太阳能固体吸附式制冷系统概述
太阳能吸收式制冷的工作原理

太阳能吸收式制冷的工作原理太阳能吸收式制冷技术是一种利用太阳能光热转换为冷量的热力学过程,实现低温制冷的能源技术。
它是一种基于物质传递的过程,通过在吸热器表面使用太阳能,使液态生成气体,并从吸附器中输出热量,从而向外界提供低温的制冷。
太阳能吸收式制冷系统通常由吸热器、发生器、冷凝器和蒸发器等几个主要部分组成。
其中吸热器是负责接收太阳能的装置,发生器是产生制冷剂氨的装置,冷凝器和蒸发器则是实现制冷过程的关键装置。
机理上,从湿空气中吸取水分后,氨与水在发生器中混合反应,生成氨水混合物;然后将氨水混合物流入蒸发器膨胀,使其蒸发变相。
过程中液态氨沿着管子进入冷凝器,在与空气接触后迅速冷却,并排出高温的水蒸气。
最后经由吸热器,吸收新鲜空气中的热量,开始新一轮的制冷扫尾。
太阳能吸收式制冷的工作原理基于物质传递,是一种非机械的制冷方式。
相比于机械制冷技术,太阳能吸收式制冷技术无需电力,不会产生噪音和震动,环保无污染。
此外,太阳能吸收制冷技术并不利用化石燃料,它所依赖的太阳能也是一种无限的自然资源。
因此,太阳能吸收制冷技术越来越受到人们的青睐。
然而,太阳能吸收式制冷技术也存在着一些局限性。
其中之一就是制冷新鲜的氨混合溶液必须具有较高的精细度和纯度,这就需要进行较长时间的气液分离过程,加之氨水长期与空气相接触,容易出现分解。
此外,该技术的制冷效率受到气温、气湿度和太阳辐射等外界因素的影响,需要在设计时考虑合理的运作范围。
因此,在应用该技术时,需要对设备进行有效的维护和管理。
总体来说,太阳能吸收式制冷技术是一项可持续、无噪音、环保的制冷技术。
尽管存在着一些局限性,但是,随着技术的不断发展,太阳能吸收式制冷技术必将应用于更广泛的领域,为人类创造更加绿色的生活环境。
吸附制冷工质对在太阳能固体吸附式

吸附制冷工质对在太阳能固体吸附式制冷技术的应用和研究现状何见明(华南师范大学广东广州510006)摘要太阳能固体吸附式制冷技术是一种新型节能环保技术,本文主要讲述了吸附制冷工质对在太阳能吸附式制冷技术的应用,以及其研究现状。
关键词吸附制冷工质对1 前言新能源和可再生能源经过多年的发展已经开始在世界能源供应结构中占据一席之地,受到各国政府的广泛重视 [1]。
资源、环境是人类面临的共同问题,由于氟利昂制冷剂的大量使用对大气臭氧层的破坏和大量化石燃料燃烧所造成的温室效应已开始威胁人类的生存和发展。
研究开发出对臭氧层无损耗、无温室效应而且可以利用低品位能源作为动力已成为当今制冷空调领域的研究热点[2]。
太阳能固体吸附式制冷技术是一种新型节能环保技术,采用对环境友好的自然工质对,能有效利用太阳能等低品位能源驱动,具有结构简单,操作维修方便,运行费用低,无运动部件、无噪音、抗震性好,能用于振动、旋转等场所 [2]。
吸附制冷工质对的性能是影响固体吸附式制冷系统性能、效率和成本的重要因素之一,是固体吸附制冷走向市场的关键。
