电磁场与电磁波答案(无填空答案).
电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波 答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。
电磁场与电磁波课后习题答案全-杨儒贵

第一章矢量分析第一章 题 解1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。
解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zyz yx z y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zyz y x z y xC C C A A A e e e e e e e e e C A x x x x x452102321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。
1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为,位置矢量B 与X 轴的夹角为,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅cos B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。
电磁场与电磁波_课后答案(冯恩信_著)

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=求:(a) A ; (b); (c); (d); (e)(f)解:(a) ; (b) 14132222222=++=++=z y x A A A A )ˆ2ˆˆ(61ˆz y x BB b -+==( c) ; (d) 7=⋅B A z y xC B ˆ4ˆ7ˆ---=⨯(e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯(f)19)(-=⋅⨯C B A1.2;求:(a) A ; (b) ; (c) ; (d) ; (e) BA+解:(a) ;(b) ;(c) 25π+=A )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ43-=⋅πB A (d)z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ(e)z B A ˆˆ)3(ˆ-++=+ϕπρ1.3; 求:(a) A ; (b); (c); (d); (e)解:(a) ; (b) ; (c) ;254π+=A )ˆˆ(11ˆ2θππ-+=rb22π-=⋅B A(d) ; (e) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ϕπˆ2ˆ3-=+rB A 1.4 ;当时,求。
解:当时,=0, 由此得 5-=α1.5将直角坐标系中的矢量场分别用圆柱和圆球坐标系中的坐标分量表示。
解:(1)圆柱坐标系由(1.2-7)式,;ϕϕϕρsin ˆcos ˆˆ1-==xF ϕϕϕρcos ˆsin ˆˆ2+==y F(2)圆球坐标系由(1.2-14)式, ϕϕϕθθϕθsin ˆcos cos ˆcos sin ˆˆ1-+==r xFϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆ2++==r yF1.6将圆柱坐标系中的矢量场用直角坐标系中的坐标分量表示。
解:由(1.2-9)式,)ˆˆ(2ˆsin 2ˆcos 2ˆ2221y y xx yx y x F ++=+==ϕϕρ)ˆˆ(3ˆcos 3ˆsin 3ˆ3222y x xy yx y x F +-+=+-==ϕϕϕ1.7将圆球坐标系中的矢量场用直角坐标系中的坐标分量表示。
《电磁场与电磁波》课后习题解答(全)

(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay
−
3az
)
;②
A−B =
53 ;③ A • B = −11;
④
θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2
。
1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;
电磁场与电磁波试题答案

