三角形的面积课例研究报告(获奖)
三角形的面积全国优质课一等奖

05 三角形面积计算 的教学方法和策 略
传统教学方法的优缺点分析
优点
传统教学方法注重知识的系统性和逻辑性,能够帮助学生建立扎实的数学基础 。通过公式推导和证明,学生能够深入理解三角形面积计算的原理和方法。
缺点
传统教学方法往往过于注重公式和计算,而忽视了学生的实际应用能力和问题 解决能力。学生可能只是机械地记忆公式,而无法真正理解其背后的数学思想 和实际应用。
3
已知三角形两边a、b及夹角C
面积 = (a × b × sinC) / 2。
三角形面积计算的应用场景
解决几何问题
在几何学中,计算三角形的面积 是求解许多问题的基础,如求解 三角形的其他元素、判断三角形
的形状等。
实际生活中的应用
三角形的面积计算在实际生活中有 广泛的应用,如计算土地面积、建 筑设计中的面积计算等。
创新教学方法的探索和实践
情境教学法
通过创设生动有趣的情境,让学生在具体场景中学习和探索三角形面积计算的方法。例如,可以引导学生想 象自己是一个建筑师,需要计算三角形的面积来设计建筑。
探究式教学法
鼓励学生通过自主探究和合作学习三角形面积计算的方法。教师可以提供一些问题或任务,让学生分组进行 探究和讨论,最终得出结论。
05
03
三角形的高
从三角形的一个顶点向它的对边所在 的直线作垂线,顶点和垂足之间的线 段。ห้องสมุดไป่ตู้
04
三角形的中线
连接三角形的一个顶点和它对边的中 点的线段。
三角形面积计算的基本公式
1 2
已知三角形底和高
面积 = (底 × 高) / 2。
已知三角形三边长度a、b、c
面积 = sqrt[p(p-a)(p-b)(p-c)],其中p为半周长 ,即p = (a+b+c)/2。
一等奖说课稿:对三角形面积计算的研究

一等奖说课稿:对三角形面积计算的研究一、课题背景三角形是中学数学中的重要概念,计算三角形的面积是数学课程中的基本内容。
然而,学生在面积计算中常常遇到困惑和错误。
因此,本课题旨在通过研究三角形面积计算的方法,帮助学生更好地理解和掌握这一概念。
二、教学目标1. 理解三角形面积的定义和计算方法。
2. 掌握三角形面积计算的基本公式。
3. 能够灵活应用三角形面积计算方法解决实际问题。
三、教学内容1. 三角形面积的定义三角形的面积定义为底边与高的乘积的一半。
通过引导学生观察不同形状的三角形,并测量底边和高,帮助学生理解面积的概念。
2. 三角形面积计算公式介绍三角形的面积计算公式:$S=\frac{1}{2} \times \text{底边} \times \text{高}$。
通过示例和练,让学生熟练掌握公式的使用。
3. 实际问题应用通过实际问题,如计算房间的地板面积、广告牌的面积等,引导学生将所学的三角形面积计算方法应用到实际生活中,提高学生对知识的实际运用能力。
四、教学方法1. 导入法通过展示一幅画面,引发学生对三角形面积的思考,激发学生的研究兴趣。
2. 归纳法通过让学生观察已知三角形的面积和底边、高的关系,引导学生归纳出三角形面积计算的基本公式。
3. 演绎法通过给出一些具体的三角形面积计算问题,让学生根据公式进行计算,培养学生的解决问题的能力。
4. 实践法引导学生观察和测量实际物体的底边和高,并应用所学的方法计算其面积,增强学生对知识的实际运用能力。
五、教学评价通过课堂练、小组讨论和个人作业等形式进行教学评价。
评价学生是否能准确理解和运用三角形面积计算的方法,以及解决实际问题的能力。
六、教学反思通过本课的教学,学生对三角形面积计算的理解和应用能力得到了提高。
然而,部分学生在计算过程中仍存在一些错误和困惑。
在今后的教学中,应更加注重练环节,加强学生的计算能力。
同时,结合更多实际问题,提高学生对知识的实际运用能力。
初中数学教研案例及总结(3篇)

第1篇一、案例背景随着新课程改革的不断深入,初中数学教学面临着诸多挑战。
为了提高数学教学质量,我校数学教研组积极开展教研活动,以提高教师的专业素养和教学水平。
以下是一篇关于初中数学教研案例的总结。
二、案例描述1. 教研主题:探究“三角形面积”的推导方法2. 教研目的:通过本次教研活动,使教师掌握多种推导三角形面积的方法,提高课堂教学效果。
