2017 《金属塑性成形原理》复习
《金属塑性成形原理》复习题(答案参考)

一.名词解释1.理想刚塑性材料/刚塑性硬化材料2.拉伸塑性失稳/压缩失稳3.工程切应变/相对线应变4.增量理论/全量理论5.轴对称应力状态/平面应力状态6.屈服轨迹/屈服表面7.动态回复/动态再结晶8.等效应力/等效应变9.弥散强化/固溶强化10.临界切应力/形变织构二.简答题提高金属塑性的基本途径。
试分析单相与多相组织、细晶与粗晶组织、锻造组织与铸造组织对金属塑性的影响。
①相组成的影响:单相组织(纯金属或固溶体)比多相组织塑性好。
多相组织由于各相性能不同,变形难易程度不同,导致变形和内应力的不均匀分布,因而塑性降低。
如碳钢在高温时为奥氏体单相组织,故塑性好,而在800℃左右时,转变为奥氏体和铁素体两相组织,塑性就明显下降。
另外多相组织中的脆性相也会使其塑性大为降低。
②晶粒度的影响:晶粒越细小,金属的塑性也越好。
因为在一定的体积内,细晶粒金属的晶粒数目比粗晶粒金属的多,因而塑性变形时位向有利的晶粒也较多,变形能较均匀地分散到各个晶粒上;又从每个晶粒的应力分布来看,细晶粒时晶界的影响局域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。
由于细晶粒金属的变形不均匀性较小,由此引起的应力集中必然也较小,内应力分布较均匀,因而金属在断裂前可承受的塑性变形量就越大。
③锻造组织要比铸造组织的塑性好。
铸造组织由于具有粗大的柱状晶和偏析、夹杂、气泡、疏松等缺陷,故使金属塑性降低。
而通过适当的锻造后,会打碎粗大的柱状晶粒获得细晶组织,使得金属的塑性提高。
试分别从力学和组织方面分析塑性成形件中产生裂纹的原因。
防止产生裂纹的原则措施是什么?变形温度对金属塑性的影响的基本规律是什么?就大多数金属而言,其总体趋势是:随着温度的升高,塑性增加,但是这种增加并不是简单的线性上升;在加热过程中的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属的塑性降低。
在一般情况下,温度由绝对零度上升到熔点时,可能出现几个脆性区,包括低温的、中温的和高温的脆性区。
《金属塑性成形原理》复习题

《金属塑性成形原理》复习题1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形---当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。
Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。
可分为一次成型和二次加工。
一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。
分纵轧、横轧、斜轧;用于生产型材、板材和管材。
②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。
分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。
③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。
生产棒材、管材和线材。
二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。
精度低,生产率不高,用于单件小批量或大锻件。
②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。
分开式模锻和闭式模锻。
2)板料成型一般称为冲压。
分为分离工序和成形工序。
分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。
金属塑性成形原理复习资料

第三章金属塑性变形的力学基础一应力的有关概念1.张量:定义:张量是矢量的推广,与矢量相类似,由若干个当坐标系改变时满足转换关的分量所组成的集合。
性质:(1)存在张量不变量(2)张量可以叠加和分解(3)张量可以分对称张量·非对称张量·反对称张量。
(4)二阶对称张量存在三个主轴和三个主值。
2.应力张量:表示点应力状态的九个应力分量构成一个二阶张量3.主应力:主平面上的正应力4.主应力简图:受力物体内一点的应力状态,可用作用在应力单元体上的主应力来描述,只用主应力的个数及符号来描述一点应力状态的简图。
