信号发生器

合集下载

信号发生器

信号发生器

分类介绍
01
正弦
02
低频
03
高频04微波 Nhomakorabea06
频率合成式
05
扫频和程控
1
函数发生器
2
脉冲
3
随机
4
噪声
5
伪随机
信号发生器正弦信号发生器:正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。 按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为 简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生 器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发 生器和频率合成式信号发生器等。
电源自适应的方波发生器原理图主振级产生低频正弦振荡信号,经电压放大器放大,达到电压输出幅度的要 求,经输出衰减器可直接输出电压,用主振输出调节电位器调节输出电压的大小。
电源自适应的方波发生器原理图
右图的电路是一种不用电源的方波发生器,可供电子爱好者和实验室作简易信号源用。电路是由六反相器 CD4096组成的自适应方波发生器。当输入端输入小信号正弦波时,该信号分两路传输,其一路径C1、D1、D2、C2 回路,完成整流倍压功能,给CD4096提供工作电源;另一路径电容C3耦合,进入CD4096的一个反相器的输入端, 完成信号放大功能(反相器在小信号工作时,可作放大器用)。该放大信号经后级的门电路处理,变换成方波后 经CD4096的12、8、10脚输出。输出端的R2为可调电阻,以保证输出端信号从0~1.25V可调。该方波发生器电路 简单,制作容易,因此可利用该方波发生器电路,作市电供电的50Hz方波发生器。

《信号发生器》课件

《信号发生器》课件

信号发生器的基本原理
总结词
信号发生器的基本原理概述
详细描述
信号发生器的基本原理是利用振荡器产生一定频率和幅度的正弦波,然后通过波 形合成技术生成其他波形。振荡器通常由电感和电容组成,通过改变电感或电容 的参数,可以改变输出信号的频率。
信号发生器的分类
总结词
信号发生器的分类概述
详细描述
信号发生器有多种分类方式。按波形分类,可分为正弦波信号发生器、方波信号发生器和脉冲信号发生器等;按 频率分类,可分为低频信号发生器、高频信号发生器和微波信号发生器等;按用途分类,可分为测量用信号发生 器和测试用信号发生器等。
《信号发生器》PPT课件
目 录
• 信号发生器概述 • 信号发生器的工作原理 • 信号发生器的应用 • 信号发生器的使用与维护 • 信号发生器的发展趋势与展望
01
信号发生器概述
信号发生器的定义与用途
总结词
信号发生器的定义与用途概述
详细描述
信号发生器是一种能够产生电信号的电子设备,广泛应用于通信、测量、控制 等领域。它可以产生各种波形,如正弦波、方波、三角波等,用于测试、模拟 和控制系统。
干燥、通风良好、无尘的环境中,避免强烈振动和磁场干扰。
05
信号发生器的发展趋势与展望
信号发生器的发展历程
信号发生器的起源
信号发生器的历史可以追溯到20 世纪初,当时它被用于电信和广
播领域。
模拟信号发生器
在20世纪的大部分时间里,模拟信 号发生器占据主导地位,它通过连 续的电压或电流输出信号。
数字信号发生器
信号发生器的正确使用方法
信号发生器的正确使用方法包括
首先,确保电源连接正确,避免电源电压过高或过低;其次,根据需要选择合适的输出信号类型和参 数,如波形、频率、幅度等;再次,确保输出连接正确,避免连接短路或开路;最后,遵循安全操作 规程,避免发生意外事故。

信号发生器

信号发生器

(1)电压斜升过程 输出电压可表示为 式中
U o1
I1 t C
(8-10)
UO1——斜升输出电压的瞬时值; I1—— 正恒流源的的电流值; C—— 积分电容的电容量。 (2)电压斜降过程 I2 U o 2 U o1 t 输出电压可表示为 (8-13) C
式中 UO2——斜升输出电压的瞬时值; I2—— 负恒流源的的电流值; C—— 积分电容的电容量。
输出正弦 缓冲放 波 大器
外触发脉冲输入
图8.9 方波-三角波-正弦波函数发生器的原理框图
2.三角波-方波-正弦波函数发生器的构成方案
正弦波形成电路
缓冲放大器
输出正弦波
三角波 发生器
方波变换电路
缓冲放大器
输出方波
图8.10三角波-方波-正弦波函数发生器的原理框图
3.正弦波-方波-三角波函数发生器的构成方案
Pi
RL
U i2 Ri
)
8.3 函数信号发生器

