空间直角坐标系(人教A版)

合集下载

数学人教A版选择性必修第一册1.3.1空间直角坐标系

数学人教A版选择性必修第一册1.3.1空间直角坐标系

(-1,-3,-5)
(3)点P(1,3,5)关于原点成中心对称的点的坐标是___________.
(1,0,0)
(4)点P(1,3,5)在x轴上的射影坐标为_________.
点在坐标轴的射影:过点作坐标轴的垂线所得的垂足.
规律:在坐标平面或坐标轴的射影坐标——缺谁谁就为0.
O
2
x
3
y
例题讲解
P18-例1. 如图,在长方体中OABC-O'A'B'C'中,OA=3,OC=4,OD'=2,
z
(2)写出点P(2,3,4)在三个坐标平面内的射影的坐标;
z
(0,3,4)
在Oyz平面内的射影坐标为____________
(2,0,4)
在Oxz平面内的射影坐标为____________
P
(2,3,0)
在Oxy平面内的射影坐标为____________
4
点在平面内的射影:过点作平面的垂线所得的垂足.
作=(如图),
Ԧ
由空间向量基本定理,存在唯一的有序实数组
2
6
3
A(6,3,2)(x, y Nhomakorabea z),使=xԦ
Ԧ +yԦ+z. 把有序实数组(x, y, z)叫做在空间直角坐
Ԧ
标系Oxyz中的坐标,简记作=(x,
Ԧ
y, z).
以坐标原点O为起点的向量 的坐标和终点A的坐标相同。
=(6,3,2)
序实数对(即它的坐标)表示,在空间直角坐标系中是否
也有类似的表示?
新知2.1:空间点和向量的坐标
在空间直角坐标系 Oxyz 中,i,j,k 为坐标向量,对空间任意一

1.3.1空间直角坐标系课件2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册

1.3.1空间直角坐标系课件2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册
的个数是(
A.1
B
)
B.2
C.3
D.4
[解析] 在①中,OP的坐标为 1,2,3 ,故①正确;
在②中,点P关于x轴对称的点的坐标为 1, −2, −3 ,故②错误;
在③中,点P关于原点对称的点的坐标为 −1, −2, −3 ,故③错误;
在④中,点P关于Oxy平面对称的点的坐标为 1,2, −3 ,故④正确.故选B.
= x, y, z
直角坐标系Oxyz中的坐标,可简记作___________.
课前预习
【诊断分析】判断正误.(请在括号中打“√”或“×”)
(1) x, y, z 既可以表示向量,也可以表示点.( √ )
[解析] 空间中的点和向量都可以用有序实数组 x, y, z 表示,符号 x, y, z 具有双
1 1
1
, ,−
2 2
2
所以EF =
因为CG =
.
1
CD,所以GC
4
=
1
DC,
4
又因为H为C1 G的中点,所以GH =
1 1
8 2
GH = 0, ,
.
1
GC1
2
=
1
(GC +
2
CC1 ) =
1
DC
8
+
1
DD1 ,所以
2
课中探究
[素养小结]
用坐标表示空间向量的步骤:
课中探究
探究点三 空间中点的对称问题
课中探究
探究点二 求空间向量的坐标
例2
如图,在空间直角坐标系Oxyz中有一长方体
OABC − O′A′B′C′,且OA = 6,OC = 8,OO′ = 5.

数学人教A版选择性必修第一册1.3.1空间直角坐标系课件

数学人教A版选择性必修第一册1.3.1空间直角坐标系课件

= 2 × (−5) − (−2) = −8, = 2 × 4 − 1 = 7, = 2 × 3 − 4 = 2,
所以3 (−8,7,2).
课堂小结
1.空间向量基本定理:
定理如果三个向量,,不共面,那么对任意一个空间向量,存在唯一的
有序实数组(, , ),使得 = + + .
在空间直角坐标系中的坐标,记作(,,),其中叫做点的横坐标,
叫做点的纵坐标,叫做点的竖坐标.
新知探索
在空间直角坐标系中,给定向量,作 = .由空间向量基本定理,存在
唯一的有序实数组(,,),使 = + + .
有序实数组(,,)叫做在空间直角坐标系中的坐标,上式可简记作 =
例析
例1.如图,在长方体 − ’ ’ ’ ’ 中, = 3, = 4,