3. 教研过程:(1)准备阶段:教研组提前收集了多种推导三角形面积的方法,如割补法、旋转法、折叠法等,并整理成资料。
(2)研讨阶段:教研组全体成员共同讨论,分享各自在推导三角形面积方面的经验和心得。
(3)实践阶段:教师根据研讨结果,选择合适的方法进行教学实践,并在课后反思教学效果。
(4)总结阶段:教研组对教学实践中的问题进行总结,并提出改进措施。
4. 教学实践案例:(1)教师采用割补法推导三角形面积,引导学生观察、操作、比较,让学生体会割补法在推导三角形面积中的应用。
(2)教师采用旋转法推导三角形面积,引导学生利用几何图形的对称性,推导出三角形面积的计算公式。
(3)教师采用折叠法推导三角形面积,引导学生通过折叠操作,发现三角形面积与底边长和高之间的关系。
三、案例总结1. 教研成果(1)教师掌握了多种推导三角形面积的方法,丰富了教学手段。
(2)学生通过多种方法学习三角形面积,提高了学习兴趣和积极性。
(3)课堂教学效果得到明显提高,学生成绩稳步提升。
2. 教研反思(1)教研活动要注重教师之间的交流与合作,充分发挥集体的智慧。
(2)教研活动要结合教学实际,注重实践与反思,不断改进教学方法。
(3)教研活动要关注学生的需求,关注学生的个性化发展。
3. 改进措施(1)加强教师队伍建设,提高教师的专业素养。
(2)开展多样化的教研活动,激发教师的教学热情。
(3)关注学生学习过程,注重培养学生的数学思维能力和创新能力。
四、结论本次初中数学教研活动取得了良好的效果,不仅提高了教师的教学水平,也促进了学生的全面发展。
三角形的面积研究报告

三⾓形的⾯积研究报告《<三⾓形的⾯积>教学资源》研究报告洛阳市涧西区芳华路⼩学孙素平史存存⼀、远教⼯程的意义与作⽤及对⾃⼰课堂教学的影响当前,我国以现代信息技术为先导的新技术⾰命,正在不断深⼊到⼈类社会⽣活的⽅⽅⾯⾯,深刻地影响着⼈们的学习、⼯作、和⽣活。
传统封闭的学校教育体系被打破了,知识与信息的传播、存储与检索⽅式都发⽣了⾰命性的巨变。
在我们现代的教学中也很多时候⽤到了远程教育。
1、现代远程教育改变了我的教学⽅式现代远程教育是随着现代信息技术的发展⽽产⽣的⼀种新型教育形式,是构筑知识经济时代⼈们终⾝学习体系的主要⼿段。
它以教育技术和媒体为课程载体,采⽤多媒体教学和开放的学习模式,为学习者创造了⼀个前所未有的、令⼈⽿⽬⼀新的崭新学习环境。
在这样的学习环境⾥,学习者除了拥有最基本、最主要的包括教材、学习参考资料、学习指导在内的⽂字教材外,还可以收看著名专家、的授课⾳像(录像带、VCD光盘);通过双向视频直播系统收看“直播课堂”的直播或录像;通过VOD视频点播课程。
为了加强教师与学习者的沟通和联络,学校还根据课程和学⽣的实际情况,在学习者⾃学的基础上安排适当的集中⾯⾸辅导课,进⾏学习⽅法指导、解答疑难问题、组织学⽣讨论等;为了加强学习者之间的联络和交流。
2、现代远程教育的学习给我带来的⽅便远程教育的学习是学习化社会⼈们⾃主学习的⼀种形式,它不仅是⼀种增长知识的学习,⽽且还是⼀种与每个⼈各部分经验相融合的、发掘学习者内在潜⼒的学习活动。
由于现代远程教育的学习环境和它所具有的显著特征,学习者想要达到学习⽬标,就必须努⼒更新⾃⼰的学习观念,对学习活动进⾏计划、调节、控制和评价。
如果没有做好⼼理各项准备、调节和端正学习态度,学到东西没有多少,⾯对你的是残酷的现实——多读、不过关、补考。
⼆、课堂教学设计(理论依据、应⽤的先进教学理念、⽅法,教学过程,远教设备资源在教学过程中的作⽤等)【理论依据】新课标提出了关注学⽣"⼈"的发展理念,本节课的三位⼀体的教学⽬标是这样确定的:1.知识与技能⽬标:引导学⽣主动参与活动,能在活动中探索出三⾓形的⾯积计算公式及解决相关问题。
三角形的面积课例研究报告(获奖)(word文档良心出品)

引领学生探究学习——《三角形的面积》课例研究报告引领学生探究学习——《三角形的面积》课例研究报告一、研究背景在以往图形面积的计算课中,包括我在内很多教师都是简单的和学生说说公式推导过程,然后就让学生套公式计算,这样就让学生机械的按老师的要求进行学习活动。
教师只是根据本课的知识要点做了安排,缺少了对学生内在需求的关注,缺少了对学生操作活动中的情感体验的关注,导致学生不能灵活的运用公式解决有关的实际问题。
