2020高中自主招生必做试卷(数学)含答案

合集下载

2020年浙江省宁波市普通高中自主招生数学模拟试卷及答案解析

2020年浙江省宁波市普通高中自主招生数学模拟试卷及答案解析

2020年浙江省宁波市普通高中自主招生数学模拟试卷一.选择题(共5小题,满分25分,每小题5分)1.(5分)希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .13782.(5分)在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n 个,搅匀后随机从中摸取1个恰好是白球的概率为13,则放入的黄球总数为( ) A .5个 B .6个 C .8个 D .10个3.(5分)下列命题正确是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有两条边对应相等的两个直角三角形全等C .16的平方根是4D .对角线相等的平行四边形是矩形4.(5分)已知m >0,关于x 的一元二次方程(x +1)(x ﹣2)﹣m =0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( )A .x 1<﹣1<2<x 2B .﹣1<x 1<2<x 2C .﹣1<x 1<x 2<2D .x 1<﹣1<x 2<2 5.(5分)如图,点A 是函数y =−2x (x <0)在第二象限内图上一点,点B 是函数y =4x (x>0)在第一象限内图象上一点,直线AB 与y 轴交于点,且AC =BC ,连结OA ,OB ,则△AOB 的面积是( )A.2B.3C.4D.5二.填空题(共4小题,满分20分,每小题5分)6.(5分)关于x的不等式组{4a+3x>03a−4x≥0恰好只有三个整数解,则a的取值范围是7.(5分)如图,在△ABC中,AC=BC,∠C=90°,点D,E,F分别在边BC,AC,AB 上,四边形DCEF为矩形,P,Q分别为DE,AB的中点,若BD=1,DC=2,则PQ=.8.(5分)如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E.F.且AB=5,AC=12,BC=13,则⊙O的半径是.9.(5分)如图,⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠P的值是.三.解答题(共2小题,满分30分,每小题15分)10.(15分)若一次函数y=mx+n与反比例函数y=kx同时经过点P(x,y)则称二次函数y=mx2+nx﹣k为一次函数与反比例函数的“共享函数”,称点P为共享点.(1)判断y=2x﹣1与y=3x是否存在“共享函数”,如果存在,请求出“共享点”.如果。

