC 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ +12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗+12AA 1⃗⃗⃗⃗⃗⃗⃗. (3)由(1)可知AB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,√2),BC ⃗⃗⃗⃗⃗ =(-√3,1,0),所以AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =-3+1=-2,|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√6,|BC ⃗⃗⃗⃗⃗ |=2,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=2√6=-√66.能力提升练1.(多选)已知点P 是△ABC 所在的平面外一点,若AB⃗⃗⃗⃗⃗ =(-2,1,4),AP ⃗⃗⃗⃗⃗ =(1,-2,1),AC ⃗⃗⃗⃗⃗ =(4,2,0),则( ) A.AP ⊥AB B.AP ⊥BPC.BC=√53 BC⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-2-2+4=0,∴AP ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,即AP ⊥AB ,故A 正确; BA ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ =(2,-1,-4)+(1,-2,1)=(3,-3,-3),BP ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =3+6-3=6≠0,∴AP 与BP 不垂直,故B 不正确; BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(4,2,0)-(-2,1,4)=(6,1,-4),∴|BC ⃗⃗⃗⃗⃗ |=√62+12+(-4)2=√53,故C 正确; 假设AP⃗⃗⃗⃗⃗ =k BC ⃗⃗⃗⃗⃗ ,则{1=6k ,-2=k ,1=-4k ,无解,因此假设不成立,即AP 与BC 不平行,故D 不正确. 2.已知A (1,0,0),B (0,-1,1),若OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ (O 为坐标原点)的夹角为120°,则λ的值为( ) A.√66 B .-√66C.±√66D .±√6OB ⃗⃗⃗⃗⃗ =(0,-1,1),OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ =(1,-λ,λ), cos120°=(OA ⃗⃗⃗⃗⃗⃗ +λAB ⃗⃗⃗⃗⃗⃗ )·OB⃗⃗⃗⃗⃗⃗ |OA ⃗⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗⃗ |=√2λ+1×√2=-12,可得λ<0,解得λ=-√66.故选B .A (1,-1,2),B (5,-6,2),C (1,3,-1),则AB ⃗⃗⃗⃗⃗ 在AC⃗⃗⃗⃗⃗ 上的投影为 .4AB⃗⃗⃗⃗⃗ =(5,-6,2)-(1,-1,2)=(4,-5,0), AC⃗⃗⃗ =(1,3,-1)-(1,-1,2)=(0,4,-3), ∴cos <AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ >=√42+(-5)2×√42+(-3)2=-5√41, AB ⃗⃗⃗⃗⃗ 在AC ⃗⃗⃗⃗⃗ 上的投影为|AB ⃗⃗⃗⃗⃗ |cos <AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ > =√42+(-5)2×-205√41=-4.4.已知点A ,B ,C 的坐标分别为(0,1,0),(-1,0,-1),(2,1,1),点P 的坐标为(x ,0,z ),若PA ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ,PA ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,则P 点的坐标为 .-1,0,2)⃗⃗⃗ =(-x ,1,-z ), AB⃗ =(-1,-1,-1),AC ⃗⃗⃗⃗⃗ =(2,0,1), ∴{x -1+z =0,-2x -z =0,∴{x =-1,z =2,∴P (-1,0,2).5.已知A ,B ,C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),AP ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ),则点P 的坐标是 .,12,0)CB⃗⃗⃗⃗⃗ =(6,3,-4),设P (a ,b ,c ), 则(a -2,b+1,c -2)=(3,32,-2),∴a=5,b=12,c=0,∴P (5,12,0).6.如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB=√3,BC=1,P A=2,E 为PD 的中点.建立空间直角坐标系,(1)求cos <AC⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ >; (2)在侧面P AB 内找一点N ,使NE ⊥平面P AC ,求N 点的坐标.解析(1)由题意,建立如图所示的空间直角坐标系,则A (0,0,0),B (√3,0,0),C (√3,1,0),D (0,1,0),P (0,0,2),E0,12,1,从而AC⃗⃗⃗⃗⃗ =(√3,1,0),PB ⃗⃗⃗⃗⃗ =(√3,0,-2).则cos <AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ >=AC ⃗⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗ |·|PB ⃗⃗⃗⃗⃗⃗ | =2√7=3√714. ∴<AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ >的余弦值为3√714. (2)由于N 点在侧面P AB 内,故可设N 点坐标为(x ,0,z ),则NE ⃗⃗⃗⃗⃗ =-x ,12,1-z ,由NE ⊥平面P AC 可得{NE ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0,NE ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0,即{(-x ,12,1-z)·(0,0,2)=0,(-x ,12,1-z)·(√3,1,0)=0,化简得{z -1=0,-√3x +12=0,∴{x =√36,z =1,即N 点的坐标为√36,0,1. 7.已知点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为边的平行四边形的面积; a |=√3,且a 分别与AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 垂直,求向量a .AB ⃗⃗⃗⃗⃗ =(-2,-1,3),AC ⃗⃗⃗⃗⃗ =(1,-3,2), 设θ为AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 的夹角, 则cos θ=AB ⃗⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗⃗ |=√4+1+9·√1+9+4=12,∴sin θ=√32.