1
1
1
2,以{ , , ’ }为单位正交基底,建立的空间直角坐标系.
(1)写出’ ,,’ ,’ 四点的坐标;
(2)写出向量’ ’ ,’ ,’ ’ , ’ 的坐标.
理解平面直角坐标系:如图,在平面内选定一点和一个
单位正交基底{,},以为原点,分别以,的方向为正
方向、以它们的长为单位长度建立两条数轴:轴、轴,
那么我们就建立了一个平面直角坐标系.
新知探索
类似地,在空间选定一点 和一个单位正交基底 {,,} ,
以点为原点,分别以,,的方向为正方向、以它们的
来的相反数,所以对称点为1 (−2, − 1, − 4).
(2)由于点关于平面对称后,它在轴、轴的分量不变,在轴的分量变为
原来的相反数,所以对称点为2 (−2,1, − 4).
(3)设对称点3 (,,)为,则点为线段3 的中点,由中点坐标公式,可得

空间直角坐标系教案

空间直角坐标系教案

【课题】4.3.1空间直角坐标系【教材】人教A版普通高中数学必修二第134页至136页.【课时安排】1个课时.【教学对象】高二〔上〕学生.【授课教师】***一.教材分析:本节内容主要引入空间直角坐标系的根本概念,是在学生已学过的二维平面直角坐标系的根底上进展推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的根底。

空间直角坐标系的知识是空间解析几何的根底,与平面解析几何的内容共同表达了"用代数方法解决几何问题〞的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形严密结合,提供一个度量几何对象的方法。

其对于沟通高中各局部知识,完善学生的认知构造,起到了很重要的作用。

二.教学目标:✧知识与技能(1)能说出空间直角坐标系的构成与特征;(2)掌握空间点的坐标确实定方法和过程;(3)能初步建立空间直角坐标系。

✧过程与方法(1)结合具体问题引入,诱导学生自主探究;. z.(2)类比学习,循序渐进。

情感态度价值观(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。

(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。

(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。

三.教学重点与难点:教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。

教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。

四.教学方法:启发式教学、引导探究五.教学根本流程:↓. z.六.教学情境设计:. z.〔二〕引导探究,动手实践约6分钟思考:借助于平面直角坐标系,我们就可以用坐标来表示平面上任意一点的位置,则能不能仿照直角坐标系的方式来表示空间上任意一点的位置呢?不妨动手试一试……思路点拨:通过在地面上建立直角坐标系*Oy,则地面上任一点的位置可以用一对有序实数对〔*,y〕确定。

1.3.1空间直角坐标系(教学教学设计)-高二数学同步备课系列(人教A版2019选择性必修第一册)

1.3.1空间直角坐标系(教学教学设计)-高二数学同步备课系列(人教A版2019选择性必修第一册)
- 参与课堂活动:积极参与小组讨论,体验空间直角坐标系的实际应用。
- 提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
教学方法/手段/资源:
- 讲授法:通过详细讲解,帮助学生理解空间直角坐标系的基本概念和性质。
- 实践活动法:设计小组讨论,让学生在实际操作中加深对坐标系的理解。
- 合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
在能力方面,学生已经具备了一定的逻辑推理能力和数学抽象能力。他们能够通过例题解析和实际问题解决,运用逻辑推理方法,掌握空间直角坐标系的运算规则和解题方法。然而,空间想象能力是学生在学习空间直角坐标系时面临的一大挑战。空间直角坐标系是一个三维的概念,学生需要具备良好的空间想象能力,才能更好地理解和运用空间直角坐标系。
r = √(x^2 + y^2 + z^2)
其中,r表示点P到原点O的距离。
4. 坐标点的坐标应用
①坐标应用的定义:坐标应用是指在空间直角坐标系中,利用坐标点的坐标值进行实际应用的过程。
作用与目的:
- 帮助学生深入理解空间直角坐标系的基本概念和性质,掌握其在数学中的应用。
- 通过实践活动,培养学生的动手能力和解决问题的能力。
- 通过合作学习,培养学生的团队合作意识和沟通能力。
3. 课后拓展应用
教师活动:
- 布置作业:根据空间直角坐标系的性质和应用,布置适量的课后作业,巩固学习效果。
教学实施过程
1. 课前自主探索
教师活动:
- 发布预习任务:通过在线平台或班级微信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
- 设计预习问题:围绕空间直角坐标系的概念和性质,设计一系列具有启发性和探究性的问题,引导学生自主思考。