实际上是一种多波形信号源,可以输出正 弦波、方波、三角波、斜波、半波正弦波 及指数波等。 其输出波形均可用数学函数描述。

8.3.1 函数信号发生器的基本组成与原理
1.方波-三角波-正弦波函数发生器的构成方案
内触发 脉冲发生器
o o o o 施密特 触发器 积分器 正弦波形 成电路
输出正弦波
正弦波形 成电路
缓冲 放大器
正弦波 发生器
微分电路 尖脉冲
方波形成 电路
缓冲 放大器
输出方波
图8.11 正弦波-方波-三角波函数发生器的原理框图
8.3.2 函数信号发生器的典型电路 1.三角波形成电路

电路框图如图8.12所示,由恒流源控制电路、 恒流源、积分器(包括积分电容C和运算放 大器A)和幅度控制电路构成。

第三章:信号发生器

第三章:信号发生器

3.2 低频信号发生器
概述: 1)低频信号发生器的输出信号频率范围通常为 20HZ~20KHZ,也称为音频信号发生器。 2)低频信号发生器可用于测试调整低频放大器、 传输网络和广播、音响等电声设备,还可为高频 信号发生器提供外部调制信号。
3.2.1 低频信号发生器的主要性能指标 (1)频率范围。1Hz~20KHz或延伸到 1MHz (2)频率稳定度。(0.1~0.4)%/小时 (3)频率的准确度。 ±(1~2)% (4)输出电压。0~10V连续可调 (5)输出功率。0.5~5w连续可调 (6)输出阻抗。50Ω、75Ω、150Ω、 600Ω和5KΩ (7)非线性失真系数。(0.1~1)% (8)输出形式:平衡输出与不平衡输出。
4.输出级:包括功率放大,输出衰减、阻 抗匹配等几部分电路。功放和输出衰减已 在前面讲过,这里就不讲了,由于高频信 号发生器必须工作在 阻抗匹配的条件下, (输出阻抗一般为50欧或75欧)否则将影 响衰减系数、前一级电路的正常工作、降 低输出功率或在输出电缆中形成驻波等。 所以必须在输出端与负载之间加入阻抗变 换器以实现阻抗的匹配。
应用实例:放大倍数等于输出电压与输入电压之比。
毫伏表
信号源 示波器 被测 放大器
放大器放大倍数测量连线图
3.3 函数信号发生器 函数信号发生器实际上是一种多波形信号源, 可以输出正弦波、方波、三角波、斜波、半 波正弦波及指数波等。由于其输出波形均可 用数学函数描述,故命名为函数发生器。目 前函数发生器输出信号的频率低端可至几毫 HZ,高端可达50MHZ。除了作为正弦信号源 使用外,还可以用来测试各种电路和机电设 备的瞬态特性、数字电路的逻辑功能、模数 转换器、压控振荡器以及锁相环的性能。