∴S ▱=|AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |sin θ=7√3. ∴以AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为边的平行四边形面积为7√3. (2)设a =(x ,y ,z ),由题意,得{-2x -y +3z =0,x -3y +2z =0,x 2+y 2+z 2=3.解得{x =1,y =1,z =1或{x =-1,y =-1,z =-1.∴a =(1,1,1)或a =(-1,-1,-1).素养培优练1.P 是平面ABC 外的点,四边形ABCD 是平行四边形,AB⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP ⃗⃗⃗⃗⃗ =(-1,2,-1). (1)求证:P A ⊥平面ABCD ;(2)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP⃗⃗⃗⃗⃗ 的绝对值; P -ABCD 的体积关系,并由此猜想向量这种运算(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP⃗⃗⃗⃗⃗ 的绝对值的几何意义.⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =(2,-1,-4)·(-1,2,-1)=-2+(-2)+4=0, ∴APAB ⃗⃗⃗⃗⃗ ,即AP ⊥AB.同理,AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =(-1,2,-1)·(4,2,0)=-4+4+0=0,∴AP ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ ,即P A ⊥AD.又AB ⊂平面ABCD ,AD ⊂平面ABCD ,AB ∩AD=A , ∴P A ⊥平面ABCD.(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP ⃗⃗⃗⃗⃗ |=48,又cos <AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ >=√105,|AB ⃗⃗⃗⃗⃗ |=√21,|AD ⃗⃗⃗⃗⃗ |=2√5,|AP⃗⃗⃗⃗⃗ |=√6, V=13|AB⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗ |·sin <AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ >·|AP ⃗⃗⃗⃗⃗ |=16,可得|(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP ⃗⃗⃗⃗⃗ |=3V P -ABCD . 猜测:|(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP⃗⃗⃗⃗⃗ |在几何上可表示以AB ,AD ,AP 为棱的平行六面体的体积(或以AB ,AD ,AP 为棱的四棱柱的体积).2.正四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,A 1C 1与B 1D 1交于点N ,BC 1与B 1C 交于点M ,且AM ⊥BN ,建立空间直角坐标系. (1)求AA 1的长;(2)求<BN ⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >; (3)对于n 个向量a 1,a 2,…,a n ,如果存在不全为零的n 个实数λ1,λ2,…,λn ,使得λ1a 1+λ2a 2+…+λn a n =0成立,则这n 个向量a 1,a 2,…,a n 叫做线性相关,不是线性相关的向量叫线性无关,判断AM ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 是否线性相关,并说明理由.以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AA 1的长为a , 则B (4,4,0),N (2,2,a ),BN ⃗⃗⃗⃗⃗⃗ =(-2,-2,a ),A (4,0,0),M (2,4,a 2),AM ⃗⃗⃗⃗⃗⃗ =(-2,4,a 2),由BN ⃗⃗⃗⃗⃗⃗ ⊥AM ⃗⃗⃗⃗⃗⃗ ,得BN ⃗⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ =0,即a=2√2,即AA 1=2√2. (2)BN ⃗⃗⃗⃗⃗⃗ =(-2,-2,2√2),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-4,0,2√2),cos <BN ⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=BN ⃗⃗⃗⃗⃗⃗⃗ ·AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |BN ⃗⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√63, <BN ⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=arccos √63.(3)由AM⃗⃗⃗⃗⃗⃗ =(-2,4,√2),BN ⃗⃗⃗⃗⃗ =(-2,-2,2√2),CD ⃗⃗⃗⃗⃗ =(0,-4,0), λ1(-2,4,√2)+λ2(-2,-2,2√2)+λ3(0,-4,0)=(0,0,0),得λ1=λ2=λ3=0,则AM⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 线性无关.。
空间向量练习卷

《空间向量》练习卷1、空间直角坐标系中,点关于轴对称的点的坐标是()A.B.C.D.2、设平面的一个法向量为,平面的一个法向量为,若,则k=()A.2 B.-4 C.-2 D.43、设点M是Z轴上一点,且点M到A(1,0,2)与点B(1,-3,1)的距离相等,则点M的坐标是( )A.(-3,-3, 0)B.(0,0,-3)C.(0,-3,-3)D.(0,0,3)4、已知空间四面体的每条边都等于1,点分别是的中点,则等于()A.B.C.D.5、如图,在正方体,若,则的值为()A.3 B.1 C.-1 D.-36、的三个内角的对边分别为,已知,向量,。
若,则角的大小为()A.B.C.D.7、在ΔABC中,已知=(2,4,0),=(-1,3,0),则∠ABC大小为().A.45°B.90°C.120°D.135°8、已知向量=(2,4,x),=(2,y,2),若||=6,⊥,则x+y的值是()A.-3或1 B.3或-1 C.-3 D.19、如果正方体的棱长为,那么四面体的体积是:A.B.C.D.10、已知向量a=(3,5,-1),b=(2,2,3),c=(4,-1,-3),则向量2a-3b+4c的坐标为( )A.(16,0,-23) B.(28,0,-23) C.(16,-4,-1) D.(0,0,9)分卷II 注释一、填空题(每小题5分共25分)11、已知,则的最小值是___ ____________.12、与A(-1,2,3),B(0,0,5)两点距离相等的点P(x,y,z)的坐标满足的条件为__________.13、已知,且//(),则k=__ ____.14、正方体的棱长为,若动点在线段上运动,则的取值范围是______________.15、已知正方体中,E为的中点,则异面直线AE与BC所成角的余弦值为 .二、解答题(12+12+12+12+13+14)16、如图,在直四棱柱中,底面为平行四边形,且,,,为的中点.(Ⅰ)证明:∥平面;(Ⅱ)求直线与平面所成角的正弦值.17、如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点. (1)求的长;(2)求cos< >的值;(3)求证:A1B⊥C1M.18、长方体中,(1)求直线所成角;(2)求直线所成角的正弦.19、在边长是2的正方体-中,分别为的中点.应用空间向量方法求解下列问题.(1)求EF的长(2)证明:平面;(3)证明: 平面.20、如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2,∠CAA1=,D、E分别为AA1、A1C的中点.(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC 所成角的余弦值.21、如图所示,四边形为直角梯形,,,为等边三角形,且平面平面,,为中点.(1)求证:;(2)求平面与平面所成的锐二面角的余弦值;(3)在内是否存在一点,使平面,如果存在,求的长;如果不存在,说明理由.。