《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为方程。
3.时变电磁场中,数学表达式H E S ⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz e y B ˆˆ2+-= 是否是某区域的磁通量密度(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+= ,z y x e e e B ˆˆ3ˆ5--= ,求(1)B A +(2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E e E --=004ˆ3ˆ(1) 试写出其时间表达式;(2)说明电磁波的传播方向; 四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球内任一点的电场强度(2)球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示),(1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波复习材料 简答
1. 简述恒定磁场的性质,并写出其两个基本方程。
2. 试写出在理想导体表面电位所满足的边界条件。
3. 试简述静电平衡状态下带电导体的性质。
答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。
(3分) 4. 什么是色散?色散将对信号产生什么影响?
答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。
(3分) 色散将使信号产生失真,从而影响通信质量。
(2分)
5.已知麦克斯韦第二方程为t B E ∂∂-
=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
6.试简述唯一性定理,并说明其意义。
7.什么是群速?试写出群速与相速之间的关系式。
8.写出位移电流的表达式,它的提出有何意义?
9.简述亥姆霍兹定理,并说明其意义。
答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。
(3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究
10.已知麦克斯韦第二方程为S d t B l d E S C
⋅∂∂-=⋅⎰⎰,试说明其物理意义,并写出方程的微
分形式。
答:其物理意义:随时间变化的磁场可以产生电场。
(3分)
方程的微分形式:
11.什么是电磁波的极化?极化分为哪三种?
答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。
(2分) 极化可以分为:线极化、圆极化、椭圆极化。
12.已知麦克斯韦第一方程为
t D J H ∂∂+
=⨯∇
,试说明其物理意义,并写出方程的积分形式。
13.试简述什么是均匀平面波。
答:与传播方向垂直的平面称为横向平面;(1分)
电磁场HE 和的分量都在横向平面中,则称这种波称为平面波;(2分)
在其横向平面中场值的大小和方向都不变的平面波为均匀平面波。
(2分) 14.试简述静电场的性质,并写出静电场的两个基本方程。
15.试写出泊松方程的表达式,并说明其意义。
计算
1.按要求完成下列题目 (1)判断矢量函数
y x e xz e
y B ˆˆ2+-=
是否是某区域的磁通量密度?
(2)如果是,求相应的电流分布。
2.矢量
z y x e e e
A ˆ3ˆˆ2-+=
,
z y x e e e
B ˆˆ3ˆ5--=
,求
(1)B A
+
(2)B A ⋅
3.在无源的自由空间中,电场强度复矢量的表达式为
()jkz y x e E e E e
E --=004ˆ3ˆ
(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;
4.矢量函数z x e yz e yx A ˆˆ2
+-= ,试求 (1)A
⋅∇
(2)A
⨯∇
5.矢量z x e e A ˆ2ˆ2-=
,y x e e B ˆˆ-= ,求
(1)B A
-
(2)求出两矢量的夹角
6.方程
2
2
2
)
,
,
(z
y
x
z
y
x
u+
+
=给出一球族,求
(1)求该标量场的梯度;
(2)求出通过点()0,2,1
处的单位法向矢量。
7.标量场
()z e
y
x
z
y
x+
=3
2
,
,
ψ,在点()0,1,1-
P处
(1)求出其梯度的大小(2)求梯度的方向
8.矢量
y x e e
A ˆ2ˆ+=
,z x e e B ˆ3ˆ-=
,求
(1)B A
⨯
(2)B A +
9.矢量场A 的表达式为
2ˆ4ˆy e x e
A y x -=
(1)求矢量场A
的散度。
(2)在点()1,1处计算矢量场A
的大小。
应用题
1.在无源的自由空间中,电场强度复矢量的表达式为
jkz
x
e
E
e
E-=
3
ˆ
(3)试写出其时间表达式;(4)判断其属于什么极化。
2.两点电荷
C
4
1
-
=
q,位于x轴上4
=
x处,C
4
2
=
q位于轴上4
=
y处,求空间点()4,0,0
处的
(1)电位;
(2)求出该点处的电场强度矢量。
3.如图1所示的二维区域,上部保持电位为
0U ,其余三面电位为零,
(1) 写出电位满足的方程和电位函数的边界条件 (2) 求槽内的电位分布
b
a
4.均匀带电导体球,半径为a,带电量为Q。
试求(1)球内任一点的电场强度
(2) 球外任一点的电位移矢量。
5.设无限长直导线与矩形回路共面,(如图1所示),
(1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
(2)
6.如图2所示的导体槽,底部保持电位为
0U ,其余两面电位为零,
(1) 写出电位满足的方程;
(2) 求槽内的电位分布
解:(1)由于所求区域无源,电位函数必然满足拉普拉斯方程
7.放在坐标原点的点电荷在空间任一点r
处产生的电场强度表达式为 r e
r q E ˆ420πε=
(1) 求出电力线方程;(2)画出电力线。
8.设点电荷位于金属直角劈上方,如图1所示,求(1)画出镜像电荷所在的位置
(2)直角劈内任意一点
)
,
,
(z
y
x处的电位表达式
9.设时变电磁场的电场强度和磁场强度分别为:
)cos(0e t E E φω-=
(1) 写出电场强度和磁场强度的复数表达式
(2)证明其坡印廷矢量的平均值为: )cos(2100m e av H E S φφ-⨯= )cos(0m t H H φω-=。