空间直角坐标系
空间直角坐标系

长度:使用直角坐标 系中的坐标值计算
面积:使用直角坐标 系中的坐标值计算
体积:使用直角坐标 系中的坐标值计算
角度:使用直角坐标 系中的坐标值计算
距离:使用直角坐标 系中的坐标值计算
相似性:使用直角坐 标系中的坐标值计算
平移:沿某个方向移动一定距 离不改变形状的大小和方向
旋转:绕某个轴旋转一定角 度改变形状的位置和方向
向量的坐标表示应用:向量的坐标表示方法在物理、工程、计算机科学等领域有着广泛的应 用。
向量的模:向量的长度表示为向量的平方和的平方根
向量的数量积:两个向量的点积表示为两个向量的坐标乘积的和
向量的坐标表示方法:用三个坐标值表示向量每个坐标值对应一个坐标轴
向量的数量积的坐标表示方法:用两个向量的坐标乘积的和表示向量的数量积每个坐标乘积 对应一个坐标轴
平移:沿坐标轴方 向移动保持原点位 置不变
旋转和平移的复合 :先旋转后平移或 先平移后旋转
旋转和平移的逆操 作:旋转和平移的 逆操作可以恢复原 坐标系
空间直角坐标系的 表示方法
空间直角坐标 系:由三个互 相垂直的坐标 轴组成通常用x、
y、z表示
点的坐标表示: 用三个数字表 示分别对应x、 y、z轴上的坐
感谢您的观看
汇报人:
示。
单位长度:平面直角坐标系中 的单位长度是固定的通常用1表
示。
空间直角坐标系是 三维的平面直角坐 标系是二维的
空间直角坐标系中的点 可以用三个坐标表示平 面直角坐标系中的点可 以用两个坐标表示
空间直角坐标系中 的点可以通过投影 变换转换为平面直 角坐标系中的点
平面直角坐标系中 的点可以通过升维 变换转换为空间直 角坐标系中的点
坐标轴:x轴、y轴、z 轴分别代表三个方向 的坐标。
空间直角坐标系(104)

空间直角坐标系具有方向性,即坐标 轴的正方向是确定的;同时,它还具 有唯一性,即对于空间中的任意一点 ,其坐标值是唯一的。
坐标系的建立
确定坐标原点
选择一个固定的点作为坐标系的原点, 该点是空间中唯一的一个点。
确定坐标轴方向
单位长度与坐标单位
根据实际需要选择适当的单位长度,如米、 厘米等,并规定x、y、z轴上的单位长度分 别为1、1、1,称为坐标单位。
点与坐标的关系
一个点的位置由其坐标值唯一确定, 而一个坐标值也唯一对应一个点。
02
空间直角坐标系的性质与 定理
点的坐标与向量表示
点的坐标
在空间直角坐标系中,一个点的 位置由三个坐标值$x, y, z$确定。
向量表示
一个点可以表示为一个向量,该 向量从原点出发,指向该点。
向量的加法、数乘及向量的模
向量在解决实际问题中的应用
向量还可以用于解决许多实际问题,如线性代数问题、微积分问题、流体力学问题等。通过空间直角坐 标系,可以更方便地表示和解决这些问题。
04
空间直角坐标系中的曲线 与曲面
曲线在空间直角坐标系中的表示
1 2
参数方程表示法
通过给定参数和参数方程,将曲线的坐标表示为 参数的函数。
直角坐标方程表示法
THANKS
感谢观看
空间几何体的运动分析
通过空间直角坐标系,可以分析空间几何体的运动规律,如平移、旋转、缩放等。
向量在解决实际问题中的应用
向量在物理中的应用
向量在物理中有广泛的应用,如力、速度、加速度等都可以用向量表示和计算。通过空间直角坐标系,可以更方便地 表示和计算这些物理量。
向量在解析几何中的应用
向量在解析几何中有重要的应用,如向量的加法、数乘、向量的模等都可以用于解决实际问题。通过空间直角坐标系 ,可以更方便地表示和计算这些向量运算。
空间直角坐标系

第 1 页 共 2 页空间直角坐标系1、空间直角坐标系:从空间某一个定点O 引三条 且有 单位长度的数轴Ox 、Oy 、Oz ,这样的坐标系叫做空间直角坐标系O-xyz ,点O 叫做 ,x 轴、y 轴、z 轴叫做 。
在画空间直角坐标系O-xyz 时,一般使∠xOy=135°,∠yOz=90°。
2、坐标平面:通过每两个坐标轴的平面叫做 ,分别称为xOy 平面、yOz 平面、 zOx 平面。
3、在空间直角坐标系中,空间一点M 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点M 在空间直角坐标系中的坐标,记作M(x ,y ,z),其中x 叫做 坐标,y 叫做 坐标,z 叫做 坐标.4、右手直角坐标系:在空间直角坐标系中,令右手大拇指、食指和中指相互垂直时,让右手大拇指指向为x 轴的正方向,食指指向y 轴的正方向,中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。
注意:(1)在空间直角坐标系中,坐标平面xOy ,xOz ,yOz 上非原点的坐标有什么特点?(2)y 轴、z 轴上非原点的坐标有什么特点?5(1)空间中任意一点),,(1111z y x P 到点),,(2222z y x P 之间的距离公式: 22122122121)()()(z z y y x x P P -+-+-=(2)在空间直角坐标系O-xyz 中,设点P(x ,y ,z)、()111,,z y x A 、()222,,z y x B , 则:点P 到原点O 的距离|OP|=222z y x ++ A 与B 两点间距离公式|AB|=212212212)()()(z z y y x x -+-+- 点A 与B 的中点()000,,z y x P 坐标公式:2,2,2210210210z z z y y y x x x +=+=+= 专题例题与练习:例1. 在空间直角坐标系中,到点M(3,—1,2),N(0,2,1)距离相等且在y 轴上的点的坐标为___________例2. 与点P(1,3,5)关于原点对称的点是( )A 、(—1,—3,5)B 、(1,—3,5)C 、(—1,3,—5)D 、(—1,—3,—5) 例3. 已知空间两点M(2,3,6),N(—m ,3,—2n)关于xOy 平面对称,则m+n=_________例4. 如图右侧,已知正方体ABCD -A′B′C′D′的棱长为a ,|BM|=|2MD’|,点N 在A′C′上,且|A′N|=3|NC′|,试求MN 的长.