2 太阳能固体吸附式制冷工作原理太阳能固体吸附式制冷原理:以某种具有多孔性的固体作为吸附剂,某种气体作为制冷剂,形成吸附制冷工质对,其中固体吸附剂是不流动的,而吸附介质是流动的。
在固体吸附剂对气体吸附物吸附的同时,流体吸附物不断地蒸发成可供吸附的气体,蒸发过程对外界吸热实现制冷;吸附饱和后利用太阳能加热使其解吸。
按照被吸附物与吸附剂之间吸附力的不同,吸附可分为物理吸附和化学吸附。
物理吸附是分子间范德华力所引起的,而化学吸附是吸附剂与被吸附物之间通过化学键起作用的结果,吸附与脱附过程都伴随有化学反应。
图1 为太阳能吸附式制冷系统示意图,一个基本的太阳能吸附式制冷系统主要包括吸附床(集热器) 、冷凝器、蒸发器和阀门。
其基本工作过程由吸热解吸和吸附制冷组成[1]。
白天吸附床被太阳能加热,制冷工质开始脱附,当制冷工质压力达到饱和压力时,进入冷凝器冷凝,冷凝下来的液体进入蒸发器。
吸附式制冷原理

Qc-冷凝热; Qa-冷却显热及吸附热, Qe-制冷量
吸附式制冷能否得到工业应用很大程度上取决于所选用的工质对, 工质对的热力性质对系统性能系数、设备材料、一次性投资等影响很大。 一切固体物质的表面都具有一定的吸附作用,但作为良好的吸附剂应满 足下列条件:
吸 (1) 比表面积大,内部具有网格结构的微孔通道;
对
非常好,但运行一段时间后,性能会变差。
沸石---水
吸
沸石—水工质对的解吸温度范围较宽(70~250℃),吸附 热 ( 3200~4200kJ/kg ) 、 蒸 发 潜 热 ( 2400~2600
附 kJ/kg)均较大;
式 沸石—水性质稳定,在高温下不起反应,且经多次吸附—解
制 吸后,吸附性能基本不变,沸石的吸附等温线在超过一定压
准高斯分布型方程(D-A方程)
xx0 expEn
(4-3)
这种方程还存在一些缺点:
(1)在压力低时,吸附量不能自动地转化 为Henry定律
(2)特性曲线与温度无关的假说在吸附质 为极性物质时,其误差较大
(3)对表面孔径分布不均匀的情况没有给 出很好的解释
三、描述气固相平衡的p-T-x图 图2-135示出了活性炭-甲醇吸附等量线,
其中(a)为活性炭纤维、(b)为活性炭。
四、工质对的热质传递过程
1、蒸发与冷凝过程 在吸附式制冷循环中,制冷剂的蒸发或冷
凝过程是在 恒定的 蒸发温度或冷凝温度下进 行的。
1000 100 10
0.6 0.1
0.05
1000 1
0 20 40 60 80 100 120 140
(a)活性炭纤维-甲醇
冷
力后基本水平,随压力变化不大,这样,冷凝温度升高对制 冷量和系统COP的影响不大,能使吸附制冷系统在较大的温
固体吸附式制冷系统分析(翻译)

32NH -SrCl 固体吸附式制冷系统分析K. NagaMalleswara Rao, M. Ram Gopal and Souvik Bhattacharyya印度理工学院机械工程部印度克勒格布尔 721302摘要基于固体吸附剂反应器(吸收器/发生器)的传热传质对SrCl2-NH3为工质的固体吸附制冷系统性能进行了分析。