2020年黄冈中学重点高中自主招生考试数学模拟试卷八及答案解析

2020年黄冈中学重点高中自主招生考试数学模拟试卷八及答案解析

O x y A B C DM N (第3题图) 2020年黄冈中学重点高中自主招生考试数学模拟试卷八一、填空题(共5题,每题5分,共25分)1.设532x -=,则代数式(1)(2)(3)x x x x +++的值是( ) (A) -1 (B) 0 (C) 1 (D)22. 程序框图如图所示.当E =0.96时,则输出的k =( ) (A)20 (B)22 (C)24 (D)253. 如图,矩形ABCD 的对角线BD 经过坐标原点O ,矩形的边分别平行于坐标轴,反比例函数ky x=(k >0)的图象分别与BC 、CD 交于点M 、N .若点A(-2,-2),且△OMN 的面积为32,则k =( )(A)2.5 (B)2 (C)1.5 (D)14. 如图,AB 是⊙O 的直径,弦CD⊥AB 于点G ,点F 是CD 上一点,且满足13CF FD =,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=52; ④S △DEF =45.其中正确的是结论的个数是( ) (A)1 (B)2 (C)3 (D)45.如图,点D 、E 分别在AB 、AC 上,BE 、CD 相交于点F ,设S 四边形EADF =S1,S △BDF =S2, S △BCF =S3,S △CEF =S 4,则S 1S 3与S 2S 4的大小关系是( )(A) 不能确定 (B) S 1S 3<S 2S 4 (C) S 1S 3=S 2S 4 (D) S 1S 3>S 2S 4开始k=1,S=01(1)S S k k =++S ≥E ?输出kk=k+1否是(第2题图)(第4题图) (第5题图)二、填空题(共4题,每题5分,共20分)6. 关于x 的分式方程11mx =-+的解是负数,则m 的取值范围是__________.7.一枚质地均匀的正方形骰子的六个面上的数字分别是1、2、2、3、3、4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1、3、4、5、6、8.同时掷这两枚骰子,则其朝上的面两数字之和为5的概率是_______.8.如图,在Rt△ABC 两直角边AC 、BC 上分别作正方形ACDE 、正方形CBFG ,连结DG .线段AB 、BF 、FG 、GD 、DE 、EA 的中点依次为P 、L 、K 、I 、H 、Q .若AC =14,BC =28,则六边形HIKLPQ 的面积为_______.9.如图,已知菱形ABCD 的顶点D 、C 在直线y =x 上,且顶点A 、B 在抛物线y =x 2上,DA 平行于y 轴,则S 菱形ABCD =_______.(第8题图)ABCDEF GIH LKPQ(第9题图)OxyABCD三、解答题(共2题,第10题15分,第11题15分)10.如图①,梯形ABCD 中,AB∥CD,∠C=90°,AB =BC =4, CD =6.(1)点E 是BC 边上的点,EF∥AD 交CD 于点F ,FG∥EA 交AD 边于点G .若四边形AEFG 是矩形,求BE 的长;(2)在(1)的条件下,将∠AEF 绕着点E 逆时针旋转为∠A'EF',交CD 边于点F'(与D 不重合),射线EA'交AB 边于点M ,作F'N∥EA'交AD 边于点N ,如图②.设BM =x ,△NF'D 的F'D 边上的高为y .求y 与x 的函数关系式,并直接写出y 的最大值.(图①)ABC DEFG(图②)AB C DEF ’NMA ’11.已知,如图,二次函数2y ax bx c =++的图象经过点(1,0)A ,(3,0)B ,(0,3)C . ⑴求该二次函数的解析式;⑵在该抛物线对称轴上一点P ,使得三条线段PA 、PB 、PC 与一个等边三角形的三条边对应相等(即这三条线段能构成等边三角形),请求出点P 的坐标. ⑶若线段DE 两端点的坐标分别为3(3,)2D 、3(4,)2E .将线段DE 向左平移t 个单位后,在平移后的像''D E 上都存在点P ,使得三条线段PA 、PB 、PC 能与某个等腰三角形的三条边对应相等.请直接写出t 的取值范围.(第11题图)(备用图)2020年黄冈中学重点高中自主招生考试数学模拟试卷八答题卡第Ⅰ部分 数学题号 一 二 三 总分 10 11 得分一、填空题(共5题,每题5分,共25分)1 2 3 4 5二、填空题(共4题,每题5分,共20分)6 7 8 9三、解答题(共2题,第10题15分,第11题15分)10.(图①)ABC DEFG(图②)ABC DEF ’NMA ’11.(第11题图)(备用图)2020年黄冈中学重点高中自主招生考试 数学模拟试卷八参考答案及评分标准一、填空题(共5题,每题5分,共25分) 1 2 3 4 5 ACBCD二、填空题(共4题,每题5分,共20分) 678 9 m>-1且m ≠0191004.517224-三、解答题(共2题,第10题15分,第11题15分) 10.(1)作AH ⊥CD 于H ,则AH=BC=AB=4,HD=2. ∵∠AEB+∠CEF=90°,∠EFC+∠CEF=90° ∴∠AEB=∠EFC 同理∠EFC=∠D ∴∠AEB=∠D∴Rt △ABE ≌Rt △AHD ∴BE=HD=2---------5'(2)∵∠BEM=∠CF'E ,∠B=∠C=90° ∴△BEM ∽△CF'E 作NP ⊥CD 于P ,同理△CF'E ∽△PNF'∴''BM CE PF BE CF PN ==∴CF'=4x ,PF'=2xy 由(1)知tanD=2y PD = ∴PD=2y∵CD=CF'+PF'+PD=422xy yx++=6 ∴2128x y x x-=+--------------------------10' y 最大值=28810--------------------15' 11. ⑴2343333y x x =-+;------------5' ⑵(2,3)P ---------------------10' ⑶712t ≤≤------------------------15。

重点高中自主招生数学(含答案)

重点高中自主招生数学(含答案)