练习1.若已知点A(1,1,1),B(-3,-3,-3),则线段AB 的长为( )A .4 3B .2 3C .4 2D .3 22.在空间直角坐标系中,点P(-5,-2,3)到x 轴的距离为( )第 2 页 共 2 页 A .5 B.29 C.13 D.343.在空间直角坐标系中,已知点P(x ,y ,z)满足方程(x +2)2+(y -1)2+(z -3)2=3, 则点P 的轨迹是( )A .直线B .圆C .球面D .线段4.已知点A(-3,1,4),B(5,-3,-6),则点B 关于点A 的对称点C 的坐标为________.5.以正方体ABCD -A1B1C1D1的棱AB 、AD 、AA1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1的中点的坐标为( ) A.(21,1,1). B.(1,21,1). C. (1,1,21). D. (21,21,1).6.空间直角坐标系中,x 轴上到点P(4,1,2)的距离为30的点有( )A .2个B .1个C .0个D .无数个7.已知A(1,-2,11),B(4,2,3),C(6,-1,4),则△ABC 的形状是( )A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形8.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是() A.62 B.3 C.32 D.63。
空间直角坐标系

空间直角坐标系空间直角坐标系是一种用来描述物体在三维空间中位置的坐标系统。
它是一种常见且重要的坐标系,被广泛应用于数学、物理、工程等各个领域。
本文将详细介绍空间直角坐标系的定义、特点和使用方法。
一、空间直角坐标系的定义空间直角坐标系是由三个相互垂直的坐标轴构成的,通常用x、y、z表示。
x轴和y轴在水平平面上,z轴垂直于水平平面向上延伸。
在这个坐标系中,每个点可以由一个有序的三元组(x, y, z)唯一确定。
其中,x表示点在x轴上的坐标值,y表示点在y轴上的坐标值,z表示点在z轴上的坐标值。
二、空间直角坐标系的特点1. 三维描述:空间直角坐标系能够准确描述物体在三维空间中的位置。
通过确定点在x、y、z轴上的坐标值,可以得知物体在坐标系中的具体位置。
2. 直角关系:空间直角坐标系中的三个坐标轴彼此垂直。
这意味着任意两个轴的夹角为直角,使得坐标系的描述更加简洁明了。
3. 正负号:在空间直角坐标系中,每个坐标轴都有正负号之分。
通过正负号的不同,可以识别出点在轴的正方向还是负方向上。
三、空间直角坐标系的使用方法1. 坐标表示:在空间直角坐标系中,可以通过坐标表示物体的位置。
例如,一个点的坐标为(2, 3, 4),表示该点在x轴上的坐标值为2,在y轴上的坐标值为3,在z轴上的坐标值为4。
2. 图形表示:使用空间直角坐标系,可以绘制出物体在三维空间中的图形。
例如,通过连接多个点可以绘制直线、曲线,通过连接多个面可以绘制立方体、圆柱体等。
3. 距离计算:在空间直角坐标系中,可以计算物体之间的距离。
根据勾股定理,可以计算出两点之间的直线距离。
例如,两点A(x1, y1,z1)和B(x2, y2, z2)之间的距离可以用以下公式表示:AB = √[(x2-x1)² + (y2-y1)² + (z2-z1)²]。
四、应用举例空间直角坐标系在许多领域有着广泛的应用。
以下是一些例子:1. 建筑设计:在建筑设计中,使用空间直角坐标系可以准确描述建筑物的位置、大小和形状,方便施工和规划工作。
空间直角坐标系

空间直角坐标系在数学和物理学中,空间直角坐标系是一种常用的坐标系统,用于描述三维空间中的点、向量和物体的位置。
它由三个互相垂直的坐标轴(x轴、y轴和z轴)组成,构成了一个三维的直角坐标系。
一、空间直角坐标系的定义空间直角坐标系以原点为起点,通过选定的单位长度建立了三个相互垂直的坐标轴。
x轴代表水平方向,y轴代表垂直于x轴的水平方向,z轴代表竖直方向垂直于x、y轴。
这样,每一个点都可以用三个数字(x,y,z)表示其在空间直角坐标系中的位置。
二、坐标轴的性质和方向在空间直角坐标系中,每个坐标轴都具有以下性质:1. x轴:位于水平方向,从负无穷到正无穷延伸。
正方向为从左往右。
2. y轴:位于垂直于x轴的水平方向,从负无穷到正无穷延伸。
正方向为从前往后。
3. z轴:位于竖直方向,从负无穷到正无穷延伸。
正方向为从下往上。
空间直角坐标系中,x轴和y轴的交点称为原点(O),z轴的正方向与x轴和y轴的正方向形成右手螺旋规则关系。
三、点的表示和距离计算在空间直角坐标系中,任意一点P的坐标为(x,y,z)。
这意味着点P在x轴上的坐标为x,在y轴上的坐标为y,在z轴上的坐标为z。
点P到原点的距离可以由勾股定理计算:距离= √(x² + y² + z²)四、向量和运算在空间直角坐标系中,向量可以用其起点和终点的坐标差来表示。
例如,向量V可以表示为V = (x2 - x1, y2 - y1, z2 - z1),其中(x1, y1, z1)为起点坐标,(x2, y2, z2)为终点坐标。
向量的加法和减法可以分别通过坐标的相加和相减进行计算。
例如,向量A = (x1, y1, z1)和向量B = (x2, y2, z2)的加法结果为A + B = (x1 +x2, y1 + y2, z1 + z2)。
五、空间坐标系的应用空间直角坐标系在几何学、物理学、工程学等领域中都有广泛的应用。
它可以用来描述点、线、面和三维物体的位置关系和运动状态。
空间直角坐标系

返回
空间中点 P 坐标的确定方法 (1)由 P 点分别作垂直于 x 轴、y 轴、z 轴的平面,依次 交 x 轴、y 轴、z 轴于点 Px、Py、Pz,这三个点在 x 轴、y 轴、z 轴上的坐标分别为 x、y、z,那么点 P 的坐标就是(x, y,z). (2)若题所给图形中存在垂直于坐标轴的平面,或点 P 在坐标轴或坐标平面上,则要充分利用这一性质解题.
