数列求和练习题-2023届高三数学一轮复习
高考数学一轮复习《数列求和》练习题(含答案)

高考数学一轮复习《数列求和》练习题(含答案)一、单选题1.已知数列{}n a 满足()213nn n a a ++-=,11a =,22a =,数列{}n a 的前n 项和为n S ,则30S =( ) A .351 B .353C .531D .5332.已知)*n a n N =∈,则12380a a a a +++⋅⋅⋅+=( ) A .7B .8C .9D .103.已知数列{}n a 满足11a =,()111n n na n a +=++,令nn a b n=,若对于任意*N n ∈,不等式142t n b +<-恒成立,则实数t 的取值范围为( ) A .3,2⎛⎤-∞- ⎥⎝⎦B .(],1-∞-C .(],0-∞D .(],1-∞4.数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-5.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数.已知数列{}n a 满足21a =,且121(1)2n n n n a na +++-=,若[]lg n n b a =数列{}n b 的前n 项和为n T ,则2021T =( ) A .3950B .3953C .3840D .38456.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .101010117.已知数列{}n a 的前n 项和为n S ,且满足12πcos 3n n n n a a a ++++=,11a =,则2023S =( )A .0B .12C .lD .328.已知函数0()e ,xf x x =记函数()n f x 为(1)()n f x -的导函数(N )n *∈,函数()n y f x =的图象在1x =处的切线与x 轴相交的横坐标为n x ,则11ni i i x x +==∑( )A .()132n n ++B .()33nn +C .()()23nn n ++D .()()123n n n +++9.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .4040202110.执行如图所示的程序框图,则输出S 的值为( )A .20202019B .20212020C .20192020D .2020202111.已知数列{an }的前n 项和Sn 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为Tn ,n ∈N *.则使得T 20的值为( ) A .1939B .3839C .2041D .404112.已知数列{}n a 满足()22N n n n a a n *++=∈,则{}n a 的前20项和20S =( )A .20215-B .20225-C .21215-D .21225-二、填空题13.等差数列{}n a 中,11a =,59a =,若数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则10S =___________. 14.已知数列{}n a 满足,()2*111,(1)2,n n n a a a n n n N -=--=-⋅≥∈,则20a =__________.15.在等差数列{}n a 中,72615,18a a a =+=,若数列{}(1)nn a -的前n 项之和为n S ,则100S =__________.16.若数列{}n a 满足()1*1(1)2n n n n a a n ++=-+∈N ,令1351924620,S a a a a T a a a a =++++=++++,则=TS__________.三、解答题17.设n S 为等差数列{}n a 的前n 项和,且32a =,47S =. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .18.已知数列{}n a 的前n 项和22n S n n =+. (1)求{}n a 通项公式; (2)设11n n n b a a +=,{}n b 的前n 项和为n T ,求n T .19.已知数列{}n a 满足111,2n n a a a +==,数列{}n b 满足*111,2,n n b b b n +=-=∈N .(1)求数列{}n a 及{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n S .20.已知数列{}n a 的首项113a =,且满足1341n n n a a a +=+. (1)证明:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列.(2)若12311112022na a a a ++++<,求正整数n 的最大值.21.已知数列{}n a 满足:11a =,121n n a a n +=+-. (1)设n n b a n =+,证明:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .22.已知递增数列{}n a 的前n 项和为n S ,且22n n S a n =+,数列{}n b 满足1142,4b a b a ==,221,.n n n b b b n N *++=∈(1)求数列{}n a 和{}n b 的通项公式;(2)记21(67),83log ,nnn n n b n S c b n +-⎧⎪-=⎨⎪⎩为奇数为偶数,数列{}n c 的前2n 项和为2n T ,若不等式24(1)41n nn T n λ-+<+对一切n N *∈恒成立,求λ的取值范围.23.设正项数列{}n a 的前n 项和为n S ,11a =,且满足___________.给出下列三个条件: ①48a =,()112lg lg lg 2n n n a a a n -+=+≥;②()1n n S pa p =-∈R ;③()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R .请从其中任选一个将题目补充完整,并求解以下问题: (1)求数列{}n a 的通项公式;(2)设()22121log n n b n a =+⋅,n T 是数列{}n b 的前n 项和,求证:1132n T ≤<.24.已知数列{}n a 的各项均为正整数,11a =.(1)若数列{}n a 是等差数列,且101020a <<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S ;(2)若对任意的*n ∈N ,都有2112112n n n n a a a a +++-<+,求证:12n na a +=参考答案1.B2.B3.D4.D5.D6.C7.C8.B9.B10.D11.C12.D 13.102114.210 15.100 16.2317.(1)设等差数列{}n a 的公差为d ,由32a =,47S =,可得1122,43472a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111,2a d ==, 所以数列{}n a 的通项公式为()111122n n a n +=+-=. (2)由(1)知12n n a +=,则11221141212n n n b a a n n n n +⎛⎫==⋅=- ⎪++++⎝⎭, 故111111114442233412222n T n n n n ⎛⎫⎛⎫=-+-++-=-=- ⎪ ⎪++++⎝⎭⎝⎭. 18.(1)当2n ≥时,2212(1)2(1)21n n n a S S n n n n n --=+----=+=, 当1n =时,由113a S ==,符合上式.所以{}n a 的通项公式为21n a n =+. (2)∵21n a n =+, ∴()()111111212322123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭, ∴1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦111232369n n n ⎛⎫=-= ⎪++⎝⎭. 19.(1)由已知111,2n n a a a +==所以数列{}n a 是以1为首项,2为公比的等比数列,12n n a -=数列{}n b 满足111,2n n b b b +=-=所以{}n b 是以1为首项,2为公差的等差数列 21n b n =-(2)()11132212n n S n -=⨯+⨯++-①对上式两边同乘以2,整理得()221232212n n S n =⨯+⨯++-②①-②得()()2112222212n n n S n --=++++--()()12121221212n n n --=+⨯---()2323n n =---所以()2323nn S n =⋅-+20.(1)易知{}n a 各项均为正,对1341n n n a a a +=+两边同时取倒数得1111433n n a a +=⋅+, 即1111223n n a a +⎛⎫-=- ⎪⎝⎭,因为1121a -=,所以数列12n a ⎧⎫-⎨⎬⎩⎭是以1为首项,13为公比的等比数列.(2)由(1)知11111233n n n a --⎛⎫-==⎪⎝⎭,即11123n n a -=+, 所以()12311311113122112313n n n f n n n a a a a ⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭=++++=+=+- ⎪⎝⎭-, 显然()f n 单调递增,因为()10101011313110102021.52022,(1011)2023.520222323f f =-<=-⋅>,所以n 的最大值为1010. 21.(1)数列{}n a 满足:11a =,121n n a a n +=+-. 由n n b a n =+,那么111n n b a n ++=++, ∴1112112n n n n n n b a n a n n b a n a n+++++-++===++; 即公比2q,1112b a =+=,∴数列{}n b 是首项为2,公比为2的等比数列;(2)由(1)可得2nn b =,∴2nn a n +=,那么数列{}n a 的通项公式为:2nn a n =-,数列{}n a 的前n 项和为232122232nn S n =-+-+-+⋅⋅⋅+-()2121222(123)2222nn n n n +=++⋅⋅⋅+-+++⋅⋅⋅+=---.22.