信号发生器的基本组成

信号发生器的基本组成

信号发生器的基本组成信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。

它在测量、测试、调试和维修电子设备中起到了非常重要的作用。

信号发生器的基本组成包括以下几个部分:1. 振荡器:这是信号发生器的核心部分,用于产生所需的信号波形。

振荡器可以是晶体振荡器、LC 振荡器或 RC 振荡器等,具体取决于所需的频率范围和波形。

2. 波形产生电路:波形产生电路用于将振荡器产生的信号转换为所需的波形,如正弦波、方波、三角波等。

这可以通过使用滤波器、放大器、比较器等电子元件来实现。

3. 频率调节电路:频率调节电路用于调整信号的频率。

这可以通过改变振荡器的元件参数、使用频率合成器或锁相环等技术来实现。

频率调节通常可以通过手动旋钮、按键或外部控制信号进行。

4. 幅度调节电路:幅度调节电路用于调整信号的输出电平。

这可以通过可变增益放大器、衰减器或外部控制信号来实现。

幅度调节可以使信号发生器产生不同强度的信号,以满足不同的测试需求。

5. 输出电路:输出电路将生成的信号传递到外部设备或测试装置。

它可以包括放大器、滤波器、隔离器等,以确保信号的质量和稳定性。

6. 控制和显示界面:信号发生器通常配备控制和显示界面,用于设置和显示相关参数,如频率、幅度、波形类型等。

这可以通过旋钮、按钮、显示屏或连接到计算机进行远程控制来实现。

除了以上基本组成部分,一些高级信号发生器还可能包括调制功能、扫描功能、数字信号生成能力、存储和调用波形的能力等。

这些附加功能可以根据具体的应用需求进行选择和配置。

总之,信号发生器的基本组成部分包括振荡器、波形产生电路、频率和幅度调节电路、输出电路以及控制和显示界面。

这些部分协同工作,以产生各种频率和波形的电信号,为电子测试和调试提供了重要的工具。

信号发生器的分类

信号发生器的分类

信号发生器的分类信号发生器是电子测试仪器中常用的一种设备,用于产生不同频率、幅度和波形的电信号。

根据其功能和应用领域的不同,信号发生器可以分为多种类型。

本文将对几种常见的信号发生器进行分类和介绍。

一、函数发生器(Function Generator)函数发生器是最常见的一种信号发生器,它可以产生多种波形信号,如正弦波、方波、锯齿波和三角波等。

函数发生器可以根据用户的需求,通过调节频率、幅度和相位等参数,生成不同形态的信号。

它广泛应用于电子实验、通信测试和教学等领域。

二、任意波形发生器(Arbitrary Waveform Generator)任意波形发生器是一种高级的信号发生器,可以产生任意复杂的波形信号。

与函数发生器相比,任意波形发生器可以通过用户提供的采样点数据,生成非周期性的任意波形信号。

任意波形发生器在研发新产品、模拟真实信号和测试复杂系统等方面具有重要应用。

三、脉冲发生器(Pulse Generator)脉冲发生器是专门用于产生脉冲信号的设备。

脉冲发生器可以产生具有特定频率、宽度和占空比的脉冲信号,常用于数字电路测试、脉冲测量和脉冲信号调试等领域。

脉冲发生器还可以模拟各种脉冲干扰,用于电磁兼容性测试和抗干扰性能评估。

四、频率计(Frequency Counter)频率计是一种用于测量信号频率的设备,通常与信号发生器配合使用。

频率计可以精确地测量输入信号的频率,并显示在数码显示屏上。

频率计广泛应用于科研实验、无线通信、广播电视等领域,常用于校准信号发生器和检测频率稳定性。

五、噪声发生器(Noise Generator)噪声发生器是一种用于产生随机噪声信号的设备。

噪声发生器可以产生不同类型的噪声信号,如白噪声、粉噪声和高斯噪声等。

噪声发生器在通信系统测试、声学实验和信号处理等领域具有重要应用,可以模拟真实环境中的噪声情况。

六、微波信号发生器(Microwave Signal Generator)微波信号发生器是专门用于产生微波频率信号的设备。

信号发生器的功能和使用方法

信号发生器的功能和使用方法

信号发生器是一种用于产生各种类型和频率的电信号的仪器,常用于电子测试、实验和通信设备调试等领域。

其主要功能和使用方法如下:
功能:
1.产生标准信号:信号发生器可以产生各种类型的标准信号,如正弦波、方波、脉冲波、三角波等,用于测试和测量电路的性能和响应。

2.调节信号参数:信号发生器可以调节信号的频率、幅度、相位等参数,以满足测试和实验的需求。

3.产生调制信号:信号发生器还可以产生调制信号,如调幅信号、调频信号、调相信号等,用于调试和测试调制解调器、通信设备等。

4.产生噪声信号:一些信号发生器还具有产生噪声信号的功能,用于测试和测量器件或系统的抗干扰能力和性能。

使用方法:
1.设置频率:选择所需的信号类型,通过旋转或按键操作设置所需的频率。