5.应力张量不变量:虽然应力张量的各分量随坐标而变,但按式(3-14)的形式组成的函数值是不变的,所以将J1,J2,J3分别称为应力张量的第一,第二,第三不变量。
6.主切应力平面:切应力达到极值的平面。
7.主切应力:主切平面上作用的切应力8.最大切应力:三个主切应力中绝对值最大的一个,也就是一点所有方位切面上切应力的最大者。
9.八面体应力:由主轴坐标系空间八个象限中的等倾微分面构成的正八面体的每个平面上的应力。
10.八面体等效应力:定义:八面体切应力绝对值的3/√2倍所得之参量。
表达式为:特点:1)等效应力是一个不变量。
2)等效应力在数值上等于单向均匀(或压缩)时的拉伸(或压缩)应力3)等效应力并不代表某一实际平面上的应力,因而不能在某一特定的平面上表示出来。
4)等效应力可以理解为代表一点应力状态中应力张量的综合作用。
11.球张量物理意义:球张量表示球应力状态,也称静水应力状态。
它不能使物体产生形状变化,只能使物体产生体积变化。
12.应力偏张量的物理意义:应力偏张量只能使物体产生形状变化,而不能使物体产生体积变化。
13.平面应力状态:变形体内与某方向轴垂直的平面上无应力存在,并所有应力分量与该方向轴无关,则这种应力状态叫平面应力状态。
特点:1)变形体内各质点在与某方向轴垂直的平面上没应力作用。
金属塑性成型复习题

金属塑性成型复习题金属塑性成形原理复习题一、解释名词和术语1塑性:金属产生塑性变形而不破坏其完整性的能力。
2塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。
3塑性成形:在外力的作用下使金属产生塑性变形,从而加工成所需形状和尺寸的工件的加工方法。
4应力张量 :点的应力状态是一个张量。
5主应力:主平面上的正应力。
6主切应力:斜面上切应力的极大值。
7主平面:切应力为零的平面。
8主切应力平面:主切应力作用的平面。
9平面应力状态:变形体在某一平面上没有应力的作用时物体内质点所处的应力状态。
10平面应变状态:变形体在某一方向不产生变形时物体内质点所处的应力状态。
11轴对称应力状态: 旋转体承受的外力对称于旋转轴分布时物体内质点所处的应力状态。
12位移 :变形体内任一点变形前后的直线距离。
13位移分量:坐标系中,一点的位移矢量在三个坐标轴上的投影。
14对数应变:试样单向拉伸时伸长的总应变。
15主应变 :某一方向上线元没有切应变,只有线应变。
16主切应变:与主切应变方向成45?角方向上的应变。
17应变增量 :将变形体在变形过程中任意瞬间的形状和尺寸作为初始状态,在此基础上产生的无限小应变。
18应变速率:单位时间内的应变。
19全量应变:反映单元体在某一变形过程中的某个阶段结束时的变形大小的应变。
20屈服准则:在一定的变形条件下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性变形状态,这种关系称为屈服准则。
21屈服表面 :屈服准则的数学表达式在主应力空间的几何图形是个封闭的空间曲面,这个封闭的空间曲面称为屈服表面。
22屈服轨迹:两向应力状态下屈服准则的数学表达式,在主应力坐标平面上的几何图形是封闭的曲线,这封闭的曲线,称为屈服轨迹。
23π平面 :在主应力空间中,通过坐标原点并垂直于等倾斜线的平面。
24本构方程:塑性变形时,应力与应变之间的关系称为本构关系,这种关系的数学表达式称为本构方程。
塑性成形原理复习刚要

《金属塑性成形》复习刚要(陈燕和孙昌凯整理)(此复习资料可能含有错误及疏漏,仅供参考)第一章金属塑性成形及其应用1金属成型方法(l)冷加工:车削、铣、刨、磨、镗(2)热加工:铸、锻、焊2金属塑性成型的分类冶金工业领域:轧制、拉拔、挤压机械制造领域:锻造(自由锻,模锻),冲压(冲裁,拉深,弯曲)3.金属塑性成形方法的特点:(1)能改善金属的组织,提高金属的机械性能;(2)节约金属材料和切削加工工时,材料利用率高;(3)成型后流线分布合理,制件强度高;(4)生产系效率高,适用大批量生产;(5)尺寸精度高。
第二章金属的结构与塑性变形2-1 金属的晶体结构与缺陷1、晶体结构:是指晶体中原子在三维空间有规律的周期性的具体排列方式。
三种典型的金属结构:体心立方结构,面心立方结构,密排六方结构。
2、晶体缺陷种类:点缺陷(空位,间隙原子,置换原子),线缺陷(刃型位错,螺型位错),面缺陷。
2-2金属的塑性变形1、变形机理:(1)晶内变形:滑移,孪生。
(2)晶间变形:晶粒之间相互滑动和转动。