(1)解:因为22n n S a n =+,当n =1时,得11a =,当2n ≥时,21121n n S a n --=+-,所以22121n n n a a a -=-+,即221(1)n n a a -=-,又因为数列{}n a 为递增数列,所以11n n a a --=, 数列{}n a 为等差数列, 11a =,d =1, 所以n a n =;所以1142841,b a b a ====, 又因为221,.n n n b b b n N *++=∈ 所以数列{}n b 为等比数列,所以33418b b q q ===,解得2q,所以12n n b -=.(2)由题意可知:(1)2n n n S +=, 所以()2167,83log ,n n n n n b n c S b n +⎧-⎪=-⎨⎪⎩为奇数为偶数,故2(67)2,443,n n n n c n n n n -⎧-⎪=+-⎨⎪⎩1为奇数为偶数 , 设{}n c 的前2n 项和中,奇数项的和为n P ,偶数项的和为n Q 所以135212462=,=,n n n n P c c c c Q c c c c -++++++++当n 为奇数时,()()2)2123(67)2(67222=,4432321n n n n n n n c n n n n n n --+----==-+-++-1111所以42220264135221222222==5195132414329n n n n P n c c c n c --⎛⎫⎛⎫⎪+⎛⎫⎛⎫++++-+-+-++ ⎪ ⎪⎭-- ⎪ ⎝⎝⎭⎝⎭⎝⎭0,44411=412=1n nn n --++ 当n 为偶数时n c n =,所以()()246222==246212n n n nQ c c c c n n n +++++++++==+,故()2,4=4=111n n n n T n n P Q n -++++故24(1)41n nn T n λ-+<+,即()()111144(1)(1)4141n nnn n n n n n n λλ-+<-+-++⇒-+<++当n 为偶数时,21n n λ<+-对一切偶数成立,所以5λ<当n 为奇数时,21n n λ<+--对一切奇数成立,所以此时1λ>- 故对一切n N *∈恒成立,则15λ-<< 23.(1)若选①,因为()112lg lg lg 2n n n a a a n -+=+≥,所以()2112n n n a a a n -+=≥,所以数列{}n a 是等比数列设数列{}n a 的公比为q ,0q >由33418a a q q ===得2q所以12n n a -=若选②,因为()1n n S pa p =-∈R ,当1n =时,1111S pa a =-=,所以2p =,即21n n S a =- 当2n ≥时,1122n n n n n a S S a a --=-=-,所以()122n n a a n -=≥ 所以数列{}n a 是以1为首项,2为公比的等比数列所以12n n a -=若选③,因为()()12323412nn a a a n a kn k +++⋅⋅⋅++=⋅∈R ,当1n =时,11222a k =⋅=,所以1k =,即()12323412n n a a a n a n +++⋅⋅⋅++=⋅当2n ≥时,()1123123412n n a a a na n --+++⋅⋅⋅+=-⋅,所以()()()11122n n n a n n -+=+⋅≥,即()122n n a n -=≥,当1n =时,上式也成立,所以12n n a -=(2) 由(1)得()()()221111121log 212122121n n b n a n n n n ⎛⎫===- ⎪+⋅+⋅--+⎝⎭所以()111111111233521212221n T n n n ⎛⎫=-+-+⋅⋅⋅+-=- ⎪-++⎝⎭ ∵*N n ∈,∴()10221n >+,∴()11122212n T n =-<+ 易证*n ∈N 时,()112221n T n =-+是增函数,∴()113n T T ≥=.故1132n T ≤<24.(1)解:设数列{}n a 的公差为d ,由10101920a d <=+<,可得1919d <<, 又由数列{}n a 的各项均为正整数,故2d =,所以21n a n =-, 于是()()()111111221212121n n a a n n n n +==--+-+,所以111111111121335212122121n nS n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪-+++⎝⎭⎝⎭. (2)解:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+,于是()211112122112n n n n n n n n n n a a a a a a a a a a +++++-=-≥-++, 又因为21121<12n n n n a a a a +++-+,所以121n n a a +-<, 由题意12n na a +-为整数,所以只能120n n a a +-=,即12n n a a +=。
一轮复习大题专练30—数列(讨论奇偶求和)-2022届高三数学一轮复习

一轮复习大题专练30—数列(讨论奇偶求和)1.设{}n a 是公差不为0的等差数列,11a =,4a 是2a 和8a 的等比中项,数列{}n b 的前n 项和为n S ,且满足*322()n n b S n N -=∈.(1)求{}n a 和{}n b 的通项公式;(2)对任意的正整数n ,设2,,n n na n cb n +⎧=⎨⎩为奇数为偶数,求数列{}n c 的前21n +项和.解:(1)设等差数列{}n a 的公差为d ,因为11a =,4a 是2a 和8a 的等比中项,所以2428a a a =⋅,即2(13)(1)(17)d d d +=++,解得1d =或0d =.又因为0d ≠,所以1d =.所以1(1)1n a n n =+-⨯=.因为*322()n n b S n N -=∈,所以,当2n时,11322n n b S ---=,所以113()2()0n n n n b b S S -----=,所以13()20n n n b b b ---=,即13(2)nn b n b -= .当1n =时,11322b S -=,又因为11S b =,所以12b =,所以数列{}n b 是以2为首项、3为公比的等比数列.所以11123n n n b b q --=⋅=⨯.(2)因为()()1223n n n n c n -⎧+⎪=⎨⨯⎪⎩为奇数为偶数,故数列{}n c 的前21n +项和为2113521221(1)(323)6(19)93(35723)2(3333)421944n n n n n n T n n n +-++++-=++++++++++=+=+++- .2.设等差数列{}n a 的前n 项和为n S ,且等比数列{}n b 的前n 项和为n T ,满足112a b =,26S =,312S =,123b b +=.(1)求{}n a ,{}n b 的通项公式;(2)求满足条件的最小正整数k ,使得对*()n k n N ∀∈不等式1n n T S + 恒成立;解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由112a b =,26S =,312S =,123b b +=,可得126a d +=,13312a d +=,解得12a =,2d =,所以11b =,22b =,212b q b ==,所以2n a n =,12n n b -=;(2)由(1)可得21(22)2n S n n n n =+=+,122112n n n T -==--,1n n T S + 即为22n n n +,当1n =时,12n n T S +==;当24n时,1n n T S +<;当5n时,0122222()2n n n n C C C n n n n ++=++>+ ,所以满足条件的最小正整数k 为5;(3)22212122222221212111()(1)(1)(21)(21)32121n n n n nn n n n b C b b ------+===-++++++,所以132122221111111111...(...)()32551721213221n n n n c c c --+++=-+-++-=-+++;22218(4n n n n a C n b ==⋅,则2242111...816()...8(444n n c c c n +++=⋅+⋅++⋅,2312421111(...)8()16(...8(4444n n c c c n ++++=⋅+⋅++⋅,两式相减可得212423111(...)28[()...()]8()4444n n n c c c n ++++=+++-⋅1111(1)1164288()1414n n n -+-=+⋅-⋅-,化简可得124232321281...(()9394n n c c c n ++++=-+⋅,所以数列{}n c 的前2n 项和为121113232128167832111()()((()3221939418394341n n n nn n +-+-+⋅=-+⋅-⋅++.3.已知数列{}n a 满足11a =,11,,2,nn n a n a a n ++⎧=⎨+⋅⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.解:(1)因为11a =,11,2,n n na n a a n ++⎧=⎨+⎩为奇数为偶数,所以2112a a =+=,3224a a =+=,4315a a =+=,所以122b a ==,245b a ==,12222212122123n n n n n n n n b b a a a a a a ------=-=-+-=+=,2n,所以数列{}n b 是以12b =为首项,以3为公差的等差数列,所以23(1)31n b n n =+-=-.(2)由(1)可得231n a n =-,*n N ∈,则212223(1)1232n n a a n n --=+=--+=-,2n,当1n =时,11a =也适合上式,所以2132n a n -=-,*n N ∈,所以数列{}n a 的奇数项和偶数项分别为等差数列,则{}n a 的前20项和为122013192420109109...()()103102330022a a a a a a a a a ⨯⨯+++=++⋯++++⋯+=+⨯+⨯+⨯=.4.已知数列{a n }满足a n +2=a n +d (d ∈R ,d ≠1),n ∈N *,a 1=1,a 2=1,且a 1,a 2+a 3,a 8+a 9成等比数列.(Ⅰ)求d 的值和{a n }的通项公式;(Ⅱ)设,求数列{b n }的前2n 项和T 2n .解:(Ⅰ)数列{a n }满足a n +2=a n +d (d ∈R ,d ≠1),所以a 3=a 1+d ,a 8=a 6+d =a 2+3d ,a 9=a 1+4d ,所以a 2+a 3=a 1+a 2+d ,由于a 1=1,a 2=1,所以a 2+a 3=2+d ,a 8+a 9=2+7d ,且a 1,a 2+a 3,a 8+a 9成等比数列,所以,整理得d =1或2(1舍去).