空间向量复习精选例题(含答案解析)

∴二面角 B1-BE-F 的大小为 arccos(
2 )。 3
(4)∵ GD1 =(-1,0,2),而 GD1 n1 =-2+0+2=0,
z D1 A1 F E B1 C1
∴直线 GD1∥平面 BEFD。 (5) DD1 =(0,0,2), | n1 | 4 4 1 3 , ∴ n1 的单位向量为(
空间向量
2 2 2 0, 0 0 0, 0 设 AB a ,则 A 2 a, ,B 0,2 a, ,C 2 a, . 设 OP h ,则 P(0, 0,h) . 2 1 a , 0 , h . ∵ D 为 PC 的中点,∴ OD 4 2 2 1 PA 0, h 2 a, ,∴ OD 2 PA .
∵ PA n1 2 2 0, PA n1,又PA 平面BDE, PA // 平面BDE. (2)由(Ⅰ)知 n1 (1, 1,1) 是平面 BDE 的一个法向量, 又 n 2 DA (2,0,0) 是平面 DEC 的一个法向量. 设二面角 B—DE—C 的平面角为 ,由图可知 n1 , n 2
(2) DA =(2,0,0) ,设 DA 与面 EFG 所成的角为θ, 则 sin
∴直线 C1D 与平面 A1C1B 的所成角为 arcsin
| DA n | 4 21 4 21 = ,∴ arcsin 21 21 | DA || n |
(2)平面 A1C1B 的法向量 n =(2,1,2),平面 AA1C1C 的法向量 n ' =(2,1,0), 设二者夹角为θ ,∴ cos
∴ cos PA ,n PA ·n PA n 210 . 30
高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解

高考总复习含详解答案高中数学高考总复习立体几何空间向量空间直角坐标系习题及详解一、选择题1.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为()A .平行四边形B .梯形C .平面四边形D .空间四边形[答案]D [解析]∵AB →·BC →>0,∴∠ABC>π2,同理∠BCD>π2,∠CDA>π2,∠DAB >π2,由内角和定理知,四边形ABCD 一定不是平面四边形,故选 D. 2.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为()A .0B .1C .0或1D .任意实数[答案]C [解析]AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD 1→,AA 1→与AB →垂直,这时AP →·AB →=0;AC →,AB 1→与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选 C. 3.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,N 为BB 1的靠近B 的三等分点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则MN →等于()A .-12a +12b +13c B.12a +12b -13c C.12a -12b -13c D .-12a -12b +23c [答案] C。
空间直角坐标系与空间向量典型例题

空间直角坐标系与空间向量一、建立空间直角坐标系的几种方法 构建原则:遵循对称性,尽可能多的让点落在坐标轴上。
作法:充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下:(一)用共顶点的互相垂直的三条棱构建直角坐标系例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0),∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,.设1BC u u u u r 与CD uuur 所成的角为θ, 则11317cos BC CD BC CDθ==u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A-EB 1-A 1的平面角的正切值.解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、31022c ⎛⎫- ⎪ ⎪⎝⎭,,、13302C ⎛⎫ ⎪ ⎪⎝⎭,,.设30E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<,由EA ⊥EB 1,得10EA EB =u u u r u u u rg ,即33220a a ⎛⎫⎛⎫---- ⎪ ⎪⎪ ⎪⎝⎝⎭g ,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭g ,即12a =或32a =(舍去).故31022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥u u u r u u u r ,111B A EB ⊥u u u u r u u u r ,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A u u u u r 与EA uu u r的夹角. 因11(002)B A BA ==u u u u r u u u r ,,,31222EA ⎛⎫=-- ⎪ ⎪⎝u u u r ,, 故11112cos 3EA B A EA B A θ==u u u r u u u u r g u u u r u u u u r ,即2tan θ= (三)利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的余弦值.解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、V (0,0,3),∴AB u u u r=(0,2,0),VA u u r =(1,0,-3). 由(020)(103)0AB VA =-=u u u r u u rgg ,,,,,得 AB ⊥VA .又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直, ∴ AB ⊥平面VAD ;(2)设E 为DV 的中点,则1302E ⎛⎫- ⎪ ⎪⎝⎭,,∴3302EA ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,3322EB ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(103)DV =u u u r ,,. ∴332(103)022EB DV ⎛⎫=-= ⎪ ⎪⎝⎭u u u r u u u r g g ,,,,, ∴EB ⊥DV .又EA ⊥DV ,因此∠AEB 是所求二面角的平面角.∴21cos 7EA EB EA EB EA EB==u u u r u u u ru u u r u u u r g u u u r u u u r ,. 故所求二面角的余弦值为217. (四)利用正棱锥的中心与高所在直线构建直角坐标系例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h . (1)求∠DEB 的余弦值;(2)若BE ⊥VC ,求∠DEB 的余弦值.