2.设置幅度:根据需要,设置信号的幅度(峰值、峰峰值、或功率)大小。

3.调节相位:若需要,通过旋转或按键操作,调节信号的相位。

4.选择输出方式:选择信号的输出方式,可以通过电缆连接到被测试的设备或电路中,或者使用内置的示波器检测输出信号。

5.调整信号参数:根据实际需求,对信号的频率、幅度、相位等参数进行调整,以满足测试、实验和调试的要求。

6.监测和分析信号:使用示波器或其他测量仪器,监测和分析输出信号的波形和特征,以评估被测试设备或电路的性能和响应。

需要注意的是,使用信号发生器时应遵循安全操作规程,确保信号发生器和被测试设备之间的连接正确可靠,防止过载或短路等意外情况的发生。

信号发生器的使用

信号发生器的使用
图8-11 SP-1642B函数信号发生器的后面板结构示意图
• 表3 SP-1642B函数信号发生器的后面板功能介绍
• 三、信号发生器的使用 • 1、准备工作 • 1)将电源线接入220V,50HZ交流电源上。应注意三芯
电源插座的地线脚应与大地妥善接好,避免干扰。
• 2)开机前应把面板上各输出旋扭旋至最小。 • 3)为了得到足够的频率稳定度,需预热。 • 4)频率调节:按下相应的按键,然后再调节至所需要的
• 3、函数发生器 • 又称波形发生器。它能产生某些特定的周期性时间函数波形(主要是
正弦波、方波、三角波、锯齿波和脉冲波等)信号。频率范围可从几 毫赫甚至几微赫的超低频直到几十兆赫。除供通信、仪表和自动控制 系统测试用外,还广泛用于其他非电测量领域。如图8-4所示为 DG1022u 20MHz的函数发生器外观图。 • 4、随机信号发生器 • 随机信号发生器分为噪声信号发生器和伪随机信号发生器两类。如图 8-5所示为随机信号发生器的外观图。噪声信号发生器的主要用途为 :在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而 测定系统的性能;外加一个已知噪声信号与系统内部噪声相比较以测 定噪声系数;用随机信号代替正弦或脉冲信号,以测试系统的动态特 性。
信号发生器本身能显示输出信号的值,当输出电压不符合要求时,需要另配 交流毫表测量输出电压,选择不同的衰减再配合调节输出正弦信号的幅度, 直到输出电压达到要求。若要观察输出信号波形,可把信号输入示波器。需 要输出其它信号,可参考上述步骤操作。 • 2)用信号发生器测量电子电路的灵敏度 • 信号发生器发出与电子电路相同模式的信号,然后逐渐减小输出信号的幅 度(强度),同时通过监测输出的水平。当电子电路输出有效信号与噪声的 比例劣化到一定程度时(一般灵敏度测试信噪比标准S/N=12dB),信号发生器 输出的电平数值就等于所测电子电路的灵敏度。在此测试中,信号发生器模 拟了信号,而且模拟的信号强度是可以人为控制调节的。用信号发生器测量 电子电路的灵敏度,其标准的连接方法是:信号发生器信号输出通过电缆接 到对电子电路输入端,电子电路输出端连接示波器输入端。 • 3)用信号发生器测量电子电路的通道故障 • 信号发生器可以用来查找通道故障。Байду номын сангаас基本原理是:由前级往后级,逐一测 量接收通路中每一级放大和滤波器,找出哪一级放大电路没有达到设计应有 的放大量或者哪一级滤波电路衰减过大。信号发生器在此扮演的是标准信号 源的角色。信号源在输入端输入一个已知幅度的信号,然后通过超电压表或 者频率足够高的示波器,从输入端口逐级测量增益情况,找出增益异常的单 元,再进一步细查,最后确诊存在故障的零部件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意波形
能产生任意形状的模拟信号,例如:模仿产生心电图、雷电干扰、机械运动等形状复杂的波形。
调制信号
将模拟信号或数字信号调制到射频载波信号上,以便于远程传输。通常调制方式有:调幅、调频、调相、脉冲调制、数字调制等。
数字矢量信号
通过正交调制(I-Q调制),可以同时传递幅度和相位信息,故称为数字矢量信号源。该内容将在本章3.4节射频信号发生器中介绍。
第2步,将波段选择开关置于Ⅴ波段,此时KHz指示灯亮; 然后分别调节三个频率调节旋钮,从左至右分别置于“7”、 “4”和“0”刻度;此时数码显示出74.0,即74.0KHz。 第3步,调节输出细调旋钮使电压读数为“1”;再调节输出 衰减旋钮,使其置于“40”,即衰减40dB,由表2-1可知,衰 减了100倍(即为原值的0.01);输出有效电压则为1V÷100 =10mV。
0
t
数字信号
可按编码要求产生0/1逻辑电平(多为TTL或ECL电平),也称数据发生器、图形或模式发生器。通常是具备多路数字输出的。
噪声信号
提供随机噪声信号,具有很宽的均匀频谱。常用于测量接收机的噪声系数或调制到高频、射频载波上作干扰源。
伪随机信号
是一串0/1电平随机编码的数字序列信号,因其序列周期相当长(在足够宽的频带内产生相当平坦的离散频谱),故有点类似随机信号。