故a n +2=a n +2,所以n 为奇数时,a n =n ,n 为偶数时,a n =n ﹣1.所以数列{a n }的通项公式为.(Ⅱ)由于,所以.所以T 2n =b 1+b 2+...+b 2n =﹣20×12+20×22﹣22×32+22×42+...+[﹣22n ﹣2•(2n ﹣1)2]+22n﹣2•(2n )2,=20×(22﹣12)+22×(42﹣32)+...+22n ﹣2•[(2n )2﹣(2n ﹣1)2].=20×3+22×7+...+22n ﹣2•(4n ﹣1)①,所以,②,①﹣②得:﹣3T 2n =20×3+22×4+...+22n ﹣2×4﹣22n ×(4n ﹣1),=3+4×﹣22n ×(4n ﹣1),=,所以.5.已知等差数列{}n a 满足212a a =,459a a +=,n S 为等比数列{}n b 的前n 项和,122n n S S +=+.(1)求{}n a ,{}n b 的通项公式;解:(1)(基本量法求等差等比通项)等差数列{}n a 的公差设为d ,212a a =,459a a +=,可得112a d a +=,1279a d +=,解得11a d ==,可得n a n =;由122n n S S +=+得122n n S S -=+,2n,两式相减整理得12n n b b +=,可得公比12q =,由11112()22b b b +=+,解得11b =,∴112n n b -=;(2)证法1:(应用放缩和错位相减求和证明不等式)122331,,44211,,n n n n na b n n n c n n a n -⎧⎧⋅⎪⎪⎪⎪==⎨⎨⎪⎪⎪⎪⎩⎩为奇数为奇数为偶数为偶数,123n n C c c c c =+++⋯+,1321k k A c c c -=++⋯+,242k k B c c c =++⋯+,0131321(4444k k k A --=++⋯+,2131321(44444k kk A -=++⋯+,两式相减整理得12311(1)331112132124(1(1)14428244414k k k k k k k A -----=+++⋯+-=+--,可得55110(23346k k A k =-+<,又因为2(2)(21)(21)k k k >-+,∴222111*********()24(2)21335212126k B k k k =++⋯+<-+-+⋯-<=-+.所以222111324(2)6k B k =++⋯+<,∴10313666n k kC A B =+<+=.证法2:(应用放缩和裂项求和证明不等式)令11()4n n d an b -=+,11214n n n n d d +--=-化简整理得:1841()394nn d n -=-+,∴1155110(2)3346k k k A d d k +=-=-+<,222211*********1231223(1)n T n n n n =+++⋯+<+++⋯=-<⨯⨯-⨯,22221111111224(2)242n T n n =++⋯+<-<,所以222111324(2)6k B k =++⋯+<,∴10313666n k kC A B =+<+=.。
2022版高考数学一轮复习第7章第4讲数列求和数列的综合应用训练含解析

第七章 第4讲[A 级 基础达标]1.在数列{a n }中,a 1=1,a n +1=3a n +2n -1,则数列{a n }的前100项和S 100为( ) A .399-5 051 B .3100-5 051 C .3101-5 051 D .3102-5 051【答案】B2.(2020年唐山月考)已知等差数列{a n }的公差不为零,其前n 项和为S n ,若S 3,S 9,S 27成等比数列,则S 9S 3等于( )A .3B .6C .9D .12【答案】C3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400【答案】B4.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( ) A .22 016-1 B .3·21 008-3 C .3·21 008-1 D .3·21 007-2 【答案】B5.(2020年广州天河区一模)一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .a (1+r )17B .ar [(1+r )17-(1+r )]C .a (1+r )18D .ar [(1+r )18-(1+r )]【答案】D 【解析】根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为a (1+r )17,同理,孩子在2周岁生日时存入的a 元产生的本利合计为a (1+r )16,孩子在3周岁生日时存入的a 元产生的本利合计为a (1+r )15,…,孩子在17周岁生日时存入的a 元产生的本利合计为a (1+r ),题目所求可以看成是以a (1+r )为首项,(1+r )为公比的等比数列的前17项的和,此时S =a (1+r )17+a (1+r )17+…+a (1+r )=a (1+r )[(1+r )17-1]1+r -1=ar [(1+r )18-(1+r )]. 6.(2020年池州模拟)正项等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,则公比q =________.【答案】3 【解析】q =1时,不合题意,q ≠1时,由S 3=a 2+10a 1,得a 1(1-q 3)1-q =a 1q+10a 1,所以1+q +q 2=q +10.又q >0,所以q =3.7.已知{a n }的前n 项和S n =n 2-9n -1,则|a 1|+|a 2|+…+|a 30|的值为________. 【答案】671 【解析】{a n }的前n 项和S n =n 2-9n -1,可得n =1时,a 1=S 1=-9;n ≥2时,a n =S n -S n -1=n 2-9n -1-(n -1)2+9(n -1)+1=2n -10,可得n ≤5时,a n <0,n ≥6时,a n >0,可得|a 1|+|a 2|+…+|a 30|=S 30-S 5-S 5=900-270-1-2×(25-45-1)=671.8.设f (x )=4x 4x +2,利用倒序相加法,可求得f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011的值为________. 【答案】5 【解析】当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+2×(4x 1+4x 2)4x 1+x 2+2×(4x 1+4x 2)+4=1.设S =f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011,倒序相加有2S =⎣⎡⎦⎤f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011+⎣⎡⎦⎤f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911+…+⎣⎡⎦⎤f ⎝⎛⎭⎫1011+f ⎝⎛⎭⎫111=10,即S =5.9.(2020年大庆月考)已知正项等差数列{a n }的前n 项和为S n ,若S 3=12,且2a 1,a 2,a 3+1成等比数列.(1)求{a n }的通项公式及S n ;(2)记b n =S nn,求数列{b n }的前n 项和T n .解:(1)设正项等差数列{a n }的公差为d ,则d >0.因为S 3=12,即a 1+a 2+a 3=12, 所以3a 2=12,所以a 2=4.又2a 1,a 2,a 3+1成等比数列,所以 a 22=2a 1·(a 3+1),即42=2(4-d )·(4+d +1). 解得d =3或d =-4(舍去),所以a 1=a 2-d =1.故{a n }的通项公式为a n =a 1+(n -1)d =3n -2,且S n =n (a 1+a n )2=3n 2-n2.(2)由(1)知b n =S n n =3n -12,所以b n +1-b n =3(n +1)-12-3n -12=32,且b 1=3×1-12=1.所以数列{b n }是以b 1=1为首项,32为公差的等差数列.所以数列{b n }的前n 项和为T n =n (b 1+b n )2= 3n 2+n4.10.(2020年哈尔滨期末)设等差数列{a n }的前n 项和为S n ,若S 9=81,a 3+a 5=14. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求{b n }的前n 项和为T n .解:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧9a 1+9×82d =81,a 1+2d +a 1+4d =14,解得⎩⎨⎧a 1=1,d =2.所以a n =a 1+2(n -1)=2n -1. (2)由于a n =2n -1,所以b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以T n =12⎝⎛ 1-13+13-15+…+12n -1-⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.[B 级 能力提升]11.(2020年蚌埠模拟)数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为( )A .nn +2B .2n n +2 C .n n +1D .2n n +1【答案】B 【解析】a n =1+2+3+…+n n =12(n +1),1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,可得数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为4⎝⎛⎭⎫12-13+13-14+…+1n +1-1n +2=4⎝⎛⎭⎫12-1n +2=2n n +2.12.(多选)(2020年菏泽模拟)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( )A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2 019=a 2 020D .a 21+a 22+…+a 22 019a 2 019=a 2 020【答案】ABCD 【解析】对A ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,可得a 6=8成立;对B ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,可得a 6=8,a 7=13,所以s 7=1+1+2+3+5+8+13=33成立;对C ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,…,a 2 019=a 2 020-a 2 018,可得a 1+a 3+a 5+…+a 2 019=a 2 020,故a 1+a 3+a 5+…+a 2 019是斐波那契数列中的第2 020项,C成立;对D ,斐波那契数列总有a n +2=a n +1+a n ,则a 21=a 2a 1,a 22=a 2(a 3-a 1)=a 2a 3-a 2a 1,a 23=a 3(a 4-a 2)=a 3a 4-a 3a 2,…,a 22 018=a 2 018a 2 019-a 2 018a 2 017,a 22 019=a 2 019a 2 020-a 2 019a 2 018.