重点高中自主招生数学试题答案及评分标准一、选择题(本题满分30分,每小题5分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、已知实数a 满足,则等于 (B )|2|2a a -+=a (A )0 (B )1(C )2(D )32、名同学参加夏令营活动,需要同时搭建可容纳人和人的两种帐篷,则有效搭建方案5032共有A )(A )8种 (B )9种 (C )种3、反比例函数与一次函数 1k y x -=y =B ).是的平分线,∆70,=︒120,BPC ∠=︒BD ABP ∠CE( C )BFC =( (D ) 95︒100︒5、如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部ABCD A 30︒AB C D '''分的面积为 ( A )(A )(B1(C )(D )112D C (A)(B)(C)(D)(A)(B)(C)(D)6、四条直线围成正方形。

现掷一个均匀且各面上6,6,6,6+=-=+-=--=x y x y x y x y ABCD 标有1、2、3、4、5、6的立方体,每个面朝上的机会是均等的。

连掷两次,以面朝上的数为点P 的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标),则点落在正方形面上(含边界)P 的概率是( D )(A ) (B ) (C )(D )214397125二、填空题(本大题满分30分,每小题5分)7、若,则的值为 0 .1,x =-43221x x x ++- 10、如图,双曲线与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连2(0)y x x=>接EF ,则△OEF 的面积为 .2311、如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点 P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是_____14/3_______cm .12、对于正数x ,规定,例如。

重点高中自主招生考试数学试卷精选全文

重点高中自主招生考试数学试卷精选全文

可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。

2020年山东省青岛一中高中自主招生数学模拟试卷及答案解析

2020年山东省青岛一中高中自主招生数学模拟试卷及答案解析

2020年山东省青岛一中高中自主招生数学模拟试卷一.选择题(共8小题,每小题3分,满分24分)1.(3分)山东省青岛第一中学是山东省首批被确认的省重点中学,占地面积51000平方米。

51000平方米用科学记数法表示为()A.5.1×106B.5.1×104C.5.1×105D.51×1032.(3分)下列四个算式:①﹣2﹣3=﹣5;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④﹣2÷13=−6,其中正确的算式有()A.0个B.1个C.2个D.3个3.(3分)现规定一种新运算“*”:a*b=a−1b,如3*2=3−12=52,则(−12)*3=()A.−16B.−56C.16D.−324.(3分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2,…,∠A6BC与∠A6CD的平分线相交于点A7,得∠A7,则∠A7=()A.α32B.α64C.α128D.α2565.(3分)七年级五个班的班长因为参加校会而没有看年级的乒乓球比赛.年级辅导员让他们猜比赛的结果.1班班长猜:2班第三,3班第五;2班班长猜:1班第一,5班第四;3班班长猜:5班第四,4班第五;4班班长猜:3班第一,2班第二;5班班长猜:1班第三,4班第四.辅导员说,每班的名次都至少被一人说对,那么1~5班的名次依次是()A.1、2、3、4、5B.3、2、1、5、4C.1、3、2、5、4D.3、2、1、4、5 6.(3分)观察下列算式,21=2,22=4,23=8,24=16•25=32,26=64,27=128,28=256,用你所发现的规律得出22001的末位数字是()A.2B.4C.6D.87.(3分)仪表板上有四个开关,每个开关只能处于开或者关状态,如果相邻的两个开关不能同时是开的,那么所有不同的状态有()A.6种B.7种C.8种D.9种8.(3分)下列整数中,与√253最接近的整数是()A.2B.3C.4D.5二.填空题(共6小题,满分18分,每小题3分)9.(3分)如图为苏文同学的小测卷,他的得分应是分.10.(3分)一组数据2、﹣1、0、1、x的极差是4,则x=.11.(3分)如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC 的宽度AC是OA的一半,且OA=30cm,则扇面ABDC的周长为cm.12.(3分)若关于x的一元二次方程x2﹣3x+m=0的一个根为1,则m的值为.13.(3分)令a*b=a×b+a+b,例如:9*2=9×2+9+2=29;再令n!=1×2×3×…×n(n 为自然数),例如:5!=1×2×3×4×5=120.则10!﹣1*2*3*4*5*6*7*8*9=.14.(3分)把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人分到了书但不足5本,则这些书有本.三.解答题(共7小题,满分78分)15.(10分)如图,在△ABC中,∠A=30°,cos B=45,AC=6,求△ABC的面积.。