振 器 主振输 出调节
电压
放大 器
输出
功率
阻抗
衰减

放大

变换

功率输出
指示电压表
S 电压输入
第2章
测量用信号发生器
(1)主振器 作用:产生与输出信号频率一致低频正弦信号。 电路结构:RC文氏桥式振荡器、差频式振荡器 RC文氏桥式振荡器优点:波形失真小、振幅稳定、频 率调节方便和频率可调范围宽。 RC文氏桥式振荡器缺点:频率覆盖系数(即最高频率 与最低频率之比)为10,要覆盖1Hz~1MHz频率范围, 至少需要六个波段。
3.1.2 信号发生器的分类
信号发生器分为通用信号发生器和专用信号发生器两大类。 1. 按输出波形分类 正弦信号发生器、函数信号发生器、脉冲信号发生器和随 机信号发生器
名 称
波形示意图




正弦波信号
正弦波是电子系统中最基本的测试信号,频率从µHz至几十GHz。大多信号源都具备正弦波输出。
函数信号
f max f min f0
第2章
测量用信号发生器
2. 输出特性 (1)输出阻抗 低频信号发生器一般有匹配变压器,故有50Ω、150Ω、 600Ω、5kΩ等各种不同输出阻抗 高频信号发生器一般只有50Ω或75Ω一种输出阻抗。
(2)输出电平及其平坦度
输出电平是表征信号发生器所能提供的最大和最小输出 电平调节范围。目前正弦信号发生器输出信号幅度采用有效 值或绝对电平来度量。 输出电平平坦度是指在有效的频率范围内,输出电平随 频率变化的程度。
电视设备测试、维修
广播、电报等无线通信测试与维修 雷达、微波、卫星通信设备测试、维修
甚高频信号发生器 30MHz~300MHz 超短波、调频广播、导航测试 超高频信号发生器 300MHz以上
3. 按调制方式分类
按调制方式的不同,信号发生器分为调幅、调频、调相、 脉冲调制等类型。
第2章
测量用信号发生器
外调制。
高频信号发生器的调制特性包括调制方式、调制频率、调 制系数以及调制线性等。
第2章
测量用信号发生器
3.2 模拟信号发生器 3.2.1 低频信号发生器
低频信号发生器又称为音频信号发生器,用来产生频率 范围为1Hz~1MHz的低频正弦信号、方波信号及其他波形信 号。
1. 低频信号发生器的组成
电压输出
Ⅱ波段:10~100Hz Ⅲ波段:100Hz~1KHz Ⅳ波段:1KHz~10KHz Ⅴ波段:10KHz~100KHz Ⅵ波段:100KHz~1MHz
第2章
测量用信号发生器
(2)频率误差
Ⅰ~Ⅴ波段小于±1.5%输出频率,Ⅵ波段小于±2%输出频率
(3)正弦信号 幅度:>6V
频率响应:< ±1dB,这一技术性能的含义是,信号频率在 1Hz~1MHz范围内变化时,信号发生器对不同频率的信号增益的偏差
第2章
输出衰减 dB 电压衰减倍数
测量用信号发生器
表 2-1 输出衰减 dB 与电压衰减倍数的关系表 10 3.16 20 10 30 31.6 40 100 50 316 60 1000 70 3160 80 10000 90 31600
例1:要用XD-22A输出一个频率为74 000Hz,电压为 10mV(有效值)的正弦信号,如何调节? 解:第1步,弹出输出波形转换开关S,使输出为正弦信号。
会引起高频段(f>500KHz)电压误差
第2章
测量用信号发生器
3)使用方法
(1)选择波形。由输出波形转换开关S控制。 (2)调频率。先调波段开关,选择待输出信号频率所在 的波段,再调频率调节旋钮及频率微调旋钮。即由波段选择 开关和三个频率调节旋钮配合使用,进行调节;在数码显示窗 上将显示出读数,三个数码管对应显示三个频率旋钮的调节值; Hz、KHz指示灯指示所显示频率的单位。如,需要输出频率 为2370Hz的信号,首先将波段选择开关置于Ⅳ波段,此时 KHz指示灯亮;然后分别调节三个频率调节旋钮,从左至右分 别置于“2”、“3”和“7”刻度;此时数码显示出2.37,即 2.37KHz。输出即为2 370Hz。 (3)幅度调节。先调输出细调旋钮,再调输出衰减旋钮。 即由输出细调旋钮和输出衰减旋钮配合使用,进行调节;面板 左上方的表头将显示出电压读数;实际输出值等于电压读数 除以衰减倍数,即U实=U示/衰减倍数。
(5)输出波形转换开关S。
(6)信号输出插孔。 (7)输出细调旋钮。用于调节电压指示表所显示的电压。 (8)输出衰减调节开关。用于调节衰减器的衰减倍数。 (9)频率单位指示。 (10)频率显示窗。 (11)电压指示表。
第2章
测量用信号发生器
2)使用注意事项: 开机前,把输出细调旋钮置于最小值处,防止开机时因 起振幅度超过正常值而打坏表针 开机后,让仪器预热片刻,等表头指示稳定后再开始使用 输出波形由输出波形开关S控制 信号输出电缆的长度以(1±10%)m为宜,太长或太短都
混频器
可变频率 振荡器 f1=3.3997~5.1000MHz 差频式振荡器的组成框图
第2章
测量用信号发生器
(2)电压放大器 电压放大器兼有缓冲与电压放大的 R1 作用。缓冲是为了使后级电路不影响主 R2 振器的工作,一般采用射极跟随器或运 R3 放组成的电压跟随器。放大是为了使信 S R4 号发生器的输出电压达到预定技术指标。 C + R5 (3)输出衰减器 R6 输出衰减器用于改变信号发生器的 + R7 RP Ui R 输出电压或功率,分为连续调节和步进 8 - 调节。连续调节由电位器实现,步进调 衰减器原理图 节由步进衰减器实现。
第2章
测量用信号发生器
(1)主振器 差频式振荡器优点:在不分波段的情况下得到很宽的 频率覆盖范围。 差频式振荡器缺点:对振荡器频率稳定性要求很高, 两个振荡器应远离整流管、功率管等发热元件,彼此 分开,并良好屏蔽。
固定频率 f2=3.4000MHz 振荡器
f0=300Hz~1.7000MHz 滤波放大 衰减器 输出
XD-22A型低频信号发生器 输出衰减dB XD-22A型低频信号发生器 输出衰减dB 细调 频率单 细调
位显示频率
4 5 6 7 8 1 0 9 3 2
频率
4 3 2 1 0 9 5 6 7 8 - 0 + 5 5 15 15 50 30 70
4 3 2
5 6 7 8
S
1 0 9
电源
电源
波段 波段
+ Uo