解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (-a ,a ,0)、D (-a ,-a ,0)、V (0,0,h )、222a a h E ⎛⎫-⎪⎝⎭,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭u u u r ,,,3222a h DE a ⎛⎫= ⎪⎝⎭u u ur ,,. ∴22226cos 10BE DE a h BE DE a hBE DE -+==+u u u r u u u r u u u r u u u r g u u u r u u u r ,, 即22226cos 10a h DEB a h -+=+∠;(2)因为E 是VC 的中点,又BE ⊥VC ,所以0BE VC =u u u r u u u r g,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭g ,,,,, ∴22230222a h a --=,∴2h a =.这时222261cos 103a h BE DE a h -+==-+u u u r u u u r ,,即1cos 3DEB =-∠. 引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.下面以高考考题为例,剖析建立空间直角坐标系的三条途径.(五)利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例5已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离. 简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-u u u r u u u r,,,,,,1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u ru u u r u u u r g u u u r u u u r ,.所求异面直线所成的角是1arccos3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-u u u r u u u r,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩u u u rg u u u r g ,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==u u u r g n n.点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第(3)问也可用“等体积法”求距离.二、向量法解立体几何 (一)知识点向量的数量积和坐标运算b a ρρ,是两个非零向量,它们的夹角为θ,则数θcos |||⋅⋅b 叫做与的数量积(或内积),记作⋅,即.cos ||||θ⋅⋅=⋅b a b a 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是:若),,(),,,(222111z y x z y x ==,则①212121z z y y x x b a ++=⋅ρρ;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅ρρ④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<(二)例题讲解 题型:求角度相关1. 异面直线n m ,所成的角分别在直线n m ,上取定向量,,b a ρρ则异面直线n m ,所成的角θ等于向量b a ρρ,所成的角或其补角(如图1所示),则.||||||cos b a b a ρρρρ⋅⋅=θ 2. 直线L 与平面α所成的角在L 上取定AB ,求平面α的法向量n (如图2所示),再求||||cos n AB ⋅=θ,则θπβ-=2为所求的角.3. 二面角方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方向,如图3所示),则图1图图3①若二面角βα--l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即||||cos 2121n n ⋅=θ② 若二面角βα--l 是“锐角型”的如图3乙所示,那么其大小等于两法向量21n n 、的夹角,即cos 2121=θ.方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、(如图4所示),则二面角βα--l 的大小等于向量21n n 、的夹角,即 ||||cos 2121n n ⋅=θ题型:求距离相关1. 异面直线n m 、的距离分别在直线n m 、上取定向量,,b a ρρ求与向量b a ρρ、都垂直的向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于AB 在上的射影长,即d=.证明:设CD 为公垂线段,取b DB a CA ρρ==,||||)(⋅=⋅∴⋅++=⋅∴++= ||CD d ==∴设直线n m ,所成的角为θ,显然.||||||cos b a b a ρρρρ⋅⋅=θ 2. 平面外一点p 到平面α的距离图图4图1求平面α的法向量n,在面内任取一定点A,点p到平面α的距离d等于AP在n上的射影长,即d=.|n|图5。
空间向量练习及答案解析

空间向量练习及答案解析1.已知平面α的一个法向量为(2,-1,1),且α∥β,则平面β的一个可能的法向量是哪个?A。
(4,2,-2) B。
(2,0,4) C。
(2,-1,-5) D。
(4,-2,2)2.在如图所示的正方形ABCD中,过点A作线段EA垂直于平面AC,若EA=1,则平面ADE和平面BCE所成的二面角大小是多少?A。
120° B。
45° C。
150° D。
60°3.已知向量a=(1,2,3),向量b=(2,1,2),向量c=(1,1,2),点Q在直线OP上移动,当a·Q+b·Q取得最小值时,点Q的坐标是多少?A。
B。
C。
D.4.将正方形ABCD沿对角线BD折成直角二面角A-BD-C,以下哪个结论是错误的?A。
AC⊥BDB。
△ACD是等边三角形C。
∠ABC与平面BCD所成的角为60°D。
∠ABD与CD所成的角为60°5.在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E和F分别是棱AB和BB1的中点,直线EF和BC1的夹角是多少?A。
45° B。
60° C。
90° D。
120°6.在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设∠AOM=a,∠BOM=b,∠CON=c,则a+b-c等于多少?A。
a+b-c B。
-a+b+c C。
a-b+c D。
a+b-c7.在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,AB1和D1E所成角的余弦值是多少?A。
B。
C。
- D。
-8.在正方体ABCD-A1B1C1D1中,M、N、P分别是棱CC1、BC和A1B1上的点,若∠B1MN=90°,则∠PMN的大小是多少?A。
等于90° B。
小于90° C。
空间坐标系与空间坐标系在立体几何中的应用有答案

空间坐标系与空间坐标系在立体几何中的应用有答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一.空间直角坐标系如图1,为了确定空间点的位置,我们建立空间直角坐标系:以正方体为载体,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴:x轴、y轴、z 轴,这时我们说建立了一个空间直角坐标系,其中点O叫做坐标原点,x轴、y 轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为右手直角坐标系,即右手拇指指向x 轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向.二.空间直角坐标系中的坐标空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标[例1] 在空间直角坐标系中,作出点M(6,-2,4).[例2] 长方体ABCD-A1B1C1D1中,|AB|=a,|BC|=b,|CC1|=c,将此长方体放到空间直角坐标系中的不同位置(如图3),分别写出长方体各顶点的坐标.变式1:棱长为2的正方体,将此正方体放到空间直角坐标系中的不同位置,分别写出几何体各顶点的坐标。