2020年浙江省温州中学自主招生数学模拟试卷及答案解析

2020年浙江省温州中学自主招生数学模拟试卷及答案解析

第1页(共16页) 2020年浙江省温州中学自主招生数学模拟试卷一.选择题(共8小题,满分40分,每小题5分)1.(5分)化简代数式√3+2√2+√3−2√2的结果是( )A .3B .1+√2C .2+√2D .2√22.(5分)方程6xy +4x ﹣9y ﹣7=0的整数解的个数为( )A .1B .2C .3D .43.(5分)在Rt △ABC 中,∠C =90°,∠B 是它的一个锐角,若sin B ,cos B 是关于x 的方程4x 2﹣5kx +5k +4=0的两个实数根,则k 的值为( )A .125B .−45C .125或−45D .以上各项都不对,关于k 无解4.(5分)已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……,a n +1=﹣|a n +n |(n 为正整数)依此类推,则a 2020值为( )A .﹣1008B .﹣1009C .﹣1010D .﹣10115.(5分)方程3x 2+y 2=3x ﹣2y 的非负整数解(x ,y )的组数为( )A .0B .1C .2D .36.(5分)如图,在正方形ABCD 中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE=FC =3,BE =DF =4,则EF 的长为( )A .32B .23√2 C .75 D .√27.(5分)若正实数a 、b 满足ab =a +b +3,则a 2+b 2的最小值为( )A .﹣7B .0C .9D .188.(5分)已知x 1,x 2是方程x 2−√5x +1=0的两根,则x 12+x 22的值为( )A .3B .5 C.7 D .4。

湖北省重点高中2020年自主招生考试数学试题(一)(含答案)

湖北省重点高中2020年自主招生考试数学试题(一)(含答案)

湖北省重点高中2020年自主招生考试数学试题
(一)
(满分:120 分时间:120 分钟)一、选择题。

(每小题4 分,共24 分)
二、填空题。

(每小题4 分,共24 分)
14、如图,矩形纸片 ABCD 中,AB=8,将纸片折叠,使顶点 B 落在边 AD 的 E 点上,折痕
的一端 G 点在边 BC 上,BG=10.
(1)当折痕的另一端F 在AB 边上时,求△EFG
的面积;
(2)当折痕的另一端 F 在 AD 边上时,证明
四边形 BGEF 为菱形,并求出折痕 GF 的长.
15、已知一次函数y=2x-4 的图象与x 轴,y 轴分别相交于 A,B 两点,点 P 在该函数图象上,
P 到x 轴,y 轴的距离分别为d1,d2.
(1)当 P 为线段 AB 的中点时,求d1+d2 的值;
(2)直接写出d1+d2 的范围,并求当d1+d2=3 时点 P 的坐标;
(3)若在线段AB上存在无数个P点,使d1+ad2=4(a 为常
数),求a 的值.
16、已知AB、CD 是⊙O 的两条弦,直线AB、CD 互相垂直,垂足为E,连接AC,过点B 作
BF⊥AC,垂足为F,直线BF 交直线CD 于点M.
(1)如图1,当点E 在⊙O 内时,连接AD,AM,BD,求证:AD=AM;
(2)如图2,当点E 在⊙O 外时,连接AD,AM,求证:AD=AM;
(3)如图3,当点E 在⊙O 外时,∠ABF 的平分线与AC 交于点H,若tanC=,求tan∠ABH 的值.。

2020年浙江省宁波市普通高中自主招生数学押题试卷及答案解析

2020年浙江省宁波市普通高中自主招生数学押题试卷及答案解析

第 1 页 共 14 页
2020年浙江省宁波市普通高中自主招生数学押题试卷
一.选择题(共5小题,满分25分)
1.(5分)希腊人常用小石子在沙滩上摆成各种形状来研究数. 例如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数.下列数中既是三角形数又是正方形数的是( )
A .289
B .1024
C .1225
D .1378
2.(5分)小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( ) A .1
3
B .1
6
C .
1
12
D .
1
27
3.(5分)下面命题正确的是( ) A .矩形对角线互相垂直
B .方程x 2=14x 的解为x =14
C .六边形内角和为540°
D .一条斜边和一条直角边分别相等的两个直角三角形全等 4.(5分)二次函数y =ax 2+bx +c 的x ,y 的对应值如下表:
x … ﹣1 −1
2
0 12 1 32 2 … y