瞬态的传热传质模型考虑了反应器壁和床层之间的反应器壁的质量和接触电导的影响。
对同一反应器内的理论结果及试验结果进行比较。
根据两个吸附器/发生器,冷凝器,膨胀阀和蒸发器的整个系统,分析了使用反应器的传热传质模型。
结果是在性能系数(COP )和特定的冷却功率系数(SCP )的条件获得的。
结果表明优化床层和运行参数,以便获得高的性能系数COP 和冷却功率系数SCP 。
显著影响系统的性能的有床层的厚度、冷源温度和宏观反应进程。
关键词 : 固体吸附式制冷; SrCl 2–NH 3;传热传质;系统性能1引言固体吸附式制冷系统对环境是友好的,它们运行在低品位能源如废热或太阳能中。
基于制冷剂-吸附剂,对固体吸附式系统可以分为水-沸石系统、水-硅胶系统,甲醇-活性炭系统,氨-氯系统等。
与其他工作流体对相比,氨氯化物盐具有一定优势,比如由快速反应动力学导致的密实度、高放热反应、高工作温度范围、不结晶和各种各样的吸附剂都可用。
然而,类似于其他固体吸附式系统,运行氨氯化物吸附系统在本质上是循环的,提供最准确连续输出的。
由于操作的循环性质,盐(吸附剂)床交替的发生制冷和加热会导致发生额外的能量损失。
对于一个给定的冷却/加热输出系统,能量损失的大小取决于吸附剂的使用量。
在给定输出的情况下,为了减少所需盐的数量,吸附剂床层的传热传质特性必须大幅提高。
在正常的形式,具有吸附床层的有效导热系数非常低,过去一直努力提高这个值。
然而,提高有效导热系数一般涉及添加高导热惰性材料(如膨胀石墨)添加材料不参与氨的吸附,重要的是要对有效导热系数的优化。
太阳能吸附式制冷原理

太阳能吸附式制冷原理
太阳能吸附式制冷(Solar adsorption refrigeration)是一种利用
太阳能来驱动制冷过程的技术。
其原理如下:
1. 吸附剂选择:选择具有较强吸附特性的物质作为吸附剂。
常见的吸附剂包括硅胶、活性炭等。
2. 吸附过程:当太阳能照射到吸附剂上时,吸附剂吸附传统冷却剂(如氨或水)中的蒸汽分子。
吸附剂在吸附过程中释放出一定的吸附热,导致吸附剂温度升高。
3. 脱附过程:当太阳能逐渐减弱或停止供应时,吸附剂温度下降,将吸附的蒸汽分子释放出来。
这个过程叫做脱附。
脱附过程中吸附剂吸收环境中的热量,使其温度降低。
4. 冷却效果:通过吸附剂吸附和脱附的交替进行,制冷剂中的蒸汽分子被不断吸附和释放,从而使制冷剂的温度降低,达到制冷效果。
这个过程是一个循环过程。
太阳能吸附式制冷技术利用太阳能提供的热能来驱动吸附剂的吸附和脱附过程,无需额外的电力或化石燃料。
它具有环保、可再生能源的特点,适用于一些无电或电力供应不稳定的地区。
第六章固体吸附式制冷要点

如图: 吸附床1解析终了冷 却之前-准备吸附;吸附 床2吸附终了加热之前准备解析;先将它们连 通,由于压差作用,吸 附床1中部分气体快速转 移到吸附床2,以至两床 压力平衡,完成了回质 过程,增加了循环解析 量。
吸附器1
吸附器2
冷却水
蒸发器
冷凝器
15
谢谢大家 !