返回
总结 1.求空间对称点的规律方法 空间的对称问题可类比平面直角坐标系中点的对称问 题,要掌握对称点的变化规律,才能准确求解.对称点的 问题常常采用“关于谁对称,谁保持不变,其余坐标相反” 这个结论. 2.空间直角坐标系中,任一点 P(x,y,z)的几种特殊 对称点的坐标如下: ①关于原点对称的点的坐标是 P1(-x,-y,-z);
返回
空间中点的对称
[例 2] (1)点 A(1,2,-1)关于坐标平面 xOy 及 x 轴的 对称点的坐标分别是________.
(2)已知点 P(2,3,-1)关于坐标平面 xOy 的对称点为 P1, 点 P1 关于坐标平面 yOz 的对称点为 P2,点 P2 关于 z 轴的对 称点为 P3,则点 P3 的坐标为________.
返回
②关于x轴(横轴)对称的点的坐标是P2(x,-y,-z); ③关于y轴(纵轴)对称的点的坐标是P3(-x,y,-z); ④关于z轴(竖轴)对称的点的坐标是P4(-x,-y,z); ⑤关于xOy坐标平面对称的点的坐标是P5(x,y,-z); ⑥关于yOz坐标平面对称的点的坐标是P6(-x,y,z); ⑦关于xOz坐标平面对称的点的坐标是P7(x,-y,z).
空间直角坐标系

解: D( 0, 0, 2),
C( 0, 4, 0), A( 3, 0, 2), 过点 A 的 x 轴的垂面 AB 交 x 轴于点 A, 得 x 坐标为 3;
z
2 D
A
3A O
x
C B
C
4y
B
过点 A 的 y 轴的垂面 AO 交 y 轴于原点,
得 y 坐标为 0;
过点 A 的 z 轴的垂面 AC 交 z 轴于点 D,
得 z 坐标为 2.
例1. 如图, 在长方体 OABC-DABC中, |OA|=3,
|OC|=4, |OD|=2. 写出 D, C, A, B 四点的坐标.
解: D( 0, 0, 2),
C( 0, 4, 0), A( 3, 0, 2), B( 3, 4, 2). 过点 B 的 x 轴的垂面 BA
o
y
y
o
o
y
x
x
课本中采用的是右手直角坐标系, (如图)
二、点的坐标
点P的坐标: P (x, y, z), z 过点P作 x 轴的垂面,
与 x 轴交点的坐标
就是点P的 x 坐标; 过点P作 y 轴的垂面,
z
P● (x, y, z)
与 y 轴交点的坐标
o
y
y
就是点P的 y 坐标;
x
过点P作 z 轴的垂面, x
N22( 1,
1 2
,
12),
N24(
1 2
,
1,
1 2
),
N14( 1, 1, 1 ),
N21(
1 2
,
0,
1 2
),
N23( 0,
1.3.1 空间直角坐标系(解析版)..

1.3空间向量及其运算的坐标表示1.3.1空间直角坐标系知识梳理知识点一空间直角坐标系1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{i ,j ,k },以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.知识点二空间一点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=x i +y j +z k .在单位正交基底{i ,j ,k }下与向量OA →对应的有序实数组(x ,y ,z )叫做点A 在此空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.知识点三空间向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a .由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记作a =(x ,y ,z ).题型探究题型一、空间中点的位置及坐标特征1.若空间一点()21,1,11M a a +-+在z 轴上,则=a ()A .1B .0C .±1D .1-【答案】D【详解】因为空间一点()21,1,11M a a +-+在z 轴上,所以21010a a +=⎧⎨-=⎩,解得1a =-;故选:D2.在空间直角坐标系中,点()2,0,3P 位于()A .x 轴上B .y 轴上C .xOy 平面上D .xOz 平面上【答案】D【详解】在空间直角坐标系Oxyz 中,点()2,0,3P ,因为坐标中0y =,所以点()2,0,3P 位于xOz 平面上.故选:D.3.已知点A '是点(2,9,6)A 在坐标平面Oxy 内的射影,则点A '的坐标为()A .(2,0,0)B .(0,9,6)C .(2,0,6)D .(2,9,0)【答案】D【详解】因为点A '是点(2,9,6)A 在坐标平面Oxy 内的射影,所以A '的竖坐标为0,横、纵坐标与A 点的横、纵坐标相同,所以点A '的坐标为(2,9,0).故选:D4.已知点(),,P x y z ,若点P 在x 轴上,则点P 坐标为___________;若点P 在yOz 平面内,则点P 坐标为___________.若点P 在z 轴上,则点P 坐标为___________;若点P 在xOz 平面内,则点P 坐标为___________.【答案】(),0,0x ()0,,y z ()0,0,z (),0,x z 【详解】若点P 在x 轴上,则点P 坐标为(),0,0x ;若点P 在yOz 平面内,则点P 坐标为()0,,y z ;若点P 在z 轴上,则点P 坐标为()0,0,z ;若点P 在xOz 平面内,则点P 坐标为(),0,x z .故答案为:(),0,0x ;()0,,y z ;()0,0,z ;(),0,x z .题型二、求空间图形上的点的坐标1.如图,在长方体1111ABCD A B C D -中,3AB =,1AD =,12AA =,先建立空间直角坐标系,再求长方体各顶点的坐标.【详解】以点D 为原点,分别以射线DA 、DC 、1DD 为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则()0,0,0D 、()1,0,0A 、()1,3,0B 、()0,3,0C 、()10,0,2D 、()11,0,2A 、()11,3,2B 、()10,3,2C .2.如图所示,在空间直角坐标系中,2BC =,原点O 是BC 的中点,点D 在平面yOz 内,且90BDC ∠=,30DCB ∠=,则点D 的坐标为().A .13(0)22--,,B .13(0)22-,,C .13(0)22-,,D .13(0)22,,【答案】B【详解】过点D 作DE BC ⊥,垂足为E ,在Rt BDC 中,90BDC ∠=,30DCB ∠=,2BC =,得||1BD =、3CD =,所以3sin 302DE CD =⋅=,所以11cos 60122OE OB BE OB BD =-=-⋅=-=,所以点D 的坐标为13(0)22-,,,故选:B .3.