高一数学人教版A版必修二课件:4.3.1 空间直角坐标系

高一数学人教版A版必修二课件:4.3.1 空间直角坐标系

答案
1.空间直角坐标系及相关概念 (1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长 度的数轴:x轴、y轴、z轴,这样就建立了一个 空间直角坐标系Oxyz . (2)相关概念:点O 叫做坐标原点,x轴、y轴、z轴 叫做坐标轴,通过 每 两个坐标轴 的平面叫做坐标平面,分别称为xOy平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x轴 的正方向,食指指向 y轴 的正 方向,如果中指指向 z轴 的正方向,则称这个坐标系为右手直角坐标系.
解析答案
5.如图,正四棱柱ABCD-A1B1C1D1(底面为正方形的直 棱柱)中,|AA1|=2|AB|=4,点E在CC1上且|C1E|=3|EC|. 试建立适当的坐标系,写出点B,C,E,A1的坐标. 解 以点D为坐标原点,射线DA,DC,DD1 为x轴、y轴、z轴的正半轴, 建立如图所示的空间直角坐标系Dxyz. 依题设, B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).
高效学习模型-内外脑模型
2
内脑-思考内化
思 维 导 图 &超 级 记 忆 法 &费 曼 学 习 法
1
外脑-体系优化
知 识 体 系 &笔 记 体 系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆规律
记忆前
选择记忆的黄金时段 前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
类型一 求空间点的坐标 例1 (1)如图,在长方体ABCD-A1B1C1D1中,|AD|=|BC|=3,|AB|=5, |AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.

4.3.《空间直角坐标系》课件(新人教A版必修2)

4.3.《空间直角坐标系》课件(新人教A版必修2)
O x x O x
思考2:平面直角坐标系由两条互相 垂直的数轴组成,设想:空间直角 坐标系由几条数轴组成?其相对位 置关系如何?在平面上如何画空间 直角坐标系? z 三条交于一点且两 两互相垂直的数轴 ∠xOy=135° ∠yOz=90°
O
y
x
思考3:在长方体中,如何建立直角坐标系?
OABC D A B C 是长方体.以O为原点,分别以 如图, 射线OA,OC, OD ' 的方向为正方向,,建立三条数轴:x轴、 y 轴、z 轴.这时我们说建立了一个空间直角坐标 O xyz, 其中点O 叫做坐标原点, x轴、y 轴、z 轴叫做坐标轴.通过 每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、 yOz平面、zOx平面.
知识探究(二)空间直角坐标系中点的坐标
思考1:在平面直角坐标系中,点M的 横坐标、纵坐标的含义如何?
(x,y)
|x| |y|
y
O
x
思考2:怎样确定空间中点M的坐标?
设点M是空间的一个定点,过点M分别作 垂直于x 轴、y 轴和z 轴的平面,依次交x 轴、 y 轴和z 轴于点P、Q和R. 设点P、Q和R在x 轴、y 轴和z 轴上的坐 标分别是x,y和zz ,那么点M就对应唯一确定 的有序实数组(x,y,z).
设想:空间直角坐标系由几条数轴组成?其相对位 置关系如何?在平面上如何画空间直角坐标系? C1 思考3:在长方体中,如何建立直角坐标系? D1 思考4:什么是右手直角坐标系? A1 B1
思考5:怎样确定空间中点
O A B
C
M的坐标?
知识探究(一):空间直角坐标系
思考1:数轴上的点M的坐标用一个实 数x表示,它是一维坐标;平面上的 点M的坐标用一对有序实数(x,y) 表示,它是二维坐标.设想:对于空 间中的点的坐标,需要几个实数表 示? (x,y) y