﹣1
14
m
54
1
14
n

下列关于该函数性质的判断
①该二次函数有最大值;②当x >0时,函数y 随x 的增大而减小;③不等式y <﹣1
的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高中自主招生必做试卷(数学)(满分150分 时间120分钟)一、选择题(每题4分,共40分)1、在-|-3|3,-(-3)3,(-3)3,-33中,最大的是 ( ) A 、-|-3|3 B 、-(-3)3 C 、(-3)3 D 、-332、已知114a b -=,则2227a ab ba b ab ---+的值等于 ( ) A 、215 B 、27- C 、6- D 、63、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是 ( ) A 、b a c =+ B 、b ac = C 、222b ac =+ D 、22b a c ==4、a 、b 是有理数,如果,b a b a +=-那么对于结论:(1)a 一定不是负数;(2)b 可能是负数,其中 ( ) A 、只有(1)正确 B 、只有(2)正确C 、(1),(2)都正确D 、(1),(2)都不正确5、已知关于x 的不等式组⎪⎩⎪⎨⎧<≥-203bx a x 的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所 有可能的整数对(a,b)的个数有 ( )A 、1B 、2C 、4D 、66、如图,表示阴影区域的不等式组为 ( ) 2x +.y ≥5, 2x + y ≤5, 2x +.y ≥5, 2x + y ≤5, A 、 3x + 4y ≥9, B 、 3x + 4y ≥9, C 、 3x + 4y ≥9, D 、 3x + 4y ≤9, y ≥0 x ≥0 x ≥0 y ≥07、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于 ( )A 、43 B 、54 C 、32 D 、65 8、若b x ax x x +++-732234能被22-+x x 整除则a :b 的值是 ( ) A 、-2 B 、-12 C 、6 D 、49、在矩形ABCD 中,AB =8,BC =9,点E 、F 分别在BC 、AD 上,且BE =6,DF =4,AE 、FC 相交于点G ,GH ⊥AD ,交AD 的延长线于点H ,则GH 的长为 ( ) A 、16 B 、20 C 、24 D 、28 10、若a 与b 为相异实数,且满足:21010=+++a b b a b a ,则ba = ( ) A 、0.6 B 、0.7 C 、0.8 D 、0.9二、填空题(每题5分,共20分)A B C DE FG第3题图 第9题图 第7题图第6题图 学校 姓名 考号装 订 线 外 请 不 要 答 题11、已知,αβ是方程2210x x +-=的两根,则3510αβ++的值为12、在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标(,x y )的个数为 13、今年参加考试的人数比去年增加了30%,其中男生增加了20%,女生增加了50%。

设今年参加考试的总人数为a ,其中女生人数为b ,则ba= 14、在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA =5,PC =5,则PB = .三、解答题(共90分)15、(12分)因式分解:224443x x y y --+-16、(14分)如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大?若存在,求出点M 的坐标;若不存在,请说明理由.17、(15分)如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值. 18、(15分)如图,在以O 为圆心的圆中,弦CD 垂直于直径AB ,垂足为H ,弦BE 与半径OC 相交于点F ,且OF=FC ,弦DE 与弦AC 相交于点G. (1)求证:AG=GC ; (2)若AG=3,AH :AB=1:3,求△CDG 的面积与△BOF 的面积.19、(16分)已知直角三角形ABC 和ADC 有公共斜边AC ,M 、N 分别是AC ,BD 中点,且M 、N 不重合.(1)线段MN 与BD 是否垂直?请说明理由. (2)若∠BAC = 30°,∠CAD = 45°,AC = 4,求MN 的长 . 20、(18分)已知实数,,a b c 满足:2,4a b c abc ++==。