如图,长方体ABCD A B C D ''''-中,底面ABCD 是边长为10的正方形,高AA '为12,点P 为体对角线BD '的中点,则P 点坐标为()A .()5,6,5B .()6,6,5C .()5,5,6D .()6,5,5【答案】C【详解】长方体ABCD A B C D ''''-中,底面ABCD 是边长为10的正方形,高AA '为12,所以()0,0,12D ',()10,10,0B ,所以对角线BD '的中点P 点坐标为010010012,,222P +++⎛⎫⎪⎝⎭即()5,5,6,故选:C.4.在如图所示的长方体1111ABCD A B C D -中,已知()10,2,2D ,()3,0,0B ,则点1C 的坐标为________.【答案】()3,2,2【详解】在长方体1111ABCD A B C D -中,已知()10,2,2D ,()3,0,0B ,所以3AB =,2AD =,12AA =,所以点1C 的坐标为()3,2,2,故答案为:()3,2,2题型三、关于坐标轴、坐标平面、原点对称的点的坐标1.如图,分别求点()2,3,4,()1,2,3-关于各个坐标平面、坐标轴、原点对称的点的坐标.【详解】根据空间直角坐标系的概念,可得:点()2,3,4关于坐标平面,,xOy xOz yOz 的对称点分别为()()()2,3,4,2,3,4,2,3,4---;点()1,2,3-关于坐标平面,,xOy xOz yOz 的对称点分别为()()()1,2,31,2,,,31,2,3----;点()2,3,4关于x 轴、y 轴和z 轴的对称点分别为()()()2,3,4,2,3,4,2,3,4------;点()1,2,3-关于x 轴、y 轴和z 轴的对称点分别为()()()1,2,31,2,,,31,2,3-----;点()2,3,4关于原点O 的对称点分别为()2,3,4---;点()1,2,3-关于原点O 的对称点分别为()1,2,3--.2.已知点(3,2,1)P -,分别写出它关于zOx 平面、x 轴、原点的对称点的坐标.【详解】根据空间直角坐标系的定义,可得:点(3,2,1)P -关于平面zOx 的对称点为1(3,2,1)P ;点(3,2,1)P -关于x 轴的对称点为2(3,2,1)P -;点(3,2,1)P -关于原点的对称点为3(3,2,1)P --.3.(多选)下列各命题正确的是()A .点()1,2,3-关于平面xOz 的对称点为()1,2,3B .点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭C .点()2,1,3-到平面yOz 的距离为1D .设{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,若324m i j k =-+,则()3,2,4m =-【答案】ABD【详解】对于A ,点()1,2,3-关于平面xOz 的对称点为()1,2,3,所以A 正确,对于B ,点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭,所以B 正确,对于C ,点()2,1,3-到平面yOz 的距离为2,所以C 错误,对于D ,由于{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,且324m i j k =-+,所以ۥ,所以D 正确,故选:ABD4.已知()2,3,1A v μ--+关于x 轴的对称点是(),7,6A λ'-,则,,v λμ的值为()A .2,4,5v λμ=-=-=-B .2,4,5v λμ==-=-C .2,10,8v λμ=-==D .2,10,7v λμ===【答案】D【详解】由题意得:()()27361v λμ⎧=⎪=--⎨⎪-=--+⎩,解得:2107v λμ=⎧⎪=⎨⎪=⎩.故选:D.题型四、求空间两点的中点坐标1.在空间直角坐标系中,已知点(1,0,1)A -,(5,2,1)B ,则线段AB 的中点坐标是()A .(1,1,0)B .(4,2,2)C .(2,2,0)D .(2,1,1)【答案】D【详解】因为点(1,0,1)A -,(5,2,1)B ,所以线段AB 的中点坐标是150211,,222-+++⎛⎫⎪⎝⎭,即()2,1,1.故选:D2.在空间直角坐标系中,记点(1,1,2)M -关于x 轴的对称点为N ,关于yOz 平面的对称点为P ,则线段NP 中点坐标为()A .(1,0,0)B .(1,1,0)--C .(1,0,1)D .(0,0,0)【答案】D【详解】依题意,点(1,1,2)M -关于x 轴的对称点的坐标为(1,1,2)N ---,关于yOz 平面的对称点为(1,1,2)P ,所以线段NP 中点坐标为(0,0,0).故选:D3.已知三角形ABC 的三个顶点()()()2,0,00,3,00,0,4A B C ,,,则三角形的重心的坐标为___________.【答案】24,1,33⎛⎫⎪⎝⎭【详解】设重心坐标为(),,x y z ,由重心坐标公式得200233x ++==,03000441,333y z ++++====.所以重心的坐标为24,1,33⎛⎫⎪⎝⎭.故答案为:24,1,33⎛⎫⎪⎝⎭.题型五、空间向量的坐标1.在空间直角坐标系中,已知点()4,3,5A -,()2,1,7B --,则AB =uu u r______.【答案】(6,4,12)--【详解】(24,1(3),75)(6,4,12)AB =------=--故答案为:(6,4,12)--2.如图,在直三棱柱ABC A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别为A 1B 1,A 1A 的中点,试建立恰当的坐标系求向量BN ,1BA ,1A B uuu r的坐标.【答案】BN =(1,-1,1),1BA =(1,-1,2),1A B uuu r=(-1,1,-2).【详解】由题意知CC 1⊥AC ,CC 1⊥BC ,AC ⊥BC ,以点C 为原点,分别以CA ,CB ,CC 1的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系C xyz ,如图所示.则B (0,1,0),A (1,0,0),A 1(1,0,2),N (1,0,1),∴BN =(1,-1,1),1BA =(1,-1,2),1A B uuu r=(-1,1,-2).跟踪训练1.设z 为任一实数,则点()2,2,z 表示的图形是()A .z 轴B .与平面xOy 平行的一直线C .平面xOyD .