大学物理实验迈克尔逊干涉仪的调整和使用教案

合集下载

实验一迈克尔逊干涉仪的调整及应用

实验一迈克尔逊干涉仪的调整及应用

实验⼀迈克尔逊⼲涉仪的调整及应⽤实验⼀迈克尔逊⼲涉仪的调整及应⽤⼀、实验⽬的1. 了解迈克尔逊⼲涉仪的原理及结构。

2. 学会迈克尔逊⼲涉仪的调整,基本掌握其使⽤⽅法。

3. 观察各种⼲涉现象,了解它们的形成条件。

⼆、实验仪器1. WSM-200型迈克尔逊⼲涉仪⼀台2. HNL-55700多束光纤激光源⼀台三、实验原理3.1 迈克⽿孙⼲涉仪的构造图1为迈克尔逊⼲涉仪的结构⽰意图。

图1 迈克尔逊⼲涉仪的结构⽰意图仪器包括两套调节机构,第⼀套调节机构是调节反光镜1的位置。

旋转⼤转轮和微调转轮经转轴控制反光镜1在导轨上平移;第⼆套调节机构是调节反光镜1和反光镜2的法线⽅向。

通过调节反光镜1、2后⾯的调节螺钉以及反光镜2的两个⽅向拉杆来控制反光镜的空间⽅位。

在仪器的中部和中部偏右处,分别固定安装着分光镜和补偿⽚,其位置对仪器的性能有重要影响,切勿变动。

在补偿⽚的右侧是反射镜2,它的位置不可前后移动,但其空间⽅位是可调的。

反射镜1和反射镜2是通过⾦属弹簧⽚以及调节螺钉与⽀架弹性连接的,调节反射镜⽀架上的三颗调节螺钉,改变弹簧⽚的压⼒,从⽽改变反射镜⾯在空间的⽅位。

显然,调节螺丝钉过紧或太松,都是不利于调节反射镜⽅位的错误操作。

反射镜1在导轨上的位置坐标值,由读数装置读出。

该装置共有三组读数机构:第⼀组位于左侧的直尺C 1,刻度线以mm 为单位,可准确读到毫⽶位;第⼆组位于正⾯上⽅的读数窗C 2,刻度线以0.01mm 为单位,可准确读出0.1和0.01毫⽶两位;第三组位于右侧的微动转轮的标尺C 3,刻度线以0.0001mm 为单位,可准确读0.001和0.0001毫⽶两位,再估读⼀位到0.00001毫⽶。

实际测量时,分别从C 1、C 2各读得2位数字、从C 3读得3位(包括1位估读)数字,组成⼀个7位的测量数据,如图2所⽰。

可见仪器对位移量的测定精度可达⼗万分之⼀毫⽶,是⼀种⾮常精密的仪器。

务必精细操作,否则很容易造成仪器的损坏!图2 关于M1位置读数值的组成⽅法3.2 迈克⽿孙⼲涉仪的原理迈克尔逊⼲涉仪是利⽤分振幅法产⽣的双光束⼲涉,其光路图如图3所⽰。

迈克尔逊干涉仪调整和使用

迈克尔逊干涉仪调整和使用

迈克尔逊干涉仪的调整和使用一、教学目的(1) 了解迈克尔逊干涉仪的原理结构,学习调节和使用方法。

(2) 观察等倾,等厚干涉现象。

(3) 测量He-Ne 激光波长。

二、教学重点(1) 迈克尔逊干涉仪的原理和结构 (2) 迈克尔逊干涉仪的调节和使用方法 (3) 迈克尔逊干涉仪的应用三、课堂提问(1) 什么是非定域干涉?(2) 迈克尔逊干涉仪是怎样实现非定域干涉的? (3) 非定域干涉条纹和牛顿环的相同和不同之处是什么?四、实验仪器补偿板微调手轮 He -Ne 激光器迈克尔逊干涉仪分光板固定反射镜移动反射镜粗调手轮光阑孔观察屏读数窗五、实验原理图1是迈克尔逊干涉仪的光路原理图。