所以a 21+a 22+…+a 22 019=a 2 019a 2 020,D 成立.故选ABCD .13.在正项数列{a n }中,a 1=2,其前n 项和S n 满足S n +S n -1=12a 2n(n ≥2),若数列b n =(-1)n ·2n +1S n,则数列{b n }的前2 020项和为________.【答案】-2 0202 021 【解析】在正项数列{a n }中,a 1=2,其前n 项和S n 满足S n +S n -1=12a 2n (n ≥2),可得S n -1+S n -2=12a 2n -1,相减可得a n +a n -1=12a 2n -12a 2n -1,化为a n -a n -1=2.n =2时,2+2+a 2=12a 22,可得a 2=4,则a n =2n ,S n =n (n +1),b n =(-1)n ·2n +1S n =(-1)nn +n +1n (n +1)=(-1)n ⎝⎛⎭⎫1n +1n +1.可得数列{b n }的前2 020项和为-⎝⎛⎭⎫1+12+12+13+…-12 019-12 020+12 020+12 021=-1+12 021=-2 0202 021.14.(一题两空)(2020年北京模拟)已知集合A ={x |x =a 3×30+a 2×3-1+a 1×3-2+a 0×3-3},其中a k ∈{0,1,2},k =0,1,2,3,将集合A 中的元素从小到大排列得到数列{b n },设{b n }的前n 项和为S n ,则b 3=________,S 15=________.【答案】19 28027 【解析】由题意可知b 3=0×30+0×3-1+1×3-2+0×3-3=19.a 0,a 1,a 2,a 3各有3种取法(均可取0,1,2).在前15项中,a 0,a 1,a 2,a 3全部为0,有1个数值;只有1个1,其余取0,共有4个数值;2个取1,2个取0,共有6个数值;3个取1,1个取0,共有4个数值.此时集合A 中,元素从小到大排列得到数列恰好是15个,而且a 0,a 1,a 2,a 3各取1的次数都是7次,由分类计数原理得集合A 中所有元素之和S 15=7×(30+3-1+3-2+3-3)=28027. 15.(2020年韶关期末)已知等差数列{a n }的前n 项和为S n ,且a 2=3,S 6=36. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1a 2n +4n -2(n ∈N*),求数列{bn }的前n 项和T n .【答案】解:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =3,S 6=6a 1+6×52d =36,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =1+2(n -1)=2n -1.(2)由(1)得,数列{b n }满足b n =1a 2n +4n -2=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,则T n =12⎝⎛ 1-13+13-15+…+12n -1-⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.16.(2020年杭州模拟)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=30,2S 2是3S 1和S 3的等差中项.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1+log 3a na n,求数列{b n }前n 项和T n .解:(1)设等比数列{a n }的公比为q ,由a 1+a 3=30,2S 2是3S 1和S 3的等差中项,可得a 1+a 1q 2=30,4S 2=3S 1+S 3,即有4(a 1+a 1q )=3a 1+a 1+a 1q +a 1q 2,解得a 1=q =3,则a n =3n (n∈N *).(2)b n =1+log 3a na n=1+log 33n3n=(2n +1)·⎝⎛⎭⎫13n , 前n 项和T n =3×13+5×19+7×127+…+(2n +1)·⎝⎛⎭⎫13n , 13T n =3×19+5×127+7×181+…+(2n +1)·⎝⎛⎭⎫13n +1, 相减可得23T n =1+2⎣⎡⎦⎤19+127+…+⎝⎛⎭⎫13n -(2n +1)·⎝⎛⎭⎫13n +1=1+2·19⎝⎛⎭⎫1-13n -11-13-(2n +1)·⎝⎛⎭⎫13n +1,化简可得T n =2-(n +2)·⎝⎛⎭⎫13n . [C 级 创新突破]17.(2020年南通模拟)定义数列{a n }:先给出a 1=1,接着复制该项,再添加1的后继数2,于是a 2=1,a 3=2,接下来再复制前面所有项,之后再添加2的后继数3,如此继续(1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…),设S n 是a n 的前n 项和,则S 2 020=________.【答案】3 990 【解析】由数列{a n }的构造方法可知a 1=1,a 3=2,a 7=3,a 15=4,可得a 2n -1=n .由于数表的前n 行共有2n -1 个数,于是,先计算S 2n -1.在前2n -1个数中,共有1个n,2个n -1,22个n -2,… ,2n -k 个k , (2)-1个1,因此S 2n -1 =n ×1+(n -1)×2+…+k ×2n -k +…+2×2n -2+1×2n -1,则2S 2n -1=n ×2+(n -1)×22+…+k ×2n-k +1+…+2×2n -1+1×2n ,两式相减,得S 2n -1=n +2+22+…+2n -1+2n =2n +1-n -2.所以S 2 020=S 210-1+S 997=S 210-1+S 29-1+S 486=…=S 210-1+S 29-1+…+S 25-1+S 10=(211-12)+(210-11)+(29-10)+(28-9)+(27-8)+(26-7)+15=3 990.18.(2020年邢台模拟)设数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,a n b n +b n =(n +1)·b n +1.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和S n ;(3)设c n =a nlog 2b n +1,试问是否存在正整数s ,t (s ≠t ),使c 3,c s ,c t 成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.解:(1)数列{b n }满足b 1=1,b 2=2,a n b n +b n =(n +1)b n +1. 当n =1时,a 1b 1+b 1=2b 2,解得a 1=3.所以a n =3+2(n -1)=2n +1.由于a n b n +b n =(n +1)b n +1,所以(2n +2)b n =(n +1)b n +1,整理得b n +1b n =2(常数).所以b n =1·2n -1=2n-1.(2)由于a n =2n +1,b n =2n -1, 所以a n b n =(2n +1)·2n-1.则S n =3·20+5·21+7·22+…+(2n +1)·2n -1①, 2S n =3·21+5·22+7·23+…+(2n +1)·2n ②,由①-②得,-S n =2(1+2+…+2n -1)+1-(2n +1)·2n ,整理得S n =(2n -1)·2n +1. (3)根据(1)得c n =a n log 2b n +1=1n+2.假设存在正整数s 和t ,使c 3,c s ,c t 成等差数列, 所以2s +4=13+2+1t +2,整理得2s =13+1t ,即6t =st +3s ,整理得s =6-18t +3,当t =s =3时,与s ≠t 矛盾,故舍去. 当t =6时,s =4,符合题意; 当t =15,s =5时,符合题意.。
2023年高考数学一轮复习精讲精练第18练 等差数列及其求和(解析版)

第18练 等差数列及其求和学校____________ 姓名____________ 班级____________一、单选题1.在公差不为零的等差数列{}n a 中,若1233++m a a a a =,则m =( ) A .1 B .2 C .3 D .4【答案】B 【详解】∵2132+a a a =,则12323++3m a a a a a == ∵2m = 故选:B .2.2022年4月26日下午,神州十三号载人飞船返回舱在京完成开舱.据科学计算,运载“神十三”的“长征二号”F 遥十三运载火箭,在点火第一秒钟通过的路程为2千米,以后每秒钟通过的路程都增加2千米,在达到离地面380千米的高度时,火箭与飞船分离,则这一过程需要的时间大约是( ) A .10秒 B .13秒 C .15秒 D .19秒【答案】D 【详解】设每秒钟通过的路程构成数列{}n a , 则{}n a 是首项为2,公差为2的等差数列,由求和公式有()221380n n n n n +-=+=,解得19n =. 故选:D.3.已知在等差数列{}n a 中,4820a a +=,712a =,则9a =( ) A .8 B .10C .14D .16【答案】D 【详解】 设公差为d ,则1113720612a d a d a d +++=⎧⎨+=⎩,解得102a d =⎧⎨=⎩,所以91816a a d =+=. 故选:D.4.5G 基站建设是众多“新基建”的工程之一,截至2021年7月底,A 地区已经累计开通5G基站300个,未来将进一步完善基础网络体系,加快推进5G 网络建设.已知2021年8月该地区计划新建50个5G 基站,以后每个月比上一个月多建40个,预计A 地区累计开通4640个5G 基站要到( ) A .2022年10月底 B .2022年9月底 C .2022年8月底 D .2022年7月底【答案】B 【详解】由题意得,2021年8月及之后该地区每个月建设的5G 基站数量为等差数列,则公差为40, 假设要经过k 个月,则()1504046403002k k k -+⋅=-,解得:14k =,所以预计A 地区累计开通4640个5G 基站要到2022年9月底, 故选:B .5.