与平面xOy 垂直的一直线【答案】D【详解】在空间直角坐标系中画出动点()2,2,z 表示的图形如图所示:故点()2,2,z 表示的图形为与平面xOy 垂直的一直线,故选:D.2.在空间直角坐标系O xyz -中,已知点M 是点()3,4,5N 在坐标平面Oxy 内的射影,则的坐标是()A .()3,0,5B .()0,4,5C .()3,4,0D .()0,0,5【答案】C【详解】点()3,4,5N 在坐标平面Oxy 内的射影为()3,4,0,故点M 的坐标是()3,4,0故选:C3.判断正误(1)空间直角坐标系中,在x 轴上的点的坐标一定是()0,,b c 的形式.()(2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(),0,a c 的形式.()(3)空间直角坐标系中,点()1,3,2关于yOz 平面的对称点为()1,3,2-.()【答案】⨯√√【详解】(1)⨯.空间直角坐标系中,在x 轴上的点的坐标一定是(),0,0a 的形式.(2)√.在xOz 平面内的点,y 坐标必为0.(3)√.空间直角坐标系中,点(),,a b c 关于yOz 平面的对称点为(),,a b c -.4.(多选)在空间直角坐标系中,下列结论中正确的是()A .x 轴上的点坐标可以表示为()0,,b cB .y 轴上的点坐标可以表示为()0,,0bC .xOz 平面上的点坐标可以表示为(),0,a cD .yOz 平面上的点坐标可以表示为()0,,b c 【答案】BCD【详解】x 轴上的点坐标可以表示为(),0,0a ,故A 不正确;y 轴上的点坐标可以表示为()0,,0b 正确;xOz 平面上的点坐标可以表示为(),0,a c 正确;yOz 平面上的点坐标可以表示为()0,,b c 正确.故选:BCD .5.已知正方体ABCD A B C D ''''-的棱长为2,建立如图所示的空间直角坐标系,写出正方体各顶点的坐标.【详解】依题意得()()()()0,0,0,2,0,0,2,2,0,0,2,0A B C D ()()()()11110,0,2,2,0,2,2,2,2,0,2,2A B C D 6.如图,在长方体1111ABCD A B C D -中,4AB =,3AD =,15AA =,点N 为棱1CC 的中点,以点A 为原点,分别以AB ,AD ,1AA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.求点A ,B ,C ,D ,1A ,1B ,1C ,1D ,及N 的坐标.【详解】由题意,知()0,0,0A .由于点B 在x 轴上,且4AB =,则它的横坐标为4,又它的纵坐标和竖坐标都为0,所以点B 的坐标为()4,0,0.同理可得()0,3,0D ,()10,0,5A .由于点C 在xOy 平面内,则它的竖坐标为0,点C 在x 轴、y 轴上的投影依次为点B 、点D ,又4OB =,3OD =,所以点C 的横坐标和纵坐标依次为4,3,即点C 的坐标为()4,3,0.同理可得()14,0,5B ,()10,3,5D .点1C 在x 轴、y 轴和z 轴上的投影依次为点B 、点D 和点1A ,所以点1C 的坐标为()4,3,5.又N 为1CC 的中点,所以点N 的坐标为443305,,222+++⎛⎫ ⎪⎝⎭,即54,3,2N ⎛⎫ ⎪⎝⎭.7.在空间直角坐标系中,分别求点(2,1,4)P -关于x 轴、xOy 平面、坐标原点对称的点的坐标.【详解】点(2,1,4)P -关于x 轴对称的点的坐标为()2,1,4---,关于xOy 平面对称的点的坐标为()2,1,4--,关于坐标原点对称的点的坐标为()2,1,4--.8.在空间直角坐标系下,点()3,6,2M -关于y 轴对称的点的坐标为()A .()3,6,2-B .()3,6,2---C .()3,6,2-D .()3,6,2--【答案】C【详解】关于y 轴对称的点的y 坐标不变,,x z 坐标变为相反数,()3,6,2M ∴-关于y 轴对称的点为()3,6,2-.故选:C.9.空间直角坐标系中,已知点()1,1,1M 关于x 轴的对称点为N ,则点N 的坐标为()A .()1,1,1--B .()1,1,1-C .()1,1,1--D .()1,1,1--【答案】A【详解】因为点()1,1,1M 关于x 轴的对称点为N ,所以()1,1,1N --.故选:A10.在空间直角坐标系下,点()2,6,1M -关于平面yOz 对称的点的坐标为()A .()2,6,1B .()2,6,1-C .()2,6,1---D .()2,6,1--【答案】A【详解】点()2,6,1M -关于平面yOz 对称的点的坐标为()2,6,1.故选:A.11.在空间直角坐标系Oxyz 中,点P (1,2,3)关于xOy 平面的对称点坐标是()A .(1,2,)3-B .1,23(,)--C .(1,2,3)-D .(1,2,3)--【答案】A【详解】在空间直角坐标系O xyz -,关于xOy 平面的对称点只有竖坐标为原来的相反数,所以点P 关于平面xOy 对称点是()1,2,3-.故选:A12.在空间直角坐标系O-xyz 中,点(3,2,5)A -关于xoz 平面对称的点的坐标为()A .(3,2,5)-B .(3,2,5)--C .(3,2,5)D .(3,2,5)-【答案】C【详解】关于xoz 平面对称的点,y 坐标互为相反数,所以(3,2,5)A -关于xoz 平面对称的点的坐标为(3,2,5).故选:C13.(多选)在空间直角坐标系中,已知点(),,P x y z ,下列叙述正确的是()A .点P 关于x 轴对称的点()1,,P x y z --B .点P 关于y 轴对称的点()2,,P x y z --C .点P 关于原点对称的点()3,,P x y z ---D .点P 关于yOz 平面对称的点()4,,P x y z -【答案】ABC【详解】由点(),,P x y z ,对于A ,点P 关于x 轴对称的点()1,,P x y z --,故A 正确;对于B ,点P 关于y 轴对称的点()2,,P x y z --,故B 正确;对于C ,点P 关于原点对称的点()3,,P x y z ---,故C 正确;对于D ,点P 关于yOz 平面对称的点()4,,P x y z -,故D 错误.故选:ABC.14.空间直角坐标系中的两点()()1,2,3,1,0,1P Q -,则线段PQ 的中点M 的坐标为()A .()0,2,4B .()0,1,2C .()2,2,2D .()2,2,2---【答案】B【详解】设M 的坐标为(,,)x y z ,则1(1)022*******x y z +-⎧==⎪⎪+⎪==⎨⎪+⎪==⎪⎩即M 的坐标为(0,1,2),故选:B.15.已知()4,1,3A 、()2,4,3B --,则线段AB 中点的坐标是______.