光源上一点发出的光线射到半透明层K 上被分为两部分光线“1”和“2”。

光线“2”射到M 2上被反射回来后,透过G 1到达E 处;光线“1”透过G 2射到M 1,被M 1反射回来后再透过G 2射到K 上,反射到达E 处。

这两条光线是由一条光线分出来的,故它们是相干光。

光线“1”也可看作是从M 1在半透明层中的虚像M 1ˊ反射来的。

在研究干涉时,M 1ˊ与M 1是等效的。

调整迈克尔逊干涉仪,使之产生的干涉现象可以等效为M 1ˊ与M 2之间的空气薄膜产生的薄膜干涉。

用凸透镜会聚的激光束是一个很好的点光源,它向空间发射球面波,从反射后可看成由两个光源发出的(见图2),至屏的距离分别为点光源S从反射至屏的光程,21 M M 和21S S 和′)(21S S 或)(1211G M M G 和或和21S S 和′的距离为M 1ˊ和M 2之间距离的二倍,d 图2 非定域干涉M 1图1 迈克尔逊干涉仪即2d 。

虚光源发出的球面波在它们相遇的空间处处相干,这种干涉是非定域干涉。

如果把屏垂直于21S S 和′21S S 和′的连线放置,则我们可以看到一组同心圆,圆心就是连线与屏的交点。

如图2,由到屏上的任一点A,两光线的程差21S S 和′21S S ′L 可得:δcos 2d L = (1) 由式(1)可知:(1)当0=δ 时程差最大,即圆心E 点所对应的干涉级别最高。

实验二迈克尔逊干涉仪的调节和使用

实验二迈克尔逊干涉仪的调节和使用

实验二 迈克尔逊干涉仪的调节和使用一、实验目的1、了解迈克尔逊干涉仪的结构和干涉花样的形成原理;2、学会迈克尔逊干涉仪的调整和使用方法;3、观察等倾干涉条纹,测量He Ne -激光的波长;4、了解钠光、白光干涉花样的特点。

三、实验原理在迈克尔逊干涉仪中产生的干涉等效于膜'12,M M 的薄膜干涉。

两束光的光程差为:2cos d i k δλ==(一)、扩展光源产生的干涉图(定域干涉)1、1M 和'2M 严格平行——等倾干涉条纹特点:明暗相间的同心圆纹,条纹定域在无穷远(需用会聚透镜成像在光屏上);中心级次最高,2k d λ=;3)d 增大,条纹从中心向外“涌出”, d 减小,条纹向中心“陷入”,每“涌出” 或“陷入”一个条纹,间距的改变为2λ,“涌出”和“陷入”的交接点为0d =情况(无条纹)。

干涉条纹的分布是中心宽边缘窄,d 增大条纹变窄12k k k k i i i di λ-∆=-≈(,k d i 增加时条纹变窄),1M 和'2M 有一很小的夹角——等厚干涉()22cos 212d i d i ∆=≈-,当入射角也较小时为等厚干涉,条纹定域在薄膜表面附近;在两镜面交线附近处,d 较小,i 的影响可以略去,干涉条纹是一组平行于1M 和'2M 交线的等间隔的直线条纹;在离1M 和'2M 交线较远处,d 较大,i 方向是背向两镜面的交线。

四、实验仪器迈克尔逊干涉仪(100WSM -),He N e -激光器,钠光灯,日光灯,扩束镜,屏。

1、底座底座由生铁铸成,较重,确保仪器的稳定性。

底座由三个调平螺丝(9)支撑,调平后,可以拧紧锁紧圈(10)以保持座架稳定。

2、导轨导轨由两根平行的长约280毫米的框架(7)和精密丝杆(8)组成,被固定在底座上,精密丝杆穿过框架正中,丝杆螺距为1毫米 3、拖板部分拖板(11)是一块平板,反面做成与导轨吻合的凹槽,装在导轨上,下方是精密螺母(6),丝杆穿过螺母,当丝杆旋转时,拖板能前后移动,带动固定在其上的移动镜(11)在导轨面上滑动,实现粗动。