工质对 硅胶-水 活性炭氨气 活性炭甲醇 活性炭乙醇 T0 Tk (OK) (OK) 278 268 268 268 308 303 303 303 Ta (OK) 303 303 303 303 Tj x0 (OK) (kg/kg) 373 363 383 373 0.07 0.15 0.171 0.145 ε 0.87 0.86 0.84 0.85 真空 度要 求 高 高 高 适中 抗压 性要 求 低 高 适中 适中 有无 毒性 无 有 有 无
吸附器1
吸附器2
冷却水
运行组成了一个完整的连续
制冷循环。
蒸发器
冷凝器
ห้องสมุดไป่ตู้
为了提高热能的利用率,在两个吸附器切换过程中,可通过循环 冷却水将正在吸附的吸附器冷却时释放的显热和吸附热传递给正在解 析的吸附器,以实现回热,从而减少了系统的能量输入,提高了循环 的效率。
9
(2)热波循环
多床循环的吸附床与吸附床之间存 在传热温差使系统的回热利用率不高,
比较成熟的有活性炭-甲醇、活性炭-氨、氯化钙-氨、沸石-水、金
属氢化物-氢。R.E.Critoph和Voge曾经比较了沸石、活性炭分别 与R11、R12、R22、R114做工质对的情况,发现活性炭是一种
较为理想的吸附剂。
目前用于太阳能等低温热源驱动的固体吸附式制冷工质对的 工作特性如下表所示。
太阳能固体吸附式制冷系统概述

太阳能固体吸附式制冷系统概述太阳能固体吸附式制冷机以其节能、环保等优点受到人们的重视。
本文介绍了这种制冷循环的原理和过程,并结合目前国内研究的较多的课题,就吸附集热器及其研究成果作了概述,并讲述了解决太阳能固体吸附制冷空调工作和使用时间上不匹配的方法。
标签固体吸附;吸附集热器;平板型;真空管吸附集热器;蓄冷一、引言20世纪90年代以来,由于资源与环境问题,在制冷领域,太阳能制冷因其节能、环保,以及太阳能辐射资源与制冷空调用能在时间、地域上波动规律,热量的供给和冷量的需求在季节上和数量上的高度匹配,受到人们的广泛关注。
但与太阳能供热相比,太阳能制冷还很不成熟,其主要原因是技术要求和成本太高。
制冷方式以太阳能热水器产生的热水驱动溴化锂吸收式制冷机为主。
近年来固体吸附式制冷的发展,为太阳能制冷的实用化提供了一个很好的发展契机。
其主要应用在于制冰或冷藏,而在国内,从70年代开始对太阳能制冷技术进行研究,目前尚未有商品化产品。
二、循环过程固体吸附式制冷是利用固体吸附剂(如沸石、活性炭、氯化钙)对制冷剂(如水、甲醇、氨)的吸附和解吸作用实现制冷循环的,吸附剂的再生可以在65~200℃下进行,这很适合于太阳能的利用。
吸附式制冷具有结构简单、运行费用低、无噪音、无环境污染、基本不含动力部件,能有效利用低品味热源等一系列有点。
太阳辐射具有间歇性,因而太阳能吸附制冷系统都是以基本循环工作方式运行制冷的,Critoph把太阳能固体吸附式制冷循环描述成四个阶段,即定容加热过程、定压脱附过程、定容冷却过程、定压吸附过程。
如图1所示,表示一个太阳能冰箱为原型的固体吸附式制冷装置,它的组成部分包括用太阳能供热的吸附/发生器、冷凝器、蒸发器、阀门、贮液器。
其工作过程简述如下,该过程的热力循环如图2所示:(1)循环从早上开始,关闭阀门,处于环境温度Ta2的吸附床被太阳能集热器加热,此时只有少量的工质脱附出来,吸附率x(表示单位质量的吸附剂对制冷剂的吸附质量)近似为常数,吸附床内的压力不断升高,从蒸发压力Pe升高到冷凝压力Pc,此时吸附床温度达到Tg1。
固体吸附式制冷

17
(2)热波循环