2、冷塑性变形对金属组织和性能的影响P16(1)、组织的变化:晶粒形状变化;晶粒内产生亚结构;晶粒位向改变(变形织构)(2)、性能的变化:加工硬化P18:随着变形程度的增加,金属的强度,硬度增加,而塑性,韧性下降的现象。
可作为强化金属的途径,可用中间退火消除。
3、回复与再结晶(1)、静态回复在整个回复阶段,点缺陷减少,位错密度有所下降,位错分布形态经过重新调整和组合而处于低能态,位错发团变薄、网络更清晰。
(2)、静态再结晶 P20冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织,这个过程称为金属的再结晶。
(3)、动态回复P22:动态回复是在热塑性变形过程中发生的回复,动态回复主要是通过位错的攀移、交滑移等来实现的。
(4)、动态再结晶:动态再结晶是在热塑性变形过程中发生的再结晶。
金属塑性成形原理_总复习

一、1.加工硬化指经过塑性变形后,金属内部的组织结构和物理力学性能发生改变,其塑性、韧性下降,强度、硬度增加,继续变形的力提高的现象。
2.加工硬化的后果:强度提高,增加设备吨位;塑性下降,降低变形程度,增加变形工序和中间退火工序;强化金属材料(不能热处理的),提高金属零件的强度,改善冷塑性加工的工艺性能。
3.措施:经冷塑性变形后金属产生加工硬化,如将变形后的金属加热到一定温度,又将产生软化,塑性韧性提高,强度硬度降低,即产生回复和再结晶—静态回复和再结晶。
二、1.金属的塑性指固体金属在外力的作用下产生永久变形而不破坏其完整性的能力。
塑性是一种状态、而不是一种性质2.塑性的影响因素○1变形温度对塑性的影响变形温度对塑性影响显著,总趋势:温度升高、塑性增加。
三个脆区低温脆区(蓝脆区)中温脆区高温脆区主要原因:回复和再结晶消除加工硬化降低临界切应力,增加滑移系金属的组织结构发生变化增强热塑性作用加强晶界滑动作用○2变形速度对塑性的影响增加变形速度会使金属晶体的临界切应力升高,使塑性降低增加变形速度,温度效应显著,金属温度升高,使塑性提高增加变形速度,由于没有足够的时间进行回复和再结晶,使塑性降低工艺过程中一般希望提高变形速度降低摩擦改善不均匀性减少热量损失增强惯性流动○3应力状态对塑性的影响主应力状态中,压应力个数越多,数值越大,金属的塑性越好;拉应力个数越多,数值越大,金属的塑性越差。
原因拉应力促进晶间变形,加速晶界破坏;三向压缩应力有利于愈合塑性变形过程中产生的各种损伤;而拉应力则相反,它促使损伤的发展;压应力有利于抑制和消除晶体中塑性变形产生的各种微观破坏,拉应力相反;三向压应力能抵消由于不均匀变形引起的附加拉应力。
○4金属的化学成分和组织结构对塑性的影响晶格类型的影响面心立方晶格结构:塑性较好体心立方晶格结构:塑性较差密排六方晶格结构:塑性较差组织结构的影响单相组织塑性较好塑性相近 — 影响小多相组织 脆性相网状分布,塑性显著降低 塑性差别大 脆性相片状层状分布,影响小 脆性弥散均匀分布,无影响 晶粒 — 晶粒细小有利于提高塑性铸态组织 — 铸态组织中的粗大柱状晶粒、偏析、夹杂、气泡、疏松等缺陷,以及组织不均匀性将显著降低金属的塑性 3.提高金属塑性的途径合理选择变形温度与变形速度 合理选择变形方式提高金属材料成分和组织的均匀性 减小不均匀变形三、金属的变形抗力及其影响因素金属受外力而变形,抵抗变形的力 — 变形抗力 变形的难易程度 单位流动应力变形抗力的影响因素:化学成分、组织结构、变形温度、变形速度、变形程度、应力状态四、金属的超塑性:延伸率达=100%~2000% 结构超塑性(微细晶粒超塑性)动态超塑性(相变超塑性)超塑性的变形机制:晶界滑动与扩散蠕变联合机制五、塑性力学的基本假设:变形体连续、变形体均质和各向同性、变形体静力平衡、体积力和体积变形不计。
《金属塑性成型原理》复习资料

第一章绪论1.什么是金属的塑性什么是塑性成形塑性成形有何特点塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。
Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。
可分为一次加工和二次加工。
一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。
分纵轧、横轧、斜轧;用于生产型材、板材和管材。
②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。