2.底面为边长为4的菱形,高为5的棱柱,将此几何体放到空间直角坐标系中的不同位置分别写出几何体各顶点的坐标。
3. 在棱长均为2a的正四棱锥P-ABCD中,建立恰当的空间直角坐标系,(1)写出正四棱锥P-ABCD各顶点坐标;(2)写出棱PB的中点M的坐标.解:连接AC,BD交于点O,连接PO,∵P-ABCD为正四棱锥,且棱长均为2a.∴四边形ABCD为正方形,且PO⊥平面ABCD.∴OA=2=PA2-OA2=2a2-2a2=2a.以O点为坐标原点,OA,OB,OP所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系.(1)正四棱锥P-ABCD中各顶点坐标分别为A(2a,0,0),B(0,2a,0),C(-2 a,0,0),D(0,-2a,0),P(0,0,2a).(2)∵M为棱PB的中点,∴由中点坐标公式,得M(0+02,2a+02,0+2a2),即M(0,22a,22a).[例3] 在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[解](1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x =2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).变式:1.写出点P(6,-2,-7)在xOy面,yOz面,xOz面上的投影的坐标以及点P 关于各坐标平面对称的点的坐标.解:设点P在xOy平面、yOz平面、xOz平面上的投影分别为点A,B,C,点P关于xOy平面、yOz平面、xOz平面的对称点分别为点A′,B′,C′,由PA⊥平面xOy,PB⊥平面yOz,PC⊥平面xOz及坐标平面的特征知,点A(6,-2,0),点B(0,-2,-7),点C(6,0,-7);根据点P关于各坐标平面对称点的特征知,点A′(6,-2,7),B′(-6,-2,-7),C′(6,2,-7).2.在棱长都为2的正三棱柱ABC-A1B1C1中,建立恰当的直角坐标系,并写出正三棱柱ABC-A1B1C1各顶点的坐标.[正解] 取BC ,B 1C 1的中点分别为O ,O 1,连线OA ,OO 1, 根据正三棱柱的几何性质,OA ,OB ,OO 1两两互相垂直,且 |OA |=32×2=3, 以OA ,OB ,OO 1所在的直线分别为x 轴、y 轴、z 轴建立直角坐标系,如图5所示,则正三棱柱ABC —A 1B 1C 1各顶点的坐标分别为A (3,0,0),B (0,1,0),C (0,-1,0),A 1(3,0,2),B 1(0,1,2),C 1(0,-1,2).三.空间向量在立体几何中的应用1. 直线的方向向量与平面的法向量(1) 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.(2) 如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时把向量n 叫做平面α的法向量.2. 线面关系的判定直线l 1的方向向量为e 1=(a 1,b 1,c 1),直线l 2的方向向量为e 2=(a 2,b 2,c 2),平面α的法向量为n 1=(x 1,y 1,z 1),平面β的法向量为n 2=(x 2,y 2,z 2).(1) 如果l 1∥l 2,那么e 1∥e 2⇔e 2=λe 1⇔a 2=λa 1,b 2=λb 1,c 2=λc 1. (2) 如果l 1⊥l 2,那么e 1⊥e 2⇔e 1·e 2=0⇔a 1a 2+b 1b 2+c 1c 2=0. (3) 若l 1∥α,则e 1⊥n 1⇔e 1·n 1=0⇔a 1x 1+b 1y 1+c 1z 1=0.(4) 若l 1⊥α,则e 1∥n 1⇔e 1=k n 1⇔a 1=kx 1,b 1=ky 1,c 1=kz 1. (5) 若α∥β,则n 1∥n 2⇔n 1=k n 2⇔x 1=kx 2,y 1=ky 2,z 1=kz 2. (6) 若α⊥β,则n 1⊥n 2⇔n 1·n 2=0⇔x 1x 2+y 1y 2+z 1z 2=0. 3. 利用空间向量求空间角 (1) 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是⎝⎛⎦⎥⎤0,π2.②向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为φ,则有cos θ=|cos φ|.(2) 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是⎣⎢⎡⎦⎥⎤0,π2. ②向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|(3) 二面角①二面角的取值范围是[0,π]. ②二面角的向量求法:(ⅰ) 若AB 、CD 分别是二面角α-l-β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图①).(ⅱ) 设n 1、n 2分别是二面角α-l-β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).题型1 空间向量的基本运算[例1]已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a =AB →,b =AC →.(1) 求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解:∵A (-2,0,2),B(-1,1,2),C(-3,0,4),a =AB →,b =AC →, ∴a =(1,1,0),b =(-1,0,2).(1)∵cosθ=a·b |a ||b |=-1+0+02×5=-1010,∴a 和b 的夹角为arccos ⎝ ⎛⎭⎪⎫-1010. (2)∵k a +b =k(1,1,0)+(-1,0,2)=(k -1,k ,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,解得k =-52或2.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直, AB =2,AF =1,M 是线段EF 的中点.求证:(1) AM∥平面BDE ;(2) AM⊥平面BDF.证明:(1) 建立如图所示的空间直角坐标系,设AC∩BD=N ,连结NE.则N ⎝ ⎛⎭⎪⎫22,22,0,E(0,0,1),A(2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1.∴ NE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=⎝ ⎛⎭⎪⎫-22,-22,1.∴ NE →=AM →且NE 与AM 不共线.∴ NE∥AM.∵ NE 平面BDE ,AM 平面BDE ,∴ AM ∥平面BDE.(2) 由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵ D(2,0,0),F(2,2,1),∴ DF→=(0,2,1),∴ AM →·DF →=0,∴ AM ⊥DF.同理AM⊥BF. 又DF∩BF=F ,∴ AM ⊥平面BDF. 题型3 空间的角的计算例3 (2013·苏锡常镇二模)如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF⊥DE.