《三角形的面积》这节课的教学,我改变了以往怕完成不了教学任务,而把让学生亲自经历公式推导的过程这一环节忽略的教法。
良好的教学效果让我认识到了:教学不仅仅是告诉和传播,更重要的是要让学生亲自经历探索知识学习的全过程,这样所学的知识才能掌握牢固,并能灵活运用。
二、研究的问题怎样让学生经历学习的全过程,从而能运用自己获得的知识灵活解决实际问题。
三、方法思路引导学生利用学具平行四边形和三角形,让学生经历猜测——探索——发现——总结的学习过程。
从而掌握规律,灵活利用所学知识解决实际问题。
四、教学实践第一次教学实践(一)教学思路:这节课的内容是让学生知道公式,并套用公式解决问题,从而重点让学生通过练习熟悉、巩固公式。
而公式的推导老师讲解为主,学生听后利用公式计算三角形的面积。
(二)教学设计:1、复习平行四边形的面积计算的方法。
2、猜测入手激发学习兴趣师:(出示三个三角形)老师这里有三个三角形,请你猜一猜哪个面积大?生:第一个大。
生:不对,是第二个大。
生:三个一样大。
师:怎样才能准确地知道到底哪个大?师:你认为三角形的面积大小与什么有关?它可能转化为什么图形来推导三角形的面积计算公式?生:我认为和它的底有关。
生:我认为和它的底和高都有关。
生:……3、推导计算公式。
(1)出示例题。
(2)引导学生观察数据,互相讨论,猜想三角形面积与它的什么有关,有什么关系。
师:三角形的面积与它的底和高有什么关系?生:三角形的面积等于它的底乘高的积再除于2师:那么谁能说出三角形的面积计算公式?生:三角形的面积=底×高÷2(3)验证公式的正确性。
《三角形的面积》案例分析

《三角形的面积》案例分析案例背景:《三角形的面积》是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。
本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。
数学新课标也指出:要让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
教学内容:人教版标准实验教科书《数学》五年级上册。
教学目标:1.探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;2.使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;3.让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:是理解三角形面积公式的推导过程和公式的含义。
教、学具准备: CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。
教学过程:一、创设情境、导入新课1.提出问题。
师:(出示一条红领巾)同学们,这是一条红领巾。
它是什么形状的?那你们会计算三角形的面积吗?2.揭示课题。
师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)二、操作“转化”,推导公式1.寻找思路。
师:是的,我们还不会计算三角形的面积。
那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。
那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?[评析:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。
关于三角形面积计算的一等奖说课稿

关于三角形面积计算的一等奖说课稿引入三角形是初中数学中一个重要的几何图形,计算三角形的面积是其中的一个基本问题。
本次说课旨在向学生介绍三角形面积计算的方法,并通过一等奖的方式激发学生的研究兴趣。
教学目标- 理解三角形的面积定义- 掌握计算三角形面积的公式和方法- 运用所学知识解决实际问题教学重点- 理解三角形面积的定义和计算公式- 掌握计算三角形面积的方法和步骤教学内容1. 三角形面积的定义:三角形的面积是底边与高的乘积的一半。
可以用公式表示为:$S = \frac{1}{2} \times b \times h$,其中$S$ 表示面积,$b$ 表示底边长度,$h$ 表示高的长度。