多床循环的吸附床与吸附床之间存 在传热温差使系统的回热利用率不高, 且投资费用随床数的增加而成倍增加。 热波循环中吸附床被设计成一系列能 独立进行热交换的小吸附床组成。沿 冷却(加热)流体流程存在很大的温 度梯度,以便最大限度地利用吸附过
。 程放出的热量,更充分地回热
(2)热波循环
吸附器1 吸附器2 冷却水
蒸发器
冷凝器
24
6.4.3.强化吸附床传热的研究
强化吸附床传热可以提高吸附/解析速率,缩短循环周期。一个有 效的增强吸附床传热的方法是减少吸附床厚度并增大其与外界的换热 面积。通过在吸附床中插入薄金属肋片或金属管,或者将片状吸附剂 与金属片粘结在一起,从而大大减少接触热阻,提高吸附床的传热效 率。但由于金属与粘结剂的热膨胀系数不同,很难保证在反复加热和 冷却条件下粘结的牢固性。
TK
Qc1 CvrfTMaxdT
T0
Cvrf(T)—液态制冷剂定容比热容(kJ/kg·K)。
(7)制冷量Qo
Qo MaLex
(8)循环的性能系数COP
COP QOQC1 Qo QhQg Qk Qg
应当指出,上述热力计算公式是纯理论的,实际上由于工 质物性复杂,且存在着各种损失,精确地计算各个热力过程的 热量确实比较困难,但可以利用以上公式对循环进行分析,从 理论上加以指导。
此过程可以认为与6-1过程同时发生。
8
6.3 吸附式制冷循环的热力计算
(1)吸附床等容加热过程吸收的显热Qh
Tg1
Tg1
Qh Cva TMadT CvrTMrdT
Ta2
Ta2
(kW)
Cva(T)—吸附剂定容比热容,kJ/kg.K; Cvr(T)—制冷剂定容比热容,kJ/kg·K; Ma、Mr—分别表示吸附剂和制冷剂的质量(kg),其中 Mr=Xconc×Ma。 公式中第一部分表示的是吸附剂的显热,第二部分表示制冷工质的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能固体吸附式制冷系统概述
【摘要】太阳能固体吸附式制冷机以其节能、环保等优点受到人们的重视。
本文介绍了这种制冷循环的原理和过程,并结合目前国内研究的较多的课题,就吸附集热器及其研究成果作了概述,并讲述了解决太阳能固体吸附制冷空调工作和使用时间上不匹配的
方法。
【关键词】固体吸附;吸附集热器;平板型;真空管吸附集热器;蓄冷
一、引言
20世纪90年代以来,由于资源与环境问题,在制冷领域,太阳能制冷因其节能、环保,以及太阳能辐射资源与制冷空调用能在时间、地域上波动规律,热量的供给和冷量的需求在季节上和数量上的高度匹配,受到人们的广泛关注。
但与太阳能供热相比,太阳能制冷还很不成熟,其主要原因是技术要求和成本太高。
制冷方式以太阳能热水器产生的热水驱动溴化锂吸收式制冷机为主。
近年来固体吸附式制冷的发展,为太阳能制冷的实用化提供了一个很好的发展契机。
其主要应用在于制冰或冷藏,而在国内,从70年代开始对太阳能制冷技术进行研究,目前尚未有商品化产品。
二、循环过程
固体吸附式制冷是利用固体吸附剂(如沸石、活性炭、氯化钙)对制冷剂(如水、甲醇、氨)的吸附和解吸作用实现制冷循环的,吸附剂的再生可以在65~200℃下进行,这很适合于太阳能的利用。
吸附式制冷具有结构简单、运行费用低、无噪音、无环境污染、基本不含动力部件,能有效利用低品味热源等一系列有点。
太阳辐射具有间歇性,因而太阳能吸附制冷系统都是以基本循环工作方式运行制冷的,critoph把太阳能固体吸附式制冷循环描述成四个阶段,即定容加热过程、定压脱附过程、定容冷却过程、定压吸附过程。
如图1所示,表示一个太阳能冰箱为原型的固体吸附式制冷装置,它的组成部分包括用太阳能供热的吸附/发生器、冷凝器、蒸发器、阀门、贮液器。
其工作过程简述如下,该过程的热力循环如图2所示:
(1)循环从早上开始,关闭阀门,处于环境温度ta2的吸附床被太阳能集热器加热,此时只有少量的工质脱附出来,吸附率x(表示单位质量的吸附剂对制冷剂的吸附质量)近似为常数,吸附床内的压力不断升高,从蒸发压力pe升高到冷凝压力pc,此时吸附床温度达到tg1。
(2)打开阀门,在恒压条件下吸附器中的吸附制冷剂继续受热直至温度达到最大解吸温度tg2。
与此同时,被吸附的制冷剂不断地脱附出来,并在冷凝器中冷凝,冷凝下来地液体进入蒸发器中。
(3)关闭阀门,此时已是傍晚,吸附床随太阳日照的消失逐渐冷却,相应的内部压力下降到相当于蒸发温度下工质的饱和压力,即从pc下降到pe,该过程中吸附率也近似不变,最终温度为ta1。
(4)打开阀门,蒸发器中的制冷剂液体因压力骤减而迅速汽化,实现蒸发制冷。
蒸发出来的气体进入吸附床被吸附,该过程一直进
行到第二天早晨。
吸附过程放出大量的热,由冷却水或外界空气带走,吸附床最终温度为ta2。
由以上分析可见,太阳能吸附式制冷系统的工作循环过程是间歇式的。
系统运行时,白天为解析过程,晚上为吸附制冷过程。
三、研究课题
1、吸附床集热器
吸附式制冷循环效率很低,现有的太阳能固体吸附制冷机的制冷系数cop一般为0.08~0.13。
因此要尽量提高增强吸附床的传热传质,以改进吸附制冷性能。
增强传热传质,可以从两个方面入手:一是研究高导热性能的复合吸附剂,二是采用具有更好换热效果的换热器。
1-水进口 2、8-上、下盖板
3-制冷剂进口 4-透明玻璃筒
5-选择性涂层 6-内筒
7-吸附剂颗粒 9-水出口
10-制冷剂出口
就吸附/集热器而言,目前最普遍的就是平板吸附/集热器。
一种平板吸附床结构图如图3所示。
吸附床通常由吸附剂(如活性碳、沸石分子筛)填充在一定形状的金属壳体内所构成,其性能的优劣主要由传热传质特性所决定,即要求吸附床在吸附制冷系统循环的加热解吸过程中能尽快地将外界加给系统的能量传递给吸附床内
的吸附剂,使吸附床能脱附出制冷剂;同时,在冷却吸附过程中应
使吸附床尽快将吸附床的显热以及吸附热释放出来以便使吸附剂
吸附制冷剂而产生蒸发制冷效果,因而吸附床性能的改进都与吸附床的传热传质性能密切相关。
固体吸附式制冷循环cop较低的一个重要原因是对太阳能的集热与散热效果不佳。
与其他太阳能集热器一样,平板型太阳能吸附集热器主要热损失集中于受阳面吸热板和玻璃面盖之间的自然对流、辐射和热传导。
为减少平板集热器的热损,提高集热温度,国际上在20世纪70年代研制成功真空集热管,大大增强了集热效率。
但这种高性能的集热方式至今尚未在固体吸附制冷中得到应用,问题主要在于夜间吸附床散热困难。
如果能够解决好真空管用于吸附制冷时的集热和散热之间的匹配关系,将使太阳能固体吸附制冷系统的效率得到较大的提高。
文献1就这个问题提出了一种真空管太阳能吸附集热器的设计方案。
真空管集热器采用圆柱结构,集热器与吸附床做成一体。
其主要特点是将吸热面和外层玻璃之间抽成真空,以有效抑制自然对流和热传导。
吸附剂层设在中心,吸附剂颗粒间的自然间隙作为传质通道如图4所示。
该吸附集热器为同心筒状,最外层为玻璃管,第二层可为玻璃管,也可为涂有选择性涂层的导热良好的材料,以增强对太阳辐射的有效吸收。
中间通有冷却水管,冷却水管和内筒间为采用装填或烧结工艺制成的吸附剂层,吸附剂的自然孔间隙为传质通道。
玻璃管和内筒之间抽成真空。
玻璃管可以让可见光通过而又防止内部长波辐射,起到较好的保温作用。
真空可以防止吸附
层外筒壁与玻璃之间的对流热损失。
冷却水管在吸附过程中通冷水带走吸附热,降低床温。
适当控制流速,冷却水带走。