【答案】31,,32⎛⎫- ⎪⎝⎭【详解】已知()4,1,3A 、()2,4,3B --,则线段AB 中点的坐标是31,,32⎛⎫- ⎪⎝⎭.故答案为:31,,32⎛⎫- ⎪⎝⎭.16.如图PA 垂直于正方形ABCD 所在的平面,,M N 分别是,AB PC 的中点,并且1==PA AB .试建立适当的空间直角坐标系,求向量MN的坐标.【答案】11(0,,)22MN =【详解】因为1==PA AB ,PA ⊥平面ABCD ,AB AD ⊥,所以,,AB AD AP 是两两垂直的单位向量.设123e e AB AD AP e ===,,,以123{e e }e ,,为单位正交基底建立空间直角坐标系A xyz -,连接AC .如图所示,因为1111()2222MN MA AP PN AB AP PC AB AP PA AC ++=-++=-+=++23111111()e 222222AB AP PA AB AD AD AP e =-++++=+=+所以11(0)22MN =,,.17.如图所示,在正方体ABCD —A 1B 1C 1D 1中建立空间直角坐标系,若正方体的棱长为1,则AB 的坐标为____,1DC 的坐标为____,1B D 的坐标为_______.【答案】(1,0,0)(1,0,1)(1,1,1)--【详解】如题图示,11(0,0,0),(1,0,0),(0,1,0),(1,0,1),(1,1,1)A B D B C ,∴(1,0,0)(0,0,0)(1,0,0)AB =-=,1(1,1,1)(0,1,0)(1,0,1)DC =-=,1(0,1,0)(1,0,1)(1,1,1)B D =-=--.故答案为:(1,0,0),(1,0,1),(1,1,1)--.18.(多选)如图,在正三棱柱111ABC A B C -中,已知ABC 的边长为2,三棱柱的高为111,,BC B C 的中点分别为1,D D ,以D 为原点,分别以1,,DC DA DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则下列空间点及向量坐标表示正确的是()A .()10,3,1A B .()11,0,1CC .()10,3,1AD =-D .()13,3,1B A =-【答案】ABC【详解】在等边ABC 中,2,1AB BD ==,所以3AD =,则()()()1110,3,0,0,3,1,1,0,1,)(0,0,1A A C D ,()11,0,1B -,则()()110,3,1,1,3,1AD B A =-=-.故选:ABC高分突破1.点()1,2,3P -在坐标平面Oxy 内的射影的坐标为()A .()1,2,3B .()1,2,3---C .()1,2,0D .()0,0,3-【答案】C【详解】在空间直角坐标系中,可得点()1,2,3P -在坐标平面Oxy 内的射影的坐标为()1,2,0.故选:C.2.如图,在长方体1111ABCD A B C D -中,3AD =,4DC =,12DD =,以DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则点1B 的空间直角坐标为()A .()4,3,2B .()2,4,3C .()3,4,2D .()3,2,4【答案】C【详解】横坐标为点1B 到坐标面yDz 的距离,纵坐标为点1B 到坐标面xDz 的距离,竖坐标为点1B 到坐标面xDy 的距离,因为3AD =,4DC =,12DD =,所以点1B 的空间直角坐标为()3,4,2.故选:C.3.已知空间向量(1,2,3)a =-,则向量a 在坐标平面xOz 上的投影向量是()A .(0,1,2)-B .(1,2,0)-C .(0,2,3)D .(1,0,3)-【答案】D【详解】根据空间中点的坐标确定方法知,空间中点(1,2,3)A =-在坐标平面xOz 上的投影坐标,纵坐标为0,横坐标与竖坐标不变.所以空间向量(1,2,3)a =-在坐标平面xOz 上的投影向量是:(1,0,3)-,故选:D.4.在空间直角坐标系中,点()2,1,2M -和点()2,1,2N --的位置关系是()A .关于x 轴对称B .关于z 轴对称C .关于xOz 平面对称D .关于yOz 平面对称【答案】C【详解】在空间直角坐标系中,点()2,1,2M -和点()2,1,2N --两点x 坐标,z 坐标相同,y 坐标相反,所以()2,1,2M -和点()2,1,2N --关于xOz 平面对称,故选:C.5.若点()(),,0P x y z xyz ≠关于xOy 的对称点为A ,关于z 轴的对称点为B ,则A 、B 两点的对称是()A .关于xOy 平面对称B .关于x 轴对称C .关于y 轴对称D .关于坐标原点对称【答案】D【详解】点(),,P x y z 关于xOy 的对称点为(),,A x y z -,关于z 轴的对称点为(),,B x y z --,显然,A B 两点关于坐标原点对称.故选:D .6.笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是()A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---【答案】B【详解】由图可知,点(1,1,1)A --,所以点A 关于x 轴对称的点的坐标为(1,1,1).故选:B.7.在空间直角坐标系O xyz -,点()1,2,5A -关于平面yoz 对称的点B 为()A .()1,2,5--B .()1,2,5--C .()1,2,5---D .()1,2,5-【答案】B【详解】关于平面yoz 对称的点:横坐标互为相反数,纵坐标和竖坐标相同,故选:B8.向量(1,2,0),(1,0,6)OA OB ==-,其中C 为线段AB 的中点,则点C 的坐标为()A .(0,2,6)B .(2,2,6)--C .(0,1,3)D .(1,1,3)--【答案】C【详解】∵(1,2,0),(1,0,6)OA OB ==-,∴由中点坐标公式可得,线段AB 的中点C 的坐标为()0,1,3.故选:C .9.在空间直角坐标系中,点(1,4,3)P -与点Q (3,2,5)-关于点M 对称,则点M 的坐标为()A .(4,2,2)B .(2,1,2)-C .(2,1,1)D .(4,1,2)-【答案】C【详解】因为(1,4,3)P -与点Q (3,2,5)-,M 为PQ 的中点,所以由中点公式可知M 的坐标为()2,1,1.故选:C10.已知点1M ,2M 分别与点(1,2,3)M -关于x 轴和z 轴对称,则12M M =()A .(2,0,6)-B .(2,0,6)-C .(0,4,6)-D .(0,4,6)-【答案】A【详解】依题意,点(1,2,3)M -关于x 轴对称点1(1,2,3)M -,关于z 轴对称点2(1,2,3)M -,所以12(2,0,6)M M =-.