在等差数列{}n a 中,234+=a a ,568a a +=,则4a =( ) A .4 B .72C .3D .2【答案】C 【详解】因为()()()()235626354412a a a a a a a a a +++=+++==,所以43a =. 故选:C .6.已知等差数列{an }的前n 项和为Sn ,若13260S =,则2811a a a ++的值为( ) A .60 B .120 C .180 D .260【答案】A 【详解】设等差数列{an }的公差为d , 因为13260S =,所以11312132602a d ⨯+=, 所以1620a d +=,所以2811111171031860a a a a d a d a d a d ++=+++++=+=, 故选:A.7.已知等差数列{}n a 中,1732,4,n a a a S ==为数列{}n a 的前n 项和,则10S =( ) A .115B .110C .110-D .115-【答案】D 【详解】设数列{}n a 的公差为d ,则由734a a =得264(22)d d +=+,解得3d =-,101(1)10910102(3)11522n n S a d -⨯=+=⨯+⨯-=-. 故选:D .8.已知n S 是等差数列{}n a 的前n 项和,其中346,10S S ==,数列{}n b 满足11b =,且1n n n b a b ++=,则数列{}n b 的通项公式为( )A .222n +B .222n n -+C .22nD .222n n ++【答案】B 【详解】设等差数列{}n a 的公差为d , 因为346,10S S ==,所以1132362434102a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得111a d =⎧⎨=⎩,所以1(1)11n a a n d n n =+-=+-=, 因为1n n n b a b ++=, 所以1n n n b b a n +-==,所以211b b -=,322b b -=,433b b -=,……,11n n b b n --=-, 所以1(1)123(1)2n n n b b n --=+++⋅⋅⋅+-=, 因为11b =,所以2(1)2122n n n n n b --+=+=, 故选:B9.在数列{}n a 中,设其前n 项和为n S ,若11a =-,21a =,()211nn n a a +-=+-,则10S 等于( ) A .25 B .20 C .15 D .10【答案】B 【详解】由()211nn n a a +-=+-可知:当n 为奇数时,2n n a a +=,当n 为偶数时,22n n a a +-=, 所以奇数项成常数列,偶数项成等差数列,且公差为2故()()10135792468105415152202S a a a a a a a a a a ⨯=+++++++++=-⨯+⨯+⨯=故选:B10.已知等差数列{}n a 的公差为d ,且0d ≠,且1a 、3a 、13a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和.则2143n n S a ++的最小值为( )A .4B .3 C.2 D .113【答案】D 【详解】由已知可得23113a a a =,即()212112d d +=+,可得220d d -=,0d ≠,解得2d =,()()1112121n a a n d n n ∴=+-=+-=-,所以,()122n n n a a S n +==, 2221421473221n n S n n a n n +++==+++,令271n n b n +=+,则()()()2221177362112n n n n n n b b n n n n +++++--=-=++++,当1n =时,10nnb b ,即12b b >,当2n ≥时,10n n b b +->,即23b b <<,所以,数列{}n b 中,2b 最小,故2143n n S a ++的最小值为22711213+=+. 故选:D. 二、多选题11.公差为d 的等差数列{}n a 满足25a =,6830a a +=,则下面结论正确的有( ) A .d =2B .21n a n =+C .21111141n a n n ⎛⎫=+ ⎪-+⎝⎭D .211n a ⎧⎫⎨⎬-⎩⎭的前n 项和为()41n n +【答案】ABD 【详解】 由题意得,268530a a a =⎧⎨+=⎩,即11521230a d a d +=⎧⎨+=⎩, 解得132a d =⎧⎨=⎩,所以21n a n =+,故A 、B 正确;得212(22)4(1)n a n n n n -=+=+,故211111()14(1)41n a n n n n ==⋅--++,故C 错误;所以数列21{}1n a -的前n 项和为 11111111(1)(1)42231414(1)nn n n n -+-++-=-=+++,故D 正确. 故选:ABD.12.已知等差数列{an }的公差为d ,前n 项和为Sn ,且91011S S S =<,则( ) A .d <0 B .a 10=0 C .S 18<0 D .S 8<S 9【答案】BC 【详解】910S S = ,101090a S S ∴=-= ,所以B 正确又1011S S < ,111110100a S S a d ∴=-=+> ,0d ∴> ,所以A 错误 1090,0,0a d a =>∴<11818118910918()9()9()902a a S a a a a a +==+=+=<,故C 正确 9989890,,a S S a S S <=+∴> ,故D 错误故选:BC 三、填空题13.已知数列{}n a 的前n 项和为()0n n S S ≠,1331n n a a +=+,1n =,2,3,…,则35a S =______.【答案】15##0.2【详解】因为1331n n a a +=+, 所以113n n a a +-=,所以数列{}n a 是以13为公差的等差数列,所以333155315()552a a a a a S a ===+,故答案为:1514.已知等差数列{}n a 满足412a a a =+,且10a ≠,则513a a a =+______. 【答案】1 【详解】因为412a a a =+,所以1113a d a a d +=++,即12a d =. 因为10a ≠,则0d ≠,所以51131146126a a d da a a a d d+===+++. 故答案为:1 四、解答题15.已知数列{}n a 为公差不为零的等差数列,其前n 项和为n S ,1712a a +=,525S =. (1)求数列{}n a 的通项公式;(2)令[]2log n n c a =,其中[]x 表示不超过x 的最大整数,求1220c c c +++的值.【答案】(1)2n a n =+(2)61 【解析】(1)设数列{}n a 为公差为d ,1712a a +=,525S =,∵()111612545252a a d a d ⎧++=⎪⎨⨯+=⎪⎩∵13,1a d ==∵数列{}n a 的通项公式为2n a n =+ (2)2n a n =+,则13a =,20162232a <=<,当()22log log 21n n c a n ⎡⎤⎡⎤⎣⎦⎣⎦==+=,则224n ≤+<,可得1n =, 当()22log log 22n n c a n ⎡⎤⎡⎤⎣⎦⎣⎦==+=,则428n ≤+<,可得26n ≤<, 当()22log log 23n n c a n ⎡⎤⎡⎤⎣⎦⎣⎦==+=,则8216n ≤+<,可得614n ≤<,当()22log log 24n n c a n ⎡⎤⎡⎤⎣⎦⎣⎦==+=,则16232n ≤+<,可得1431n ≤<,此时1420n ≤≤.所以,1,12,263,6144,1420n n n c n n =⎧⎪≤<⎪=⎨≤<⎪⎪≤≤⎩,故1220124384761c c c +++=+⨯+⨯+⨯=16.已知数列{}n a 满足1221(2)nn n a a n -=+-≥,且15a =,2n n na b λ+=,11n n n c b b +=.(1)求实数λ,使得数列{}n b 为等差数列;(2)在(1)的条件下,设数列{}n c 的前n 项和为n T ,求n T 的取值范围【答案】(1)1λ=-(2)1162n T ≤<【解析】(1)若存在实数λ,使得数列{}n b 为等差数列,则1122n n n n a a λλ--++-必是与n 无关的常数 又1112211122222n n n n n n n n n na a a a λλλλλ---++----+-===- 所以1λ=-,经检验,符合题意 所以1λ=- (2)由(1)知数列{}n b 是等差数列,其首项为2,公差为1,则1n b n =+ 所以111(1)(2)12n c n n n n ==-++++所以111111111233412222n T n n n =-+-++-=-<+++ 又n T 递增所以11111122236n T T n =-=-=+ 所以1162n T <。
2025年高考数学一轮复习-6.4-数列求和-专项训练【含解析】