(1)求,,a b c 中最大者的最小值; (2)求a b c ++的最小值。

参考答案1 2 3 4 5 6 7 8 9 10 BDAADBCABC二、填空题(每题5分,共20分)11、2- 12、9 13、51314、10 三、解答题(本题6小题,共90分)15、224443x x y y --+-22(441)(44)x x y y =-+--+ …………6分= (2x+y-3)(2x-y+1) …………12分16、解:(1)令x =0,则y =4,∴点C 的坐标为(0,4), …………1分B x Ay O C不 要 答 题17、要考虑的不同画线方案,可归纳为如下4类:(1)如图(1),其周长和=112(212)5.33⨯⨯+⨯=…………3分(2)如图(2),其周长和=[]2(3)2(1)3(1)8.x x x x++-+-=…………6分(3)如图(3),其周长和=8.…………9分(4)如图(4),其周长和=3162(3)2(3)8.33xx x x x-⎡⎤++-+=+⎢⎥⎣⎦∵031x<≤,1 0.3x<≤∴当13x=时,周长和有最大值79.9…………14分综上所述,剪得的两个小长方形周长之和的最大值为79.9…………15分18、(1)证明:连接AD,BC,BD∵AB是直径,AB⊥CD,∴BC=BD,∠CAB=∠DAB, ∴∠DAG=2∠CAB,∵∠BOF=2∠CAB, ∴∠BOF=∠DAG,又∵∠OBF=∠ADG, ∴△BOF ∽△DAG , ∴OB DAOF AG=, ∵OB=OC=2OF,∴2DAAG=, 又∵AC=DA ,∴AC=2AG , ∴AG=GC; …………7分 (2)解:连接BC ,则∠BCA=90°, 又∵CH ⊥AB,∴2AC AH AB =,∵222,:1:3AC AG AH AB === ∴21(23),3AB AB =∴AB=6,∴AH=2,∴CH=22,∴S △ACD =1124242,22CD AH =⨯⨯=又∵AG=CG ,∴S △CDG = S △DAG =12S △ACD =22, …………11分 ∵△BOF ∽△DAG , ∴23(),4BOF DAG S OB S AD == ∴S △BOF =32. …………15分 19、(1)证明:如图(1)当B,D 在AC 异侧时,连接BM,DM如图(2)当B,D 在AC 同侧时同理可证MN BD ⊥ …………6分 (2)如图三:连接BM 、MD ,延长DM ,过B 作DM 延长线的垂线段BE , 则可知在Rt △BEM 中,∠EMB=30°, ∵AC=4,∴BM=2,∴BE=1,EM=3,MD=2,从而可知 BD=1223+=+2(2+3),∴BN=23+ 由Rt △BMN 可得:MN=262223--=-=2(2+3)(不化简不扣分) …………11分 如图四:连接BM 、MD ,延长AD ,过B 作垂线BE ,∵M 、N 分别是AC 、BD 中点,∴MD=12AC ,MB=12AC , ∴MD=MB ∵∠BAC=30°,∠CAD=45°, ∴∠BMC=60°,∠DMC=90°,∴∠BMD=30°,∴∠BDM=18030752-= ∵∠MDA=45°,∴∠EDB=180°-∠BDM -∠MDA=60°令ED=x ,则BE=3x ,AD=22,AB=23 ∴由Rt △ABE 可得:222(23)(3)(22)x x =++, 解得23x =-,则BD=223-∵M 、N 分别是AC 、BD 中点∴MD=2,由Rt △MND 可得:…………16分 20、解:(1)由题意不妨设a 最大,即,,0.a b a c a ≥≥>且42,.b c a bc a+=-=∴ b 、c 是方程24(2)0x a x a--+=的两实根 △24(2)40a a=--⨯≥∴2(4)(4)0a a +-≥∴4a ≥(当4a =时,1b c ==-满足题意) ……………9分 (2)∵0abc > ∴,,a b c 全大于0,或一正二负若,,a b c 均大于0,由(1)知,,,a b c 最大者不小于4,这与2a b c ++=矛盾,故此情况不存在 故,,a b c 为一正二负,不妨设0,0,0a b c ><<(2)226a b c a b c a a a ++=--=--=-≥(当4a =时成立)所以a b c ++最小值为6 …………18分。

相关文档
最新文档