故选:A11.(多选)已知正方体1111ABCD A B C D -的棱长为2,建立如图所示的空间直角坐标系Dxyz ,则()A .点1C 的坐标为(2,0,2)B .()12,2,2C A =--C .1BD 的中点坐标为(1,1,1)D .点1B 关于y 轴的对称点为(-2,2,-2)【答案】BCD【详解】根据题意可知点1C 的坐标为(0,2,2),故A 错误;由空间直角坐标系可知:1(2,0,0),(2,2,2)A C A =--,故B 正确;由空间直角坐标系可知:1(2,2,0),(0,0,2)B D ,故1BD 的中点坐标为(1,1,1),故C 正确;点1B 坐标为(2,2,2),关于于y 轴的对称点为(-2,2,-2),故D 正确,故选:BCD12.(多选)已知四边形ABCD 的顶点分别是()312A -,,,()121B -,,,()113C --,,,()353D -,,,那么以下说法中正确的是()A .()233AB =--,,B .A 点关于 x 轴的对称点为()312-,,C .AC 的中点坐标为()201--,,D .D 点关于xOy 面的对称点为()353--,,【答案】ABD【详解】由于四边形ABCD 的顶点分别是(3A ,1-,2),(1B ,2,1)-,(1C -,1,3)-,(3D ,5-,3),对于A :(2,3,3)AB =--,故A 正确;对于B :点A 关于x 轴对称的点的坐标为(3,1,2)-,故B 正确;对于C :AC 的中点坐标为(1,0,1)2-,故C 错误;对于D :点D 关于xOy 面的对称点为(3,5-,3)-,故D 正确;故选:ABD .13.点(),,P a b c 到坐标平面yOz 的距离是______.【答案】a【详解】由已知可得点(),,P a b c 到坐标平面yOz 的距离是a .故答案为:a .14.在空间直角坐标系中,点P 的坐标为()2,4,3-,过P 作xOz 平面的垂线,垂足为Q ,则Q 点的坐标为______.【答案】()2,0,3Q 【详解】由于垂足Q 在xOz 平面内,可设(),0,x z ,因为PQ ⊥平面xOz ,所以,P Q 两点的横坐标和竖坐标相等,故()2,0,3Q ,故答案为:()2,0,3Q .15.在空间直角坐标系中,点()1,4,2M --在xOz 平面上的射影的坐标是______,点M 关于原点对称的点的坐标是______.【答案】()1,0,2--()1,4,2-【详解】点()1,4,2M --在xOz 平面上的射影的坐标是()1,0,2--,点()1,4,2M --关于原点对称的点的坐标是()1,4,2-,故答案为:()1,0,2--,()1,4,2-16.若点()2,3,1A v μ--+关于x 轴的对称点为(),5,6A λ'-,则λ=___________,μ=___________,=v ___________.【答案】287【详解】点()2,3,1A v μ--+关于x 轴的对称点为()2,3,1v μ--,又其坐标为(),5,6λ-,故可得2,8,7v λμ===.故答案为:2;8;7.17.在空间直角坐标系中,已知点(,,)P x y z ,下列叙述中,正确的序号是_______.①点P 关于x 轴的对称点是1(,,)P x y z -②点P 关于yOz 平面的对称点是2(,,)P x y z --③点P 关于y 轴的对称点是3(,,)P x y z -④点P 关于原点的对称点是4(,,)P x y z ---【答案】④【详解】①点P 关于x 轴的对称点的坐标是(x ,y -,)z -,故①错误;②点P 关于yOz 平面的对称点的坐标是(x -,y ,)z ,则②错误;③点P 关于y 轴的对称点的坐标是(x -,y ,)z -,则③错误;④点P 关于原点的对称点的坐标是(x -,y -,)z -,故④正确,故正确的序号是④.故答案为:④.18.已知()3,1,2a =-,a 的起点坐标是()2,0,5-,则a 的终点坐标为______.【答案】()5,1,3--【详解】设a 的终点坐标为(),,x y z ,由题可得:()()2,,53,1,2x y z -+=-,故可得5,1,3x y z ==-=-,即a 的终点坐标为()5,1,3--.故答案为:()5,1,3--.19.已知(357)A -,,、(243)B -,,,设点A 、B 在yOz 平面上的射影分别为1A 、1B ,则向量11A B 的坐标为________.【答案】(0110)-,,【详解】点(357)A -,,、(243)B -,,在yOz 平面上的射影分别为1(057)A -,,、1(043)B ,,,∴向量11A B 的坐标为(0110)-,,.故答案为:(0110)-,,.20.已知三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,若3PA =,1AB =,2AC =,先建立空间直角坐标系.(1)求各顶点的坐标;(2)若点D 在线段PC 上靠近点P 的三等分点,求点D 的坐标.【详解】(1)因为PA ⊥平面ABC ,所以PA AC ⊥,PA AB ⊥,又因为AB AC ⊥,所以建立以点A 为原点,以射线AB 、AC 、AP 为x 轴、y 轴、z 轴的正半轴的空间直角坐标系,如图所示:因为3PA =,1AB =,2AC =,所以()0,0,0A 、()1,0,0B 、()0,2,0C 、()0,0,3P ;(2)若D 点在线段PC 上靠近P 点的三等分点,所以2CD DP =,设点D 的坐标为(),,x y z ,则020*******,1230232,12x y z +⋅⎧==⎪+⎪+⋅⎪==⎨+⎪+⋅⎪==⎪+⎩所以20,,23D ⎛⎫⎪⎝⎭.21.如图,在长方体1111ABCD A B C D -中,AB 4=,3AD =,15AA =,N 为棱1CC 的中点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z轴,建立空间直角坐标系.(1)求点1111,,,,,,,A B C D A B C D 的坐标;(2)求点N 的坐标.【详解】(1)D 为坐标原点,则()0,0,0D ,点A 在x 轴的正半轴上,且3AD =,()3,0,0A ∴,同理可得:()0,4,0C ,()10,0,5D .点B 在坐标平面xOy 内,BC CD ⊥,BA AD ⊥,()3,4,0B ∴,同理可得:()13,0,5A ,()10,4,5C ,与B 的坐标相比,点1B 的坐标中只有z 坐标不同,115BB AA ==,()13,4,5B ∴.综上所述:()3,0,0A ,()3,4,0B ,()0,4,0C ,()0,0,0D ,()13,0,5A ,()13,4,5B ,()10,4,5C ,()10,0,5D .