2025年高考数学一轮复习-6.4-数列求和-专项训练【原卷版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.82.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.93.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.634.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.45.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C.12,D.23,+∞6.(多选)已知数列{a n}满足a1=1,且对任意的n∈N*都有a n+1=a1+a n+n,则下列说法中正确的是()A.a n=n(n+1)2B2020项的和为20202021C2020项的和为40402021D.数列{a n}的第50项为25507.(多选)设数列{a n}的前n项和为S n,若S2nS4n为常数,则称数列{a n}为“吉祥数列”.则下列数列{b n}为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.9.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .202011.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A n n 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +1412.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.2025年高考数学一轮复习-6.4-数列求和-专项训练【解析版】1.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}的前6项的和为()A.-24B.-3C.3D.8解析:A设{a n}的公差为d,根据题意得a23=a2·a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2,所以数列{a n}的前6项和为S6=6a1+6×52d=1×6+6×52×(-2)=-24.2.设1+2+22+23+…+2n-1>128(n∈N*),则n的最小值为()A.6B.7C.8D.9解析:C∵1+2+22+…+2n-1为公比为2,首项为1的等比数列的前n项和S n,∴S n=12-1(2n-1)=2n-1>128=27,∴n≥8,∴n的最小值为8.故选C.3.设数列{a n}(n∈N*)的各项均为正数,前n项和为S n,log2a n+1=1+log2a n,且a3=4,则S6=()A.128B.65C.64D.63解析:D因为log2a n+1=1+log2a n,所以log2a n+1=log22a n,即a n+1=2a n,即数列{a n}是以2为公比的等比数列,又a3=4,所以a1=a34=1,因此S6=a1(1-26)1-2=26-1=63.故选D.4.已知数列{a n}的前n项和S n=4n+b(b是常数,n∈N*),若这个数列是等比数列,则b=()A.-1B.0C.1D.4解析:A显然数列{a n}的公比不等于1,所以S n=a1·(q n-1)q-1=a1q-1·q n-a1q-1=4n+b,所以b=-1.5.已知等比数列{a n},a1=1,a4=18,且a1a2+a2a3+…+a n a n+1<k,则k的取值范围是()A.12,23B.12,+∞C .12,D .23,+∞解析:D设等比数列{a n }的公比为q ,q ≠0,则q 3=a 4a 1=18,解得q =12,所以a n =12n -1,所以a n a n +1=12n -1×12n =122n -1,所以数列{a n a n +1}是首项为12,公比为14的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1=21-14=<23.因为a 1a 2+a 2a 3+…+a n a n +1<k ,所以k ≥23.故k 的取值范围是23,+D .6.(多选)已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则下列说法中正确的是()A .a n =n (n +1)2B2020项的和为20202021C2020项的和为40402021D .数列{a n }的第50项为2550解析:AC因为a n +1=a 1+a n +n ,a 1=1,所以a n +1-a n =1+n ,即a n -a n -1=n (n ≥2),所以n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,a 1=1也适合此式,所以a n =n (n +1)2,a 50=1275,A 正确,D 错误;1a n =2n(n +1)=2020项和S 2020=-12+12-13+…+12020-=40402021,B 错误,C 正确.故选A 、C .7.(多选)设数列{a n }的前n 项和为S n ,若S2n S 4n为常数,则称数列{a n }为“吉祥数列”.则下列数列{b n }为“吉祥数列”的有()A .b n =nB .b n =(-1)n (n +1)C .b n =4n -2D .b n =2n解析:BC对于A ,S n =(1+n )n 2,S 2n =n (1+2n ),S 4n =2n (1+4n ),所以S2n S 4n =n (1+2n )2n (1+4n )=1+2n 2(1+4n )不为常数,故A 错误;对于B ,由并项求和法知:S 2n =n ,S 4n =2n ,S 2n S 4n =n 2n =12,故B 正确;对于C ,S n =2+4n -22×n =2n 2,S 2n =8n 2,S 4n =32n 2,所以S 2n S 4n =14,故C 正确;对于D ,S n =2(1-2n )1-2=2(2n -1),S 2n =2(4n -1),S 4n =2(16n -1),所以S2n S 4n =4n -116n -1=14n +1不为常数,故D 错误.故选B 、C .8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析:S n =1×21+2×22+…+n ×2n ,则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+ (2)-n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n ,∴S n-na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案:59.已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n n -n 2,n 为偶数,a n ,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d a 1+10d =20,1+2d )2=(a 1+d )(a 1+4d ),化简得1+2d =4,1d =0,因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *,因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n n -n 2,n 为偶数,a n ,n 为奇数,n 为偶数,n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2)=n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).10.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2020项和为()A .1009B .1010C .2019D .2020解析:D设{a n }的公差为da 1+6d =a 1+3d +7,1+9d =19,1=1,=2,∴a n =2n-1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2019+b 2020)=2×20202=2020.11.(多选)已知数列{a n }满足a 1=32,a n =a 2n -1+a n -1(n ≥2,n ∈N *).记数列{a 2n }的前n 项和为A nn 项和为B n ,则下列结论正确的是()A .A n =a n +1-32B .B n =23-1a n +1C .A n B n =32a nD .A n B n <32n +14解析:ABD由a n =a 2n -1+a n -1,得a 2n -1=a n -a n -1≥0,所以a n ≥a n -1≥32,A n =a 21+a 22+…+a 2n =a 2-a 1+a 3-a 2+…+a n +1-a n =a n +1-a 1=a n +1-32,故A 正确;由a n =a 2n -1+a n -1=a n-1(a n -1+1),得1a n =1a n -1(a n -1+1)=1a n -1-1a n -1+1,即1a n -1+1=1a n -1-1a n ,所以B n =1a 1+1+1a 2+1+…+1a n +1=1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1a 1-1a n +1=23-1a n +1,故B 正确;易知A n ≠0,B n ≠0,所以A nB n =a n +1-3223-1a n +1=32a n +1,故C 不正确;易知a n =a 2n -1+a n -1<2a 2n -1,所以a n +1<2a 2n <23a 4n -1<…<22n -1a 2n 1=22n-1n =12×32n ,所以A n B n=32an +1<32×12×32n =32n +14,故D 正确.故选A 、B 、D .12.已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2,两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2,即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1),则数列{a n -1}是首项为1,公比为3的等比数列,则a n -1=3n -1,故a n =1+3n -1.(2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1),设M n =1·30+2·31+3·32+…+n ·3n -1,3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n=1-3n 1-3-n ·3n ,化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.13.已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论.条件①:S n =-a n +t (t 为常数);条件②:a n =b n b n +1,其中数列{b n }满足b 1=1,(n +1)·b n +1=nb n ;条件③:3a 2n =3a 2n +1+a n +1+a n .数列{a n }中a 1是展开式中的常数项,且________.求证:S n <1∀n ∈N *恒成立.注:如果选择多个条件分别解答,则按第一个解答计分.证明:二项展开式的通项为T k +1=C -k=C -k x12-3k,令12-3k =0,得k =4,得展开式的常数项为a 1=12.可选择的条件为①或②或③:若选择①:在S n =-a n +t 中,令n =1,得t =1,所以S n =-a n +1,当n ≥2时,S n -1=-a n -1+1.两式相减得a n =12a n -1,故{a n }是以12为首项,12为公比的等比数列,所以S n =a 1(1-q n )1-q =1<1.所以S n <1对任意的n ∈N *恒成立.若选择②:由(n +1)b n +1=nb n 得b n +1b n =nn +1,所以b n =b n b n -1·b n -1b n -2·…·b 2b 1b 1=1n (n ≥2),n =1时也满足,则a n =1n (n +1)=1n -1n +1,S n …1-1n +1<1.所以S n <1对任意的n ∈N *恒成立.若选择③:由题意得3a 2n +1-3a 2n =-(a n +1+a n ),得a n +1-a n =-13或a n +1+a n =0,又a 1=12,当a n +1+a n =0时,有S n n 为偶数,n 为奇数,所以S n <1,当a n +1-a n =-13时,有S n =n 2-n (n -1)6=-16(n 2-4n )=-16(n -2)2+23,当n =2时,S n 有最大值,为23<1.所以S n <1对任意的n ∈N *恒成立.。