大学物理实验实验12迈克尔逊干涉仪的调整与使用

大学物理实验实验12迈克尔逊干涉仪的调整与使用

3.调整方法
1、确定M1镜的位置。 2、均匀转松M1、 M2后的三个螺丝。 3、旋松M2的两个拉簧螺丝。 4、移动光源,使光源上的十字叉丝在视场的中心位置
7、调整零点。 8、转到手轮可以改变干涉条纹的间距和清晰度。
5.测单色光的波长
使M1沿光轴移动△d,将使 圆心处相干光束的光程差改 变,则将观察到条纹涌出(或 陷入),由此可用来测定光波 波长。若测知有N个环纹由中 心涌出(或陷入),则表明 M1改变的距离△d为 △d=N· λ/2 则波长λ为: λ=2△d/N
注意事项:
( 1 )实验过程中,不允许触摸仪器中所 有的光学面。
(2)平面反光镜M 1、M 2背后的三个螺 钉 以及 两个微动拉簧 螺丝要 十分爱护 , 只能轻微旋动,切勿用力旋转螺钉,
以免拧滑丝扣或把反射镜压坏。
注意事项:
(3)不要直视激光,以免损伤眼睛!
(4)镜后螺丝及拉簧一定要轻拧,且不可拧的过紧! (5)不要调节活动反射镜后
不可直视!
思考题
实验仪器
1、迈克尔逊干涉仪; 2、氦-氖多光速激光器; 3、白炽灯
实 验 仪器介绍:
分光板
M1活动反光镜
补偿板
读数窗口
M2固定反 光镜
手轮 鼓轮
水平拉簧 垂直拉簧
标尺
主尺读数
实验原理
实验原理
点光源产生的非定域干涉条纹的形成
从光学角度看,E处的干涉图样和
M 1M 2
2d cos
实验内容
1.仪器调节
目测使激光头水平且大致和M2等高,细调激光头
位置使扩展光束均匀照满反射镜。
调节固定反射镜后的方位螺丝,使透过滤光片看到 的两排对应光点一一重合 装上观察屏,观察条纹的涌出和淹没。

实验六--迈克尔逊干涉仪的调整和使用

实验六--迈克尔逊干涉仪的调整和使用

实验六 迈克尔逊干涉仪的调整和使用实验性质:综合性实验 教学目的和要求:1. 了解迈克尔逊干涉仪的原理并掌握调节方法;2. 观察等倾干涉条纹的特点;3. 测定He-Ne 激光的波长。

教学重点与难点:对迈克尔逊干涉仪的工作原理与等倾干涉概念的理解;本实验仪器的正确调节与使用以及正确记录有效数字。

一.检查学生的预习情况检查学生预习报告:内容是否完整,表格是否正确。

二.实验仪器和用具:迈克尔逊干涉仪,氦氖激光器、毛玻璃屏 三.讲解实验原理:(一)实验仪器介绍1. 迈克尔逊干涉仪的构造迈克尔逊干涉仪的构造如图33-1。

其主要由精密的机械传动系统和四片精细磨制的光学镜片组成。

1G 和2G 是两块几何形状、物理性能相同的平行平面玻璃。

其中1G 的第二面镀有半透明铬膜,称其为分光板,它可使入射光分成振幅(即光强)近似相等的一束透射光和一束反射光。

2G 起补偿光程作用,称其为补偿板。

1M 和2M 是两块表面镀铬加氧化硅保护膜的反射镜。

2M 是固定在仪器上的,称其为固定反射镜,1M 装在可由导轨前后移动的拖板上,称其为移动反射镜。

迈克尔逊干涉仪装置的特点是光源、反射镜、接收器(观察者)各处一方,分得很开,可以根据需要在光路中很方便的插入其它器件。

1M 和2M 镜架背后各有三个调节螺丝,可用来调节21M M 和的倾斜方位。

这三个调节螺丝在调整干涉仪前均应先均匀地拧几圈(因每次实验后为保证其不受应力影响而损坏反射镜都将调节螺丝拧松了),但不能过紧,以免减小调整范围。

同时也可通过调节水平拉簧螺丝与垂直拉簧螺丝使干涉图像作上下和左右移动。

而仪器水平还可通过调整底座上三个水平调节螺丝来达到。

图11 ——主尺2 ——反射镜调节螺丝3 ——移动反射镜1M4 ——分光板1G5 ——补偿板2G6 ——固定反射镜2M7 ——读数窗 8 ——水平拉簧螺钉 9 ——粗调手轮10——屏11——底座水平调节螺丝确定移动反射镜1M 的位置有三个读数装置:①主尺——在导轨的侧面,最小刻度为毫米,如图:②读数窗——可读到0.01mm,如图:③带刻度盘的微调手轮,可读到0.0001mm,估读到105 mm,如图:2.迈克尔逊干涉仪的光路迈克尔逊干涉仪的光路如图2。

实验八 迈克尔逊干涉仪的调节和使用

实验八 迈克尔逊干涉仪的调节和使用

实验八迈克尔逊干涉仪的调节和使用实验八迈克尔逊干涉仪的调节和使用【实验目的】1.掌握迈克尔逊干涉仪的调节和使用方法;2.调节和观察迈克尔逊干涉仪产生的干涉图,加深对各种干涉条纹特点的理解。