分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。
③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。
生产棒材、管材和线材。
二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。
精度低,生产率不高,用于单件小批量或大锻件。
②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。
分开式模锻和闭式模锻。
2)板料成型一般称为冲压。
分为分离工序和成形工序。
分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。
Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形。
第二章金属塑性变形的物理基础1、简述滑移和孪生两种塑性变形机理的主要区别。
金属塑形成型原理复习

判断题:1.在塑料变形时要产生硬化的材料叫变形硬化材料2.塑性变形体内各点的最大剪应力的轨迹线叫滑移线。
3.塑性是材料所具有的一种本质属性。
4.合金元素使钢的塑性减小,变形拉力增强。
5.合金钢中的白点现象是由于氢元素和组织应力引起的。
6.影响超塑性的主要因素是变形速度、变形温度和组织结构。
7.屈雷斯加准则与密席斯准则在平面应变上,两个准则是不一致的。
8.静水压力的增加,有助于提高材料的塑性。
9.碳钢中热脆性的产生主要是由于硫元素的存在所致。
10在塑料变形时金属材料塑性好,变形抗力就低,例如:冷轧板和铝板填空题:18.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高14.研究塑性力学时,通常采用的基本假设有连续性假设、均匀性假设、初应力为零、体积力为零、各向同性假设、体积不变假设。
1.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦2、衡量金属或合金的塑性变形能力的数量指标有(伸长率)和(断面收缩率)。
3、所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。
4、金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。
5.金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。
6.变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。
对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力σm不同,而各点处的最大切应力K为材料常数。
7.在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《金属塑性成形原理》复习一、填空题1. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示:则单元内任一点外的应变可表示为2. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。
3. 金属单晶体变形的两种主要方式有:滑移和孪生4. 等效应力表达式:7.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦8、衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。
9、所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。
10、金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。
11、请将以下应力张量分解为应力球张量和应力偏张量12. 对应变张量,请写出其八面体线变与八面体切应变的表达式。
13.1864 年法国工程师屈雷斯加( H.Tresca )根据库伦在土力学中研究成果,并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果采用数学的方式,屈雷斯加屈服条件可表述为:14. 金属塑性成形过程中影响摩擦系数的因素有很多,归结起来主要有金属的种类和化学成分、工具的表面状态、接触面上的单位压力、变形温度、变形速度等几方面的因素。
15. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切线方向即为该点的最大切应力方向。
对于理想刚塑性材料处于平面应变状态下,塑性区内各点的应力状态不同其实质只是平均应力不同,而各点处的最大切应力K 为材料常数。
16. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应的速度场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场,称之为真实应力场和真实速度场,由此导出的载荷,即为真实载荷,它是唯一的。
17、金属塑性成形有如下特点:、、、18、按照成形的特点,一般将塑性成形分为和两大类,按照成形时工件的温度还可以分为、和三类。
19、金属的超塑性分为和两大类。
20、冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织,这个过程称为金属的。
21、研究塑性力学时,通常采用的基本假设有、、、体积力为零、初应力为零、。
22. 塑性是指:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力 ;23. 金属单晶体变形的两种主要方式有:滑移和孪生。
24.影响金属塑性的主要因素有:化学成分、组织、变形温度、变形速度、应力状态25.塑性成形中的三种摩擦状态分别是:干摩擦、边界摩擦、流体摩擦。
26.对数应变的特点是具有真实性、可靠性和可加性27.就大多数金属而言,其总的趋势是,随着温度的升高,塑性提高28.钢冷挤压前,需要对坯料表面进行磷化皂化润滑处理。
29.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物质的总称叫添加剂30.材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫超塑性。
31.韧性金属材料屈服时,密塞斯(Mises)准则较符合实际的。
32.硫元素的存在使得碳钢易于产生热脆。
33.塑性变形时不产生硬化的材料叫做理想塑性材料34.应力状态中的压应力,能充分发挥材料的塑性。
35.平面应变时,其平均正应力m等于中间主应力236.钢材中磷使钢的强度、硬度提高,塑性、韧性降低37.材料经过连续两次拉伸变形,第一次的真实应变为=0.1,第二次的真实应变为2=0.25,则总的真实应变= 0.3538.塑性指标的常用测量方法拉伸试验法与压缩试验法39.弹性变形机理原子间距的变化;塑性变形机理位错运动为主。
二、选择题1.塑性变形时,工具表面的粗糙度对摩擦系数的影响 A 工件表面的粗糙度对摩擦系数的影响。
A、大于;B、等于;C、小于;2.塑性变形时不产生硬化的材料叫做 A 。
A、理想塑性材料;B、理想弹性材料;C、硬化材料;3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B 。
A、解析法;B、主应力法;C、滑移线法;4.韧性金属材料屈服时, A 准则较符合实际的。
A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加;5.由于屈服原则的限制,物体在塑性变形时,总是要导致最大的 A 散逸,这叫最大散逸功原理。
A、能量;B、力;C、应变;6.硫元素的存在使得碳钢易于产生 A 。
A、热脆性;B、冷脆性;C、兰脆性;7.应力状态中的 B 应力,能充分发挥材料的塑性。
A、拉应力;B、压应力;C、拉应力与压应力;8.平面应变时,其平均正应力m B 中间主应力2。
A、大于;B、等于;C、小于;9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。
A、提高;B、降低;C、没有变化;10.多晶体经过塑性变形后各晶粒沿变形方向显著伸长的现象称为 A 。
A、纤维组织;B、变形织构;C、流线;三、判断题1.按密塞斯屈服准则所得到的最大摩擦系数μ=0.5。
(×)2.塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。
(×)3.静水压力的增加,对提高材料的塑性没有影响。
(×)4.在塑料变形时要产生硬化的材料叫理想刚塑性材料。