(1) 求异面直线EF 与BD 所成角的余弦值; (2) 求二面角F-OD-E 的正弦值.解:(1) 以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的线为y 轴,OP 所在的线为z 轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).设F(x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4,则EF →=(x 0,y 0-1,-2),DE →=(0,1,0),∵ EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴ F(3,1,0),EF →=(3,0,-2),BD →=(0,-2,2).设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2) 设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥OD →,n 1⊥OF →,即⎩⎨⎧z 1=0,3x 1+y 1=0.令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0).设平面DEF 的法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝⎛⎭⎪⎫1,0,32.设二面角F-OD-E 的平面角为β,则|cos β|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77.∴ sin β=427. (翻折问题)例4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD 中,已知∠A=45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1) 求证: DC⊥平面ABC ; (2) 求BF 与平面ABC 所成角的正弦值; (3) 求二面角B -EF -A 的余弦值.解:(1) ∵ 平面ABD⊥平面BDC ,又∵ AB⊥BD,∴ AB ⊥平面BDC ,故AB⊥DC,又∵ ∠C=90°,∴ DC ⊥BC ,BC ABC 平面ABC ,DC 平面ABC ,故DC⊥平面ABC.(2) 如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示,设CD =a ,则BD =AB =2a ,BC =3a ,AD =22a ,可得B(0,0,0),D(2a ,0,0),A(0,0,2a),C ⎝ ⎛⎭⎪⎫32a ,32a ,0,F(a ,0,a),∴ CD →=⎝ ⎛⎭⎪⎫12a ,-32a ,0,BF →=(a ,0,a).设BF 与平面ABC 所成的角为θ,由(1)知DC⊥平面ABC ,∴ cos ⎝ ⎛⎭⎪⎫π2-θ=CD →·BF →|CD →|·|BF →|=12a 2a ·2a =24,∴ sin θ=24.(3) 由(2)知 FE⊥平面ABC, 又∵ BE平面ABC ,AE平面ABC ,∴ FE⊥BE,FE⊥AE ,∴ ∠AEB 为二面角B -EF -A 的平面角 .在△AEB 中,AE =BE =12AC =12AB 2+BC 2=72a , ∴ cos ∠AEB =AE 2+BE 2-AB 22AE ·BE =-17,即所求二面角B -EF -A 的余弦为-17.课后巩固练习:1.(2013·江苏卷)如图所示,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1) 求异面直线A 1B 与C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1) 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2) 设平面ADC 1的法向量为n 1=(x ,y ,z),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 2. (2013·新课标全国卷Ⅱ)如图所示,直三棱柱ABCA 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AA 1=AC =CB =22AB.(1) 证明:BC 1∥平面A 1CD ;(2) 求二面角DA 1CE 的正弦值. (1) 证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF. 因为DF 平面A1CD ,BC 1平面A 1CD , 所以BC 1∥平面A 1CD.(2) 由AC =CB =22AB 得AC⊥BC. 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n·m |n||m|=33,故sin 〈n ,m 〉=63.即二面角D-A 1C-E 的正弦值为63. 3. (2013·重庆)如图所示,四棱锥PABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD=π3,F 为PC 的中点,AF ⊥PB.(1) 求PA 的长;(2) 求二面角B-AF-D 的正弦值.解:(1) 如图,连结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD,故AC⊥BD.以O 为坐标原点,OB →、OC →、AP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz ,则OC =CDcos π3=1,而AC =4,得AO =AC -OC =3.又OD =CDsin π3=3,故A(0,-3,0),B(3,0,0),C(0,1,0),D(-3,0,0).因为PA⊥底面ABCD ,可设P(0,-3,z),由F 为PC 边中点,得F ⎝⎛⎭⎪⎫0,-1,z 2,又AF →=⎝⎛⎭⎪⎫0,2,z 2,PB →=(3,3,-z),因AF⊥PB,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|PA→|=2 3.(2) 由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD →=0,n 1·AF →=0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB →=0,n 2·AF →=0, 得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B-AF-D 的正弦值为378.4. (2013·连云港调研)在三棱锥SABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是AC 的中点,侧棱SB 和底面成45°角.(1) 若D 为侧棱SB 上一点,当SDDB为何值时,CD ⊥AB ;(2) 求二面角S-BC-A 的余弦值大小.解:以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系O-xyz.由题意知∠SBO=45°,SO =(0,0,0),C(0,3,0),A(0,-3,0),S(0,0,3),B(3,0,0).(1) 设BD →=λBS →(0≤λ≤1),则OD →=(1+λ)OB →+λOS →=(3(1+λ),0,3λ),所以CD →=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23.故SD DB =12时, CD ⊥AB. (2) 平面ACB 的法向量为n 1=(0,0,1),设平面SBC 的法向量n 2=(x ,y ,z),则n 2·SB →=0,n 2·SC →=0,则⎩⎨⎧3x -3z =0,3y -3z =0,解得⎩⎨⎧x =z ,y =3z ,取n 2=(1,3,1),所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=55. 