2. 计算三角形面积的方法:- 已知底边和高:直接使用面积公式计算,将已知数值代入公式求解。
- 已知边长:根据已知边长和三角形的特性,通过计算底边和高的长度,再应用面积公式进行求解。
- 已知顶点坐标:利用坐标几何的方法,计算底边和高的长度,然后应用面积公式求解。
3. 解决实际问题的应用:- 通过实际问题的讲解和解答,引导学生将所学知识应用于实际场景,加深对三角形面积计算的理解和应用能力。
教学过程1. 引入(5分钟):- 出示一个三角形的图片,引导学生观察并讨论三角形的特点。
- 提问:你们知道如何计算三角形的面积吗?有什么方法可以使用?2. 理论讲解(10分钟):- 讲解三角形面积的定义和计算公式,并进行示范计算。
- 通过几个示例,引导学生理解计算方法和步骤。
3. 练与巩固(15分钟):- 给学生发放练册,让学生独立完成一些计算三角形面积的练题。
- 教师巡回指导,解答学生的问题,并对学生的答题情况进行评价。
4. 实际应用(10分钟):- 出示一些实际问题,让学生应用所学知识计算三角形的面积。
- 鼓励学生思考和讨论解决问题的方法,并给予肯定和鼓励。
5. 总结与反思(5分钟):- 对本节课的内容进行总结,强调三角形面积计算的重要性和应用价值。
小学数学《三角形面积计算》优秀案例和教学反思

小学数学《三角形面积计算》优秀案例和教学反思三角形面积的计算是多边形面积计算这一单元中第二节内容,它是在学习平行四边形面积的基础上把三角形转化成平行四边形来学习的,本节课的教学流程设计了四大部分1、激情导入,发现问题2、尝试操作,探索问题3、自学例题,解决问题4、应用拓展,升华问题一、激情导入,发现问题首先学生通过对多边形图片的欣赏,说一说能否计算少先队大队旗的面积和计算红领巾的面积,提出求三角形的面积问题,其次让学生比较任意两个三角形的大小。
激发学生强烈的求知欲望和好奇心,使学生的注意、记忆、思维、集中在一起,进入一种智力的最佳状态。
二、尝试操作,探索问题(一)数方格1、用数方格的方法求出三个三角形的面积。
(小组内分工合作)要求学生用数方格的方法求出三角形的面积接着引导学生观察,这三角形的高和底的长度同它的面积之间有什么联系,启发学生猜想。
2、看一看电脑博士数出的每个三角形的面积。
同时会发现这种方法较麻烦,是否有更好的方法呢学生可以通过拼图形这个游戏来实现.(二)拼图形1、用两个完全一样的锐角三角形拼(1)教师参与学生拼摆,个别加以指导(2)电脑演示拼摆过程(3)讨论:拼成的长方形和平行四边形,每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?2、把一个三角形分割、拼成一个长方形(1)学生拼摆(2)电脑演示拼摆的过程3、用两个完全一样的直角三角形(1)组织学生利用手里的学具试拼(2)电脑演示拼摆的过程提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?4、用两个完全一样的钝角三角形来拼(1)由学生独立完成(2)电脑演示拼摆的过程来帮助学生理解旋转、平移的过程(三)归纳三角形面积1、老师提问引导学生观察:(1)用两个什么样的三角形才能拼成一个学过的平面图形?(2)平行四边形、长方形、正方形的面积与三角形的面积有什么关系?(3)三角形的底和高与平行四边形的底和高有什么关系?与长方形的长和宽有什么关系?与正方形的边长有什么关系?学生观察讨论相互交流,弄清面积关系以及底高之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引领学生探究学习《三角形的面积》课例研究报告引领学生探究学习《三角形的面积》课例研究报告、研究背景在以往图形面积的计算课中,包括我在内很多教师都是简单的和学生说说公式推导过程,然后就让学生套公式计算,这样就让学生机械的按老师的要求进行学习活动。
教师只是根据本课的知识要点做了安排,缺少了对学生内在需求的关注,缺少了对学生操作活动中的情感体验的关注,导致学生不能灵活的运用公式解决有关的实际问题。
《三角形的面积》这节课的教学,我改变了以往怕完成不了教学任务,而把让学生亲自经历公式推导的过程这一环节忽略的教法。
良好的教学效果让我认识到了:教学不仅仅是告诉和传播,更重要的是要让学生亲自经历探索知识学习的全过程,这样所学的知识才能掌握牢固,并能灵活运用。