【实验仪器和设备】迈克尔逊干涉仪、He~Ne激光器、扩束镜、小孔光阑、白炽灯、毛玻璃显示屏。

【实验原理】一、迈克尔逊干涉仪简介迈克尔逊干涉仪是一百多年前,物理学家迈克尔逊为了要测量“以太风”而设计出来的一种精密测长仪器,它是用“光的分振幅法”,将一束光分成两束相干光,经过分得很开的路径以后重新相遇而干涉的原理制成的。

由于仪器设计得巧妙,用途广泛,测量长度精密准确,为当时空前启后的发明,从而迈克尔逊获得1907年的诺贝尔奖。

实验室最常用的迈克尔逊干涉仪其原理图和结构图如图1所示。

[1]底座 [2]水平调节螺钉脚 [3]导轨架 [4]丝杆 [5]拖板 [6]动镜M1 [7]调节螺钉(3只) [8]定镜M2 [9]调节螺钉 [10]水平拉簧螺钉 [11]垂直拉簧螺钉[12]分光板 P1 [13]补偿板P2 [14]粗调手轮 [15]读数窗口 [16]微调手轮 [17]米尺[18]支架杆和夹紧螺丝 [19]显示屏M1和M2是在互相垂直的两臂上旋转的两个平面反射镜,其背面各有三个调节螺旋,用来调节镜面的方位;M2是固定的,M1由精密丝杆控制,可向臂轴前后移动,其移动距离由-2-4转盘读出。

仪器前方粗动手轮值为10mm,右侧微动手轮的分度值为10mm,可估-5读至10mm,两个读数手轮属于蜗轮蜗杆传动系统。

在两臂轴相交处,有一与两臂轴各成45°的平行平面玻璃板P1 ,且在P1的第二平面是镀以半透(半反射)膜,以便将入射光分成振幅近似相等的反射光1和透射光2,故P1板又称为分光板。

P2也是一平行平面玻璃板,与P1平行放置,厚度和折射率均与P1相同。

由于它补偿了1和2之间附加的光程差,故称为补偿板。

从扩展光源S射来的光,到达分光板P1后被分成两部分,反射光1在P1处反射后向着M1前进;透射光2透过P1后向着M2前进,这两列光波分别在M1、M2上反射后逆着各自的入射方向返回,最后都到达E处,既然这两列光波来自光源上同一点,因而是相干光,在E处的观察者都能看到干涉图样。

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用【实验内容】:1.了解迈克尔逊干涉仪的结构原理并掌握调节方法2.观察等倾干涉、等厚干涉以及白光干涉现象3.测量钠双线的平均波长及波长差【实验原理】1.迈克尔逊干涉仪的原理迈克尔逊干涉仪是一个分振幅法的双光束干涉仪,其光路如图1所示,它由反射镜Ml、M2、分束镜H和补偿板P2组成。

其中Ml是一个固定反射镜,反射镜M2可以沿光轴前后移动,它们分别放置在两个相互垂直臂中;分束镜和补偿板与两个反射镜均成45°,且相互平行;分束镜Pi的一个面镀有半透半反膜,它能将入射光等强度地分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。

光源发出的光经分束镜被分成等强度的两束光1和2,光束1和2分别经反射镜M2和M2反射后,再次经分光镜P向E处传播。

由于光束2在传播过程中三次图1迈克尔逊干涉仪光路穿过分束镜,而光束1只有一次穿过分束镜。

由于玻璃存在色散,不同波长的光在干涉仪中具不同的光程差,为此,在反射镜MI和反射镜之间加入一个补偿板,这样光线1同样在相同的玻璃板中穿过三次,使所有波长的光可以同时获得零的光程差,这对于实现白光的干涉是绝对必要的前提。

在单色光入射时,补偿板可以两臂的光程达到完全对称,2.测量钠黄光的平均波长利用迈克尔逊干涉仪的等倾干涉可以测量光的波长,当光程差改变二分之一个波长时,等倾干涉条纹中心就会□冒出口或□缩进口一个条纹。