又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为55. 5. 在直四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,底面是边长为1的正方形,E 、F 分别是棱B 1B 、DA 的中点.(1) 求二面角D 1-AE-C 的大小; (2) 求证:直线BF∥平面AD 1E.(1) 解:以D 为坐标原点,DA 、DC 、DD 1分别为x 、y 、z 轴建立空间直角坐标系如图.则相应点的坐标分别为D 1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴ED1→=(0,0,2)-(1,1,1)=(-1,-1,1),AE →=(1,1,1)-(1,0,0)=(0,1,1), AC →=(0,1,0)-(1,0,0)=(-1,1,0).设平面AED 1、平面AEC 的法向量分别为m =(a ,b ,1),n =(c ,d ,1).由⎩⎪⎨⎪⎧ED 1→·m =0,AE →·m =0⎩⎨⎧-a -b +1=0,b +1=0⎩⎨⎧a =2,b =-1,由⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0⎩⎨⎧-c +d =0,d +1=0⎩⎨⎧c =-1,d =-1,∴m =(2,-1,1),n =(-1,-1,1),∴cos m ,n =m·n |m |·|n |=-2+1+16×3=0,∴二面角D 1AEC 的大小为90°.(2) 证明:取DD 1的中点G ,连结GB 、GF.∵E 、F 分别是棱BB 1、AD 的中点,∴GF ∥AD 1,BE ∥D 1G 且BE =D 1G ,∴四边形BED 1G 为平行四边形,∴D 1E ∥BG. 又D1E 、D 1A 平面AD 1E ,BG 、GF 平面AD 1E , ∴BG ∥平面AD 1E ,GF ∥平面AD 1E.∵GF 、GB 平面BGF ,∴平面BGF∥平面AD 1E. ∵BF 平面AD 1E ,∴直线BF∥平面AD 1E.(或者:建立空间直角坐标系,用空间向量来证明直线BF∥平面AD 1E ,亦可)6. (2013·苏州调研)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =是BC 的中点.(1) 求直线DB 1与平面A 1C 1D 所成角的正弦值; (2) 求二面角B 1-A 1D-C 1的正弦值.解:(1) 由题意,A(0,0,0),B(2,0,0),C(0,4,0),D(1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的一个法向量为n =(x ,y ,z).∵ n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0.∴ x =3z ,y =0.令z =1,得x ==(3,0,1).设直线DB 1与平面A 1C 1D 所成角为θ,∵ DB 1→=(1,-2,3),∴ sin θ=|cos 〈DB 1→·n 〉|=3×1+0×(-2)+1×310×14=33535. (2) 设平面A 1B 1D 的一个法向量为m =(a ,b ,c). A 1B 1→=(2,0,0),∵ m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0,∴ a =0,2b =3c.令c =2,得b ==(0,3,2).设二面角B 1A 1DC 1的大小为α,∴ |cos α|=cos|〈m ,n 〉|=|m·n||m|·|m|=|0×3+3×0+2×1|13×10=265,则sin α=3765=345565.∴ 二面角B 1A 1DC 1的正弦值为345565.7. (2013·南通二模)如图,在三棱柱ABCA 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小;(2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255.解:(1) 如图,以A 为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,-2,0).cos 〈AA 1→,BC →〉=AA 1→·BC →|AA 1→|·|BC →|=-48·8=-12,故AA 1与棱BC 所成的角是π3.(2) P 为棱B 1C 1中点,设B 1P →=λB 1C 1→=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB 的法向量为n 1=(x ,y ,z),AP →=(2λ,4-2λ,2),则⎩⎪⎨⎪⎧n 1·AP →=0,n 1·AB →=0.⎩⎨⎧λx+2y -λy+z =0,2y =0.⎩⎨⎧z =-λx,y =0.故n 1=(1,0,-λ),而平面ABA1的法向量是n2=(1,0,0),则cos〈n1,n2〉=n1·n2|n1|·|n2|=11+λ2=255,解得λ=12,即P为棱B1C1中点,其坐标为P(1,3,2).近六年高考题1. 【2010高考北京理第16题】(14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE;(3)求二面角A-BE-D的大小.【答案】设AC与BD交与点G。
空间向量立体几何(绝对经典)

例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。
(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。
n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间直角坐标系与空间向量一、建立空间直角坐标系的几种方法 构建原则:遵循对称性,尽可能多的让点落在坐标轴上。
作法:充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下:(一)用共顶点的互相垂直的三条棱构建直角坐标系例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0),∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,.设1BC u u u u r 与CD uuur 所成的角为θ, 则11317cos 17BC CD BC CDθ==u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π,∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ⎛⎫- ⎪ ⎪⎝⎭,,、13302C ⎛⎫ ⎪ ⎪⎝⎭,,.设30E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =u u u r u u u rg ,即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪⎝⎝⎭g ,,,,233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭g , 即12a =或32a =(舍去).故3102E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥u u u r u u u r ,111B A EB ⊥u u u u r u u u r ,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A u u u u r 与EA uu u r的夹角. 因11(002)B A BA ==u u u u r u u u r ,,,31222EA ⎛⎫=-- ⎪ ⎪⎝u u u r ,, 故11112cos 3EA B A EA B A θ==u u u r u u u u r g u u u r u u u u r ,即2tan 2θ= (三)利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的余弦值.