、研究的问题怎样让学生经历学习的全过程,从而能运用自己获得的知识灵活解决实际问题。
、方法思路引导学生利用学具平行四边形和三角形,让学生经历猜测一一探索一一发现总结的学习过程。
从而掌握规律,灵活利用所学知识解决实际问题。
四、教学实践第一次教学实践(一)教学思路: 这节课的内容是让学生知道公式,并套用公式解决问题,从而重点让学生通过练习熟悉、巩固公式。
而公式的推导老师讲解为主,学生听后利用公式计算三角形的面积。
(二)教学设计:1、复习平行四边形的面积计算的方法。
2、猜测入手激发学习兴趣师:(出示三个三角形)老师这里有三个三角形,请你猜一猜哪个面积大?生:第一个大。
生:不对,是第二个大。
生:三个一样大。
师:怎样才能准确地知道到底哪个大?师:你认为三角形的面积大小与什么有关?它可能转化为什么图形来推导生:我认为和它的底有关。
生:我认为和它的底和咼都有关。
生:??3、推导计算公式。
(1)出示例题。
(2)引导学生观察数据,互相讨论,猜想三角形面积与它的什么有关,有什么关系。
师:三角形的面积与它的底和高有什么关系?生师:那么谁能说出三角形的面积计算公式?生:三角形的面积=底x 咼* 2角(形课件演示两个完全一样的三角形能拼出一个平行四边形。
(教师讲解三角形 的)面 面是正确勺。
) 积'是 所 拼 证等4公于5、式它用公式解决问题。
阅的的读。
'… 本高 进(的学生量出各个三角形的底和高并算一算面积,看哪个大。
一于2 步 验所以“三角形的面积=底x 高+ 2”这个公式是7.5 正(2) 的 ①底是2.5米,咼是4米底:有了公式能不能计算课前那三个三角形的面积?计算三角形的面积必 行的条件是什么?四 边 形 面 积4厘米3厘米8厘米厘米6厘米求出下面三角形的面积:②底是60分米,高比底少20分米。
(3)—块三角形地的咼是 5.4米,底是高的3倍,这块三角形木板的面积是 多少平方米?(4) 一个三角形的面积是 8平方厘米,与它等底等高的平行四边形的面积始,教师鼓励学究新知的欲望。
在教学中引导学生观察、讨论得出三角形的面积计算公式,也能套公式进行解决三角形的面积计算的问题。
但在教学过程中 式的推导过程没让学生自己去探索推出 ,而是怕讲不完课就以学生看老师演示, 老师讲解为主推导出,学生没有经历学习的全过程。
所以在学生运用计算公式解决问题时,不看着公式解决问题时老是把“+2”给漏掉。
根据大家的建议和自 己的感觉,我决定把教学过程修改并在四(3)班进行第二次教学。
第二次教学实践 (一)教学思路:引导学生通过用两个完全一样的三角形拼出一个平行四边形作观察、讨论得出三角形的面积计算公式。
然后利用公式计算三角形的面积。
(二)教学设计:1、复习平行四边形的面积计算的方法。
2、猜测入手激发学习兴趣3、动手操作、探索新知。
师:请同学们拿出你桌面上的两个锐角三角形,看看这两个三角形的面积怎样?生:他们面积相等。
师:能不能把它们拼出一个我们学过的图形?(1)学生拼。
(2)引导学生观察数据,互相讨论:师:三角形的面积、底和高与拼成的平行四边形的面积、底和高有什么关系?生:三角形的面积等于拼成面积的一半。
生:三角形的底和高与拼成的平行四边形的底和高相等。
,三角形面积计算公 ,并组织学生合师:那么谁能说出三角形的面积计算公式?生:三角形的面积=底x高+ 2(3)验证公式的正确性。
师:这个公式到底正不正确呢?下面我们再分别拿两个钝角三角形和两个直角三角形,看是不是也能拼出平行四边形,然后再看看三角形的面积是不是也是平行四边形面积的一半、底和咼是不是也和平行四边形的底和咼相等。
生:(操作讨论)5、运用公式解决问题。
(略)(三)教学反思 这次的教学效果比第一次的好很多。
教师放手让学生去发现,并让学生充分发表自己的观点,各抒己见,学生们的积极性已经完全被调动起来了。
教师在课堂上,及时点拨、鼓励学生,学生的个性得到了充分的张扬,创造思维能力也得 到了很好的培养。
我发现,学生经历三角形面积公式探究过程,漏“ 例很少。
所以让学生经历探索学习的过程掌握的知识比较牢固。
但由于学生感觉 用两个完全一样的三角形拼一个平行四边形有点难,拼第一个时老在摆弄无从下 手,花了很多时间。