高中数学数列求和练习题及参考答案2023

高中数学数列求和练习题及参考答案2023数列求和是高中数学中的重要知识点,也是学生们经常需要练习和巩固的内容。
掌握数列求和的方法和技巧,对于解决各种数学问题具有重要的作用。
本文将为大家提供一些高中数学数列求和的练习题,并给出参考答案。
一、简单求和练习1. 求等差数列1,4,7,10,...的前20项和。
解析:这是一个等差数列,我们知道等差数列的通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差,n为项数。
根据等差数列的求和公式Sn = (n/2)(a1 + an),我们可以求得前20项和为:S20 = (20/2)(1 + 1 + 19 * 3) = 20 * 10 = 200所以,等差数列1,4,7,10,...的前20项和为200。
2. 求等比数列3,6,12,24,...的前10项和。
解析:这是一个等比数列,我们知道等比数列的通项公式为an = a1 * r^(n - 1),其中a1为首项,r为公比,n为项数。
根据等比数列的求和公式Sn = a1 * (1 - r^n) / (1 - r),我们可以求得前10项和为:S10 = 3 * (1 - 2^10) / (1 - 2) = 3 * (1 - 1024) / (-1) = 3 * (1023) = 3069所以,等比数列3,6,12,24,...的前10项和为3069。
二、综合应用题1. 若等差数列的首项为3,公差为2,且和为139,求该等差数列的项数。
解析:设等差数列的项数为n,根据等差数列的求和公式Sn =(n/2)(a1 + an),将已知条件代入,得到:139 = (n/2)(3 + a1 + (n - 1)2)化简得:139 = (n/2)(2n + 4)278 = n(2n + 4)2n^2 + 4n - 278 = 0解这个一元二次方程,得到n ≈ 11所以,该等差数列的项数为11。
2. 已知等差数列的首项为5,公差为3,前n项和为Sn = 105 - 2n,求该等差数列的项数n。
专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:
1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数
(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)
新高考2023版高考数学一轮总复习练案37第六章第四讲数列求和

第四讲 数列求和A 组基础巩固一、单选题1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( A )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n[解析] 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 2.已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则⎩⎨⎧⎭⎬⎫1a n 的前100项和为( D )A .100101B .99100C .101100D .200101[解析] ∵a n +1=a 1+a n +n ,a 1=1,∴a n +1-a n =1+n . ∴a n -a n -1=n (n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n n +12.∴1a n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1. ∴⎩⎨⎧⎭⎬⎫1a n 的前100项和为2⎝ ⎛⎭⎪⎫1-12+12-13+…+1100-1101=2⎝ ⎛⎭⎪⎫1-1101=200101.故选D.3.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( D )A .13B .10C .9D .6[解析] ∵a n =2n-12n =1-12n ,∴S n =n -⎝ ⎛⎭⎪⎫12+122+…+12n =n -1+12n .而32164=5+164,∴n -1+12n =5+164.∴n =6.4.在数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( B )A .(3n-1)2B .12(9n-1) C .9n -1D .14(3n-1) [解析] 因为a 1+a 2+…+a n =3n-1,所以a 1+a 2+…+a n -1=3n -1-1(n ≥2).则当n ≥2时,a n =2·3n -1.当n =1时,a 1=3-1=2,适合上式,所以a n =2·3n -1(n ∈N *).则数列{a 2n }是首项为4,公比为9的等比数列,a 21+…+a 2n =41-9n1-9=12(9n-1).故选B.5.(2021·黑龙江哈尔滨三中期末)数列{a n }的前n 项和为S n ,且a n =(-1)n(2n -1),则S 2 023=( C )A .2 021B .-2 021C .-2 023D .2 023[解析] 本题考查用并项相加求数列的前n 项和.由已知a n =(-1)n·(2n -1),a 2 023=(-1)2 023(2×2 023-1)=-4 045,且a n +a n +1=(-1)n (2n -1)+(-1)n +1(2n +1)=(-1)n +1(2n +1-2n +1)=2×(-1)n +1,因而S 2 023=(a 1+a 2)+(a 3+a 4)+…+(a 2 021+a 2 022)+a 2 023=2×1 011-4 045=-2 023.故选C.6.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:(1)构造数列1,12,13,14,…,1n;①(2)将数列①的各项乘以n2,得到一个新数列a 1,a 2,a 3,a 4,…,a n .则a 1a 2+a 2a 3+a 3a 4+…+a n -1a n =( C ) A .n 24B .n -124 C .n n -14D .n n +14[解析] 依题意可得新数列为n 2,n 4,n 6,…,1n ×n2,所以a 1a 2+a 2a 3+…+a n -1a n =n 24⎣⎢⎡11×2+12×3+…+⎦⎥⎤1n -1n=n 24⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n=n 24×n -1n =n n -14.故选C. 二、多选题7.(2022·重庆月考)已知数列{a n }满足a 1=-2,a n a n -1=2n n -1(n ≥2,n ∈N *),{a n }的前n 项和为S n ,则( ABD )A .a 2=-8B .a n =-2n·n C .S 3=-30D .S n =(1-n )·2n +1-2[解析] 由题意可得,a 2a 1=2×21,a 3a 2=2×32,a 4a 3=2×43,…,a n a n -1=2×n n -1(n ≥2,n ∈N *),以上式子左、右分别相乘得a n a 1=2n -1·n (n ≥2,n ∈N *),把a 1=-2代入,得a n =-2n·n (n ≥2,n ∈N *),又a 1=-2符合上式,故数列{a n }的通项公式为a n =-2n·n (n ∈N *),a 2=-8,故A ,B 正确;S n =-(1×2+2×22+…+n ·2n ),则2S n =-[1×22+2×23+…+(n -1)·2n+n ·2n +1],两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2(n ∈N *),故S 3=-34,故C 错误,D 正确.8.数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,以下说法正确的是( ACD ) A .a 24=38B .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列C .数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n4D .若存在正整数k ,使S k <10,S k +1≥10,则a k =57[解析] 对于选项A ,a 22=18,a 23=28,a 24=38,故A 正确.对于选项B 、C ,数列12,1,32,2,…等差数列,T n =n 2+n4,故B 错,C 正确.对于选项D ,S 21>10,S 20<10,a 20=57,正确.故选A 、C 、D.三、填空题 9.数列{a n }中,a n =1nn +1,若{a n }的前n 项和为2 0222 023,则项数n 为 2 022 . [解析] a n =1nn +1=1n -1n +1,S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1=2 0222 023,所以n =2 022. 10.122-1+132-1+142-1+…+1n +12-1= 34-12⎝ ⎛⎭⎪⎫1n +1+1n +2 .[解析] ∵1n +12-1=1n 2+2n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴122-1+132-1+142-1+…+1n +12-1=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.11.(2021·海南三亚模拟)已知数列{a n }的前n 项和S n =10n -n 2,数列{b n }满足b n =|a n |,设数列{b n }的前n 项和为T n ,则T 4= 24 ,T 30= 650 .[解析] 当n =1时,a 1=S 1=9,当n ≥2时,a n =S n -S n -1=10n -n 2-[10(n -1)-(n -1)2]=-2n +11,当n =1时也满足,所以a n =-2n +11(n ∈N *),所以当n ≤5时,a n >0,b n =a n ,当n >5时,a n <0,b n =-a n ,所以T 4=S 4=10×4-42=24,T 30=S 5-a 6-a 7-…-a 30=2S 5-S 30=2×(10×5-52)-(10×30-302)=650.12.