解析:(1)取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设AD =2,则A (1,0,0)、D (-1,0,0)、B (1,2,0)、V (0,0,3),∴AB u u u r=(0,2,0),VA u u r =(1,0,-3). 由(020)(103)0AB VA =-=u u u r u u rgg ,,,,,得 AB ⊥VA .又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直,∴ AB ⊥平面VAD ;(2)设E 为DV 的中点,则13022E ⎛⎫- ⎪ ⎪⎝⎭,,∴3302EA ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,3322EB ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(103)DV =u u ur ,,. ∴332(103)022EB DV ⎛⎫=-= ⎪ ⎪⎝⎭u u u r u u u r g g ,,,,, ∴EB ⊥DV .又EA ⊥DV ,因此∠AEB 是所求二面角的平面角.∴21cos 7EA EB EA EB EA EB==u u u r u u u ru u u r u u u r g u u u r u u u r ,. 故所求二面角的余弦值为217. (四)利用正棱锥的中心与高所在直线构建直角坐标系例4 已知正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h . (1)求∠DEB 的余弦值;(2)若BE ⊥VC ,求∠DEB 的余弦值.解析:(1)如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,则由AB =2a ,OV =h ,有B (a ,a ,0)、C (-a ,a ,0)、D (-a ,-a ,0)、V (0,0,h )、222a a h E ⎛⎫-⎪⎝⎭,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭u u u r ,,,3222a h DE a ⎛⎫= ⎪⎝⎭u u ur ,,. ∴22226cos 10BE DE a h BE DE a h BE DE-+==+u u u r u u u ru u u r u u u r g u u u r u u u r ,, 即22226cos 10a h DEB a h -+=+∠;(2)因为E 是VC 的中点,又BE ⊥VC ,所以0BE VC =u u u r u u u r g ,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭g ,,,,,∴22230222a h a --=,∴2h a =. 这时222261cos 103a h BE DE a h -+==-+u u u r u u u r ,,即1cos 3DEB =-∠. 引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.下面以高考考题为例,剖析建立空间直角坐标系的三条途径.(五)利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系.例5已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离. 简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-u u u r u u u r ,,,,,,1cos 3AQ PB AQ PB AQ PB <>==u u u r u u u ru u u r u u u r g u u u r u u u r ,.所求异面直线所成的角是1arccos3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-u u u r u u u r,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩u u u rg u u u rg ,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==u u u r g n n.点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第(3)问也可用“等体积法”求距离.二、向量法解立体几何 (一)知识点向量的数量积和坐标运算b a ρρ,是两个非零向量,它们的夹角为θ,则数θcos |||⋅⋅b 叫做与的数量积(或内积),记作⋅,即.cos ||||θ⋅⋅=⋅b a b a 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是:若),,(),,,(222111z y x z y x ==,则①212121z z y y x x b a ++=⋅ρρ;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅ρρ④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<(二)例题讲解 题型:求角度相关1. 异面直线n m ,所成的角分别在直线n m ,上取定向量,,b a ρρ则异面直线n m ,所成的角θ等于向量b a ρρ,所成的角或其补角(如图1所示),则.||||||cos b a b a ρρρρ⋅⋅=θ 2. 直线L 与平面α所成的角在L 上取定AB ,求平面α的法向量n (如图2所示),再求||||cos n AB ⋅=θ,则θπβ-=2为所求的角.3. 二面角方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方向,如图3所示),则图1图图3甲①若二面角βα--l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即||||cos 2121n n ⋅=θ② 若二面角βα--l 是“锐角型”的如图3乙所示,那么其大小等于两法向量21n n 、的夹角,即cos 2121=θ.方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、(如图4所示),则二面角βα--l 的大小等于向量21n n 、的夹角,即 ||||cos 2121n n ⋅=θ题型:求距离相关1. 异面直线n m 、的距离分别在直线n m 、上取定向量,,b a ρρ求与向量b a ρρ、都垂直的向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于AB 在上的射影长,即d=.证明:设CD 为公垂线段,取b DB a CA ρρ==,||||)(⋅=⋅∴⋅++=⋅∴++= ||CD d ==∴设直线n m ,所成的角为θ,显然.||||||cos b a b a ρρρρ⋅⋅=θ 2. 平面外一点p 到平面α的距离图图4图1求平面α的法向量n,在面内任取一定点A,点p到平面α的距离d等于AP在n上的射影长,即d=.|n|图5三、法向量 例题解析题型:求空间角1、运用法向量求直线和平面所成角设平面α的法向量为n r=(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为sin θ= cos(2π-θ) = |cos<AB u u u r , n r >| = AB AB nn••u u u r ru u u r r2、运用法向量求二面角设二面角的两个面的法向量为12,n n u r u u r ,则<12,n n u r u u r >或π-<12,n n u r u u r>是所求角。