所以探索学习的过程中用的时间太多,练习没时间,怎样才 能让学生既能在一节课中经历学习过程探索新知识,有能较好的运用知识灵活解 决问题呢?因此在数学组的研讨下,把推导公式的部分的“拼”改成“先剪再拼” 然后在四(1)班进行第三次教学实践。
第三次教学实践 (一)教学思路:引导学生通过沿着平行四边形的一组对角线剪开,以四人小组观察讨论剪出的三角形的面积、底和高与原来平行四边形的面积、底和高有什么关系,从而推出计算公式。
然后用两个完全一样的三角形拼出一个平行四边形 确性。
再运用所学的知识灵活解决有关三角形面积的实际问题。
(二)教学设计:1、复习平行四边形的面积计算的方法。
2、猜测入手激发学习兴趣(略)3、动手操作、探索新知。
师:现在请同学们把你们桌面上的平行四边形像老师这样画出它的高,并标上底和高的字样。
然后沿对角线剪开,别把高剪断。
看有什么变化?生:(操作后)变成了两个完全一样的三角形。
师:把剪开的三角形按原来那样放好,然后以四人小组观察讨论你们还发现了什么?学生观察讨论后汇报: 生:三角形的面积等于平行四边形面积的一半。
2”的比 ,验证公式的正生:我还发现三角形的底和高等于原来平行四边形的底和高。
师:同学们真了不起,知道了那么多。
生:三角形的面积是平行四边形的面积的一半,所以三角形的面积=平行四边形的面积* 2,也就是三角形的面积=底x咼* 2。
生:我也知道了三角形的面积=底x高+ 2。
师:同学们真了不起,能自己推出公式了,这个公式到底正不正确呢?下面我们再分别拿两个完全一样的锐角三角形、钝角三角形和直角三角形,看是不是也能拼出平行四边形,然后再看看三角形的面积是不是也是平行四边形面积的半、底和咼是不是也和平行四边形的底和咼相等。
(1)学生拼并观察、讨论。
(2)学生汇报情况,教师随学生的汇报课件演示,让后进生能清楚看到。
从而得出这个公式适合各种三角形的面积计算。
4、阅读课本进一步验证公式是正确的,并质疑。
5、运用公式解决问题。
(三)教学效果: 这次教学的效果出乎我的意料,“剪”的效果确实不错,学生很快就发现了二角形的面积、底、咼和与它等底等咼的平行四边形的面积、底咼之间的关系,很快得出三角形的面积计算公式。
在验证中也很快的能拼出平行四边形并发现知识。
所以有足够的时间运用公式解决问题。
大部分学生还能灵活运用公式解决问题。
(四)教学反思: 三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。
充分利用原有的知识,让学生经历探索学习的过程,通过探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、探索者,培养学生自我探究和实践能力。
五、研究结论)、猜测入手激发学习兴趣猜测是学生感知事物作初步的未经证实的判断,它是学生获取知识过程中的重要环节。
因此,在教学中鼓励学生大胆猜测:你认为三角形的面积大小与什么有关?它可能转化为什么图形来推导三角形的面积计算公式?这时学生就会跃跃欲试,从而激发了学习的兴趣。
学生出现这种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展。
)、动手操作培养探索能力在推导三角形面积计算公式时,让学生动手操作。
首先让学生把一个平行四边形沿一组对角线剪开,看一看变成成什么图形,然后引导学生思考讨论:三角形与你拼成的平行四边形有什么联系?引导学生发现每个三角形的面积是平行四边形的一半,然后再让学生用一个三角形,想办法把它转化成已学过的图形来推导三角形的面积公式。
通过实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提咼。
(三)、发散验证培养解决问题的能力在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。
在此基础上让学生理一理,归纳出三角形面积的计算方法。
通过“拼剪说” 的活动过程,让学生在活动中发散,在活动中发展,学得主动、轻松、扎实,更重要的是培养了学生的求知欲、创造能力和解决实际问题的能力。
从这次的课例研究的活动中,我认识到让学生经历自己动手操作、探索学习,从操作中掌握方法,发现问题,解决问题的全过程,让学生从中体会到探索的艰辛和成功的喜悦!。