当口冒出口或□缩进口N个条纹时,光程差的改变量为δd=N-2通过干涉仪测量M和确定条纹变化的个数N,就可通过上式得到被测光的波长。

3.测量钠黄光的波长差当两个波长相差不大,且光强基本相同的光同时在迈克尔逊干涉仪上产生等倾干涉时,每个波长的各自产生一套干涉条纹。

很容易想到,这两套干涉条纹在某些光程差下一定出现明暗重叠的现象,这时视场中的干涉条纹的可见度为零。

如果确定了两次相邻可见为零时光程差的改变量那么两束光的波长差为【仪器用具】 WSM —100迈克尔逊干涉仪、钠灯、白炽灯。

大学物理实验迈克尔逊干涉仪的调整和使用教案【全文】

大学物理实验迈克尔逊干涉仪的调整和使用教案【全文】
二、课堂讲解(30分钟)
1.简述迈克尔逊干涉仪
(历史作用、应用前景及该实验的重要性)
2.提出本实验目的
3.讲述原理
1)迈克尔逊干涉仪结构及工作原理
2)非定域干涉及激光波长的测量、
3)等倾干涉
4)等厚干涉
5)钠光双线波长差的测量
4. 提问如何观测定域干涉、等倾干涉、等厚干涉、白光条纹及激光波长、钠光双线波长差的测量
1、在迈克尔逊干涉仪上调出非定域干涉和定域干涉条纹
Hale Waihona Puke 2测激光的波长和测钠光双线波长差难点
在迈克尔逊干涉仪上调出非定域干涉和定域干涉条纹
备注









一、课前的准备(5分钟)
1.仪器设备检查:迈干仪、激光、钠光灯、扩束镜仪器套数及完好情况
2.检查学生预习报告:内容、原理、表格(A、B、C、D四等级)
5.实验内容与要求并强调注意事项
6.讲述仪器使用及注意事项:迈干仪、激光、钠光灯、扩束镜
7.数据记录及数据处理(表格、逐差法)
8.下一次实验内容及预习要求
三、学生实验(100分钟)
实验前30分钟不解答问题,给学生自己理解消化的时间,30分钟后边指导边提出一些问题启发学生解答.重点辅导。
四、检查数据并签字、检查仪器的整理情况
时间的掌握:留由5分钟机动的时间。





1.迈克尔逊干涉仪观察到的圆条纹与牛顿环产生的圆条纹有什么不同?
2.什么情况下可以观测到非定域干涉中椭圆、双曲线、直线条纹?




1、《大学物理实验》, 张逸民
2.《普通物理实验》, 林抒等编, 高等教育出版社,出版时间 1988年3月
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.数据记录及数据处理(表格、逐差法)
8.下一次实验内容及预习要求
三、学生实验(100分钟)
实验前30分钟不解答问题,给学生自己理解消化的时间,30分钟后边指导边提出一些问题启发学生解答.重点辅导。
四、检查数据并签字、检查仪器的整理情况
时间的掌握:留由5分钟机动的时间。





1.迈克尔逊干涉仪观察到的圆条纹与牛顿环产生的圆条纹有什么不同?
(历史作用、应用前景及该实验的重要性)
2.提出本实验目的
3.讲述原理
1)迈克尔逊干涉仪结构及工作原理
2)非定域干涉及激光波长的测量、
3)等倾干涉
4)等厚干涉
5)钠光双线波长差的测量
4.提问如何观测定域干涉、等倾干涉、等厚干涉、白光条纹及激光波长、钠光双线波长差的测量
5.实验内容与要求并强调注意事项
6.讲述仪器使用及注意事项:迈干仪、激光、钠光灯、扩束镜
2测激光的波长和测钠光双线波长差
难点
在迈克尔逊干涉仪上调出非定域干涉和定域干涉条纹
备注
课堂教学过 Nhomakorabea程



一、课前的准备(5分钟)
1.仪器设备检查:迈干仪、激光、钠光灯、扩束镜仪器套数及完好情况
2.检查学生预习报告:内容、原理、表格(A、B、C、D四等级)
二、课堂讲解(30分钟)
1.简述迈克尔逊干涉仪
迈克尔逊干涉仪的调整和使用教案
实验题目
迈克尔逊干涉仪的调整和使用
实验性质
基本实验
实验学时
4学时
教师
闫书霞
教学目的
1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法
2、学会观察非定域干涉、等倾干涉、等厚干涉及白光干涉条纹
3、学会用迈克尔逊干涉仪测量激光波长及钠光双线波长差
重点
1、在迈克尔逊干涉仪上调出非定域干涉和定域干涉条纹
2.什么情况下可以观测到非定域干涉中椭圆、双曲线、直线条纹?




1、《大学物理实验》,张逸民
2.《普通物理实验》,林抒等编,高等教育出版社,出版时间1988年3月
相关文档
最新文档