(2021·广东省五校协作体高三第一次联考)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数3a n +1,a n 为奇数,如果a 1=1,则a 1+a 2+a 3+…+a 2 018= 4 709 .[解析] 由已知得a 1=1,a 2=4,a 3=2,a 4=1,a 5=4,a 6=2,周期为3的数列,a 1+a 2+…+a 2 018=(1+4+2)×672+1+4=4 709.四、解答题13.(2021·宁夏银川金凤模拟)已知数列{a n }满足a 1=2,na n +1-(n +1)a n =2n (n +1),设b n =a nn.(1)证明数列{b n }是等差数列,并求其通项公式; (2)若c n =2b n -n ,求数列{c n }的前n 项和. [解析] (1)∵na n +1-(n +1)a n =2n (n +1), ∴a n +1n +1-a nn=2, ∵b n =a nn ,∴b n +1-b n =2,b 1=a 11=2,∴数列{b n }是等差数列,首项与公差都为2. ∴b n =2+2(n -1)=2n . (2)c n =2b n -n =22n-n =4n-n , ∴数列{c n }的前n 项和为41-4n1-4-n n +12=4n +1-43-n n +12.14.(2021·太原二模)已知数列{a n }的前n 项和S n =2n +1-2,数列{b n }满足b n =a n +a n +1(n∈N *).(1)求数列{b n }的通项公式;(2)若c n =log 2a n (n ∈N *),求数列{b n ·c n }的前n 项和T n . [解析] (1)当n =1时,a 1=S 1=2, 当n ≥2时,a n =S n -S n -1=2n, 又a 1=2满足上式,∴a n =2n (n ∈N *),∴b n =a n +a n +1=3×2n. (2)由(1)得a n =2n ,b n =3×2n, ∴c n =log 2a n =n ,∴b n ·c n =3n ×2n,∴T n =3×(1×2+2×22+3×23+…+n ×2n),① ①×2,得2T n =3×(1×22+2×23+3×24+…+n ×2n +1),②①-②,得-T n =3×(2+22+…+2n -n ×2n +1)=3×[(1-n )×2n +1-2],∴T n =3(n -1)×2n +1+6.B 组能力提升1.(多选题)(2021·山东济宁期末)若S n 为数列{a n }的前n 项和,且S n =2a n +1,则下列说法正确的是( AC )A .a 5=-16B .S 5=-63C .数列{a n }是等比数列D .数列{S n +1}是等比数列[解析] 因为S n 为数列{a n }的前n 项和,且S n =2a n +1,所以a 1=S 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,故C 正确;a 5=-1×24=-16,故A 正确;S n =2a n +1=-2n+1,所以S 5=-25+1=-31,故B 错误;因为S 1+1=0,所以数列{S n +1}不是等比数列,故D 错误.故选AC.2.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( C )A .1 026B .1 025C .1 024D .1 023[解析] ∵2n+12n =1+⎝ ⎛⎭⎪⎫12n,∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,恒成立 ∴整数m 的最小值为1 024.3.已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( D )A .1 009B .1 010C .2 019D .2 020[解析] 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,……,∴数列{a n cos n π}的前2 020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×2 0202=2 020.4.记S n 为等差数列{a n }的前n 项和,已知,S 9=-a 5,若a 1>0,使得S n ≥a n 的n 的取值范围 [1,10]n ∈N .[解析] 由S 9=-a 5得a 5=0即d =-a 14故a n =-n -5a 14,S n =-n n -9a 18由S n ≥a n 可得-n n -9a 18≥-n -5a 14由于a 1>0,故S n ≥a n 等价于-n n -98≥-n -54即:n 2-11n +10≤0 解得1≤n ≤10所以n 的取值范围是[1,10]n ∈N .5.(2021·山东省济南市历城第二中学高三模拟考试)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n,n 为奇数b n ,n 为偶数,设数列{c n }的前n 项和T n ,求T 2n .[解析] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =103+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2q =2.∴a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 当n 为奇数,c n =2S n =1n -1n +2,当为偶数,c n =2n -1.∴T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+21-4n1-4=2n 2n +1+23(4n-1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和
一.选择题
1.(2022·烟台模拟)设数列{a n }的前n 项和为S n ,若a n =
1n +1+n
,则S 99=( ) A.7 B.8 C.9 D.10 2.(2022·石家庄检测)数列112,314,518,7116,…,(2n -1)+12n …的前n 项和S n 的值等于( )
A.n 2+1-12n
B.2n 2-n +1-12n
C.n 2+1-12n -1
D.n 2
-n +1-12n 3.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )
A.-200
B.-100
C.200
D.100
4.(2021·东营调考)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )
A.9
B.15
C.18
D.30
5.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第1个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要按照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第8个孩子分到的棉花为( )
A.184斤
B.176斤
C.65斤
D.60斤
6.在数列{a n }中,若a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N *),则该数列的前100项之和是( )
A.18
B.8
C.5
D.2
7.(2022·大连模拟)已知幂函数y =f (x )过点(4,2),令a n =f (n +1)+f (n ),n ∈N *,记数列⎩⎨⎧⎭
⎬⎫1a n 的前n 项和为S n ,则S n =10时,n 的值是( )
A.10
B.120
C.130
D.140 8.(多选)(2021·济南调研)已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,
若b n =1a n ·a n +1
,设数列{b n }的前n 项和S n ,则( ) A.a n =n 2
B.a n =n
C.S n =4n n +1
D.S n =5n n +1
二.填空题
9.(易错题)数列{(n +3)·2n -1}前20项的和为________.
10.(2021·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝ ⎛⎭
⎪⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.
11.(2021·合肥质检)已知数列{a n }的首项为-1,a n a n +1=-2n ,则数列{a n }的前10项之和等于________.
12.(2021·石家庄模拟)已知数列{a n }满足a 1=1,且a n +1+a n =n -1 009(n ∈N *),则其前2 021项之和S 2 021=________.
14.已知数列{na n }的前n 项和为S n ,且a n =2n ,且使得S n -na n +1+50<0的最小正整数n 的值为________.
三解答题
15.已知等差数列{a n }的前n 项和为S n ,且关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).
(1)求数列{a n }的通项公式;
(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n .
16.已知数列{a n }中,a 1=1,a 2=3,且数列{a n +1-a n }是以2为公比的等比数列.
(1)求数列{a n }的通项公式;
(2)令c n =(-1)n +1a n ,求数列{c n }的前n 项和S n .
17.(2021·福州质量检测)在①S n=2a n+1;②a1=-1,log2(a n a n+1)=2n-1;③a2n+1=a n a n+2,S2=-3,a3=-4这三个条件中任选一个,补充在下面问题的横线上,并解答.
问题:已知单调数列{a n}的前n项和为S n,且满足________.
(1)求{a n}的通项公式;
(2)求数列{-na n}的前n项和T n.
18.(2021·开原三模)给出以下三个条件:①4a3,3a4,2a5成等差数列;②∀n∈N*,点(n,S n)均在函数y=2x-a的图象上,其中a为常数;③S3=7.请从这三个条件中任选一个将下面的题目补充完整,并求解.
设{a n}是一个公比为q(q>0,且q≠1)的等比数列,且它的首项a1=1,________.
(1)求数列{a n}的通项公式;
(2)令b n =2log 2a n +1(n ∈N *),证明:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n <12.。