第2章
测量用信号发生器
(4) 功率放大器及阻抗变换器 功率放大器用来对衰减器输出的电压信号进行功率放大, 使信号发生器达到额定功率输出。为了能实现与不同负载匹配, 功率放大器之后与阻抗变换器相接,这样可以得到失真小的波 形和最大的功率输出。 阻抗变换器只有在要求功率输出时才使用,电压输出时只
占空比 占空比
波形输 出开关
微调旋钮 占空比调节旋钮: 步进旋钮频率调节 波段选择开关: 接通电源 调节脉冲信号的占 选择调节波段 旋钮 XD-22A型低频信号发生器面板图
空比
第2章
测量用信号发生器
(1)电源开关。 (2)波段选择开关。共有六个波段。 (3)频率调节旋钮。又包括三个步进旋钮和一个微调旋钮。 (4)占空比调节旋钮。用于调节脉冲信号的占空比。
通常包含正弦波、方波、三角波三种,有的还包含锯齿波、脉冲波、梯形波、阶梯波等波形,频率从几Hz至上百MHz。
扫频信号
频率可在某区间有规律地扫动,多为用锯齿波进行线性扫频。多数扫频源是以正弦波扫频,也有以方波、三角波扫频。还有非线性的对数扫频。
脉冲信号
U
输出的脉冲信号可按需要设置其重复频率、脉冲宽度、占空比、上升及下降时间等参数。脉冲信号有的还有双脉冲输出。
3.1.3 正弦信号发生器的主要技术特性
1. 频率特性 (1)有效频率范围:各项指标均能得到保证的输出频率 范围称为信号发生器的有效频率范围。
(2)频率准确度:指频率实际值对其标称值的相对偏差。 其表达式为: f f f
a
x 0
f0

f0
(3)频率稳定度:指在一定时间间隔内频率准确度的变 化,它表征信号源维持工作于恒定频率的能力。
性失真、噪声等原因,其输出信号中都含有谐波等其他成分, 即信号的频谱不纯。用来表征信号频谱纯度的技术指标就是 谐波失真度。
第2章
测量用信号发生器
相关文档
最新文档