高中数学人教A版 选择性必修一第一章 1.3.1 空间直角坐标系

高中数学人教A版 选择性必修一第一章 1.3.1 空间直角坐标系

2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向 x轴 的正方向,食指指向 y轴 的正方 向,如果中指指向 z轴 的正方向,则称这个坐标系为右手直角坐标系.
思考 空间直角坐标系有什么作用? 答案 可以通过空间直角坐标系将空间点、直线、平面数量化,将空间位置 关系解析化.
知识点二 空间一点的坐标
由平面几何知识知 FM=12,FN=12, 故 F 点坐标为12,12,0. 因为 CG=14CD,G,C 均在 y 轴上,
故 G 点坐标为0,34,0. 由 H 作 HK⊥CG,可得 DK=78,HK=21, 故 H 点坐标为0,78,12. (答案不唯一)
二、空间点的对称问题
例2 在空间直角坐标系中,已知点P(-2,1,4). (1)求点P关于x轴对称的点的坐标;
(3)求点P关于点M(2,-1,-4)对称的点的坐标.
解 设对称点为P3(x,y,z),则点M为线段PP3的中点, 由中点坐标公式,可得x=2×2-(-2)=6, y=2×(-1)-1=-3,z=2×(-4)-4=-12, 所以P3的坐标为(6,-3,-12).
A(x,y,z) ,其中 x 叫做点A的横坐标, y 叫做点A的纵坐标, z 叫做点A的竖
坐标.
思考 空间直角坐标系中,坐标轴上的点的坐标有何特征? 答案 x轴上的点的纵坐标、竖坐标都为0,即(x,0,0). y轴上的点的横坐标、竖坐标都为0,即(0,y,0). z轴上的点的横坐标、纵坐标都为0,即(0,0,z).
反思 感悟
(1)建立空间直角坐标系的原则 ①让尽可能多的点落在坐标轴上或坐标平面. ②充分利用几何图形的对称性. (2)求某点M的坐标的方法 作MM′垂直平面xOy,垂足M′,求M′的横坐标x,纵坐标y, 即点M的横坐标x,纵坐标y,再求M点在z轴上射影的竖坐标z,即 为M点的竖坐标z,于是得到M点的坐标(x,y,z).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间直角坐标系(人教A版)
一、单选题(共10道,每道10分)
1.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则点Q的坐标为( )
A. B.
C. D.
2.在空间直角坐标系中,点A(1,-1,1)与点B(-1,-1,-1)关于( )对称.
A.x轴
B.y轴
C.z轴
D.原点
3.如图,在空间直角坐标系中,正方体的棱长为1,,则点E的坐标为( )
A. B.
C. D.
4.设点P(a,b,c)关于原点的对称点为,则=( )
A. B.
C. D.
5.设点P在x轴上,它到的距离为到点的距离的2倍,则点P的坐标为( )
A.(0,1,0)或(0,0,1)
B.(0,-1,0)或(0,0,1)
C.(1,0,0)或(0,-1,0)
D.(1,0,0)或(-1,0,0)
6.已知A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时,x的值为( )
A.19
B.
C. D.
7.如图所示,在空间直角坐标系中,有一棱长为a的正方体,的中点E与AB的中点F的距离为( )
A. B.
C.a
D.
8.如图,△PAB是正三角形,四边形ABCD是正方形,|AB|=4,O是AB的中点,平面PAB⊥平面ABCD,以直线AB为x轴、以过点O且平行于AD的直线为y轴、以直线OP为z轴建立如图所示的空间直角坐标系Oxyz,E为线段PD的中点,则点E的坐标是( )
A. B.
C. D.
9.点P(x,y,z)满足,则点P在( )
A.以点(1,1,-1)为圆心,以2为半径的圆上
B.以点(1,1,-1)为中心,以2为棱长的正方体上
C.以点(1,1,-1)为球心,以2为半径的球面上
D.无法确定
10.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( )
A. B.
C. D.。

相关文档
最新文档