(2)由(1)知:()0,4,0C ,()10,4,5C ,则1CC 的中点N 为004405,,222+++⎛⎫ ⎪⎝⎭,即50,4,2N ⎛⎫ ⎪⎝⎭.22.如图,正方体OABC D A B C ''''-的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C D '',D A '',A A ',AB ,BC ,CC '的中点,写出正六边形EFGHIJ 各顶点的坐标.【答案】0,,2a E a ⎛⎫ ⎪⎝⎭,,0,2a F a ⎛⎫ ⎪⎝⎭,,0,2a G a ⎛⎫ ⎪⎝⎭,,,02a H a ⎛⎫ ⎪⎝⎭,,,02a I a ⎛⎫ ⎪⎝⎭,0,,2a J a ⎛⎫ ⎪⎝⎭.【详解】因为正方体OABC D A B C ''''-的棱长为a ,E ,F ,G ,H ,I ,J 分别是棱C D '',D A '',A A ',AB ,BC ,CC '的中点所以0,,2a E a ⎛⎫ ⎪⎝⎭,,0,2a F a ⎛⎫ ⎪⎝⎭,,0,2a G a ⎛⎫ ⎪⎝⎭,,,02a H a ⎛⎫ ⎪⎝⎭,,,02a I a ⎛⎫ ⎪⎝⎭,0,,2a J a ⎛⎫ ⎪⎝⎭23.已知三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,若3PA =,2AB =,2AC =,建立空间直角坐标系.(1)求各顶点的坐标;(2)若点Q 是PC 的中点,求点Q 坐标;(3)若点M 在线段PC 上移动,写出点M 坐标.【详解】(1)在三棱锥P ABC -中,PA ⊥平面ABC ,AB AC ⊥,则射线,,AB AC AP 两两垂直,以点A 为原点,射线,,AB AC AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,所以(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,3)P .(2)由(1)知,点Q 是PC 中点,则3(0,1,)2Q .(3)由(1)知,点M 在线段PC 上移动,则点M 的横坐标为0,设其纵坐标为t (02)t ≤≤,其竖坐标z ,当M 与A 不重合时,23,3322z t z t -==-,当M 与A 重合时,z =3满足上式,因此332z t =-,所以点3(0,,3)(02)2M t t t -≤≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三条交于一点且两 两互相垂直的数轴
思考3:在空间中,取三条交于一点且 两两互相垂直的数轴:x轴、y轴、z 轴,组成空间直角坐标系Oxyz,在平 面上如何画空间直角坐标系?
z
∠xOy=135° ∠yOz=90°
O
y
x
思考4:在空间直角坐标系中,对三条数 轴的方向作如下约定:伸出右手,拇指 指向为x轴正方向,食指指向为y轴正方 向,中指指向为z轴正方向,并称这样的 坐标系为右手直角坐标系.那么下列空间 z 直角坐标系中哪些是右手直角坐标系?
O
y
x
z y O x x
z y O
(1)
z x
(2)
O x
y
O y
z
(3)
(4)
思考5:在空间直角坐标系Oxyz中,其 中点O叫做坐标原点,x轴、y轴、z轴 叫做坐标轴,通过每两个坐标轴的平 面叫做坐标平面,并分别称为xOy平 面、yOz平面、xOz平面.这三个坐标 z 平面的位置关系如何?
O
y
x轴上的点:(x,0,0)
O
y
x
xOy平面上的点:(x,y,0)
思考5:设点M的坐标为(a,b,c)过 点M分别作xOy平面、yOz平面、xOz平 面的垂线,那么三个垂足的坐标分别 z 如何? B(0,b,c)
C(a,0,c)
C
O A x B M y
A(a,b,0)
思考6:设点M的坐标为(x,y,z)那 么点M关于x轴、y轴、z轴及原点对称 的点的坐标分别是什么?
y
|x| O
x
思考2:在空间直角坐标系中,设点M为空 间的一个定点,过点M分别作垂直于x轴、 y轴、z轴的平面,垂足为A、B、C. 设点A、 B、C在x轴、y轴、z轴上的坐标分别为x、 y、z,那么点M的位置与有序实数组(x, y,z)是一个什么对应关系? z z
M x O y A z
C M y
z B y O
O x
M
y
x
x
思考3:上述有序实数组(x,y,z) 称为点M的空间坐标,其中x、y、z分 别叫做点M的横坐标、纵坐标、 竖坐标,这三个坐标的值一定是正数 z 吗? C
M
O A
x
z y
x
B
y
思考4:x轴、y轴、z轴上的点的坐标 有何特点?xOy平面、yOz平面、xOz 平面上的点的坐标有何特点?
z
M(x,y,z)
x
z
O
y
N(x,-y,-z)
思考7:设点A(x1,y1,z1),点 B(x2,y2,z2),则线段AB的中点M 的坐标如何?
x 1 + x 2 y1 + y 2 z 1 + z 2 M( , , ) 2 2 2
理论迁移
例1 如图,在长方体OABCD′A′B′C′中,|OA|=3,|OC|=4, |OD′|=2,写出长方体各顶点的坐标.
4.3.1 空间直角坐标系
北师大版必修2
问题提出
1 5730 p 2
t
对于直线上的点,我们可以通 过数轴来确定点的位置;对于平面 上的点,我们可以通过平面直角坐 标系来确定点的位置;对于空间中 的点,我们也希望建立适当的坐标 系来确定点的位置. 因此,如何在 空间中建立坐标系,就成为我们需 要研究的课题.
z D′ A′ O x B′ C y C′
A
例2 结晶体的基本单位称为晶胞,下 图是食盐晶胞的示意图(可看成是八个棱长 为0.5的小正方体堆积成的正方体),其中色 点代表钠原子,白点代表氯原子.如图建立直 z 角坐标系Oxyz,试写出全部钠原子所在位置 的坐标.
O y x
作业: P136练习:1,2,3. P138习题4.3A组:2.
知识探究(一):空间直角坐标系
思考1:数轴上的点M的坐标用一个实数x表示,它是 一维坐标;平面上的点M的坐标用一对有序实数(x, y)表示,它是二维坐标.设想:对于空间中的点的 坐标,需要几个实数表示?
(x,y) O x x y
O
x
思考2:平面直角坐标系由两条互相 垂直的数轴组成,设想:空间直角 坐标系由几条数轴组成?其相对位 置关系如何?
x
思考6:如图,在长方体ABCD-A1B1C1D1 中,以点D为坐标原点建立空间右手 直角坐标系,那么x轴、y轴、z轴 z 应如何选取?
D1 A1 D B1 C1 C
y
A
B
x
思考7:在空间直角坐标系Oxyz中,三 个坐标平面将空间分成几个部分? z
y x
知识探究(二)空间直角坐标系中点的坐标
思考1:在平面 直角坐标系中, (x,y) 点M的横坐标、 |y| 纵坐标的含义 如何?