(×)5.塑性变形体内各点的最大剪应力的轨迹线叫滑移线。
(√)6.塑性是材料所具有的一种本质属性。
(√)7.塑性就是柔软性。
(×)8.合金元素使钢的塑性增加,变形拉力下降。
(×)9.合金钢中的白点现象是由于夹杂引起的。
(×)10.结构超塑性的力学特性为mkS',对于超塑性金属m =0.02-0.2。
(×)11.影响超塑性的主要因素是变形速度、变形温度和组织结构。
(√)12.屈雷斯加准则与密席斯准则在平面应变上,两个准则是一致的。
(×)13.变形速度对摩擦系数没有影响。
(×)14.静水压力的增加,有助于提高材料的塑性。
(√)15.碳钢中冷脆性的产生主要是由于硫元素的存在所致。
(×)16.如果已知位移分量,则按几何方程求得的应变分量自然满足协调方程;若是按其它方法求得的应变分量,也自然满足协调方程,则不必校验其是否满足连续性条件。
(×)17.在塑料变形时金属材料塑性好,变形抗力就低,例如:不锈钢(×)四、简答或名词解释1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形---当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试分析晶粒大小对金属塑性和变形抗力的影响。
①晶粒越细,变形抗力越大。
晶粒的大小决定位错塞积群应力场到晶内位错源的距离,而这个距离又影响位错的数目n。
晶粒越大,这个距离就越大,位错开动的时间就越长,n也就越大。
n越大,应力场就越强,滑移就越容易从一个晶粒转移到另一个晶粒。
②晶粒越细小,金属的塑性就越好。
a.一定体积,晶粒越细,晶粒数目越多,塑性变形时位向有利的晶粒也越多,变形能较均匀的分散到各个晶粒上;b.从每个晶粒的应力分布来看,细晶粒是晶界的影响区域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。
这种不均匀性减小了,内应力的分布较均匀,因而金属断裂前能承受的塑性变形量就更大。
3.什么叫加工硬化?产生加工硬化的原因是什么?加工硬化对塑性加工生产有何利弊?加工硬化----随着金属变形程度的增加,其强度、硬度增加,而塑性、韧性降低的现象。
加工硬化的成因与位错的交互作用有关。
随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶、位错缠结等障碍,以致形成胞状亚结构,使位错难以越过这些障碍而被限制在一定范围内运动。
这样,要是金属继续变形,就需要不断增加外力,才能克服位错间强大的交互作用力。
加工硬化对塑性加工生产的利弊:有利的一面:可作为一种强化金属的手段,一些不能用热处理方法强化的金属材料,可应用加工硬化的方法来强化,以提高金属的承载能力。
如大型发电机上的护环零件(多用高锰奥氏体无磁钢锻制)。
不利的一面:①由于加工硬化后,金属的屈服强度提高,要求进行塑性加工的设备能力增加;②由于塑性的下降,使得金属继续塑性变形困难,所以不得不增加中间退火工艺,从而降低了生产率,提高了生产成本。
4.什么是动态回复?为什么说动态回复是热塑性变形的主要软化机制?动态回复是在热塑性变形过程中发生的回复(自发地向自由能低的方向转变的过程)。
动态回复是热塑性变形的主要软化机制,是因为:①动态回复是高层错能金属热变形过程中唯一的软化机制。
动态回复是主要是通过位错的攀移、交滑移等实现的。
对于层错能高的金属,变形时扩展位错的宽度窄,集束容易,位错的交滑移和攀移容易进行,位错容易在滑移面间转移,而使异号位错相互抵消,结果使位错密度下降,畸变能降低,不足以达到动态结晶所需的能量水平。
因为这类金属在热塑性变形过程中,即使变形程度很大,变形温度远高于静态再结晶温度,也只发生动态回复,而不发生动态再结晶。
②在低层错能的金属热变形过程中,动态回复虽然不充分,但也随时在进行,畸变能也随时在释放,因而只有当变形程度远远高于静态回复所需要的临界变形程度时,畸变能差才能积累到再结晶所需的水平,动态再结晶才能启动,否则也只能发生动态回复。
Add:动态再结晶容易发生在层错能较低的金属,且当热加工变形量很大时。
这是因为层错能低,其扩展位错宽度就大,集束成特征位错困难,不易进行位错的交滑移和攀移;而已知动态回复主要是通过位错的交滑移和攀移来完成的,这就意味着这类材料动态回复的速率和程度都很低(应该说不足),材料中的一些局部区域会积累足够高的位错密度差(畸变能差),且由于动态回复的不充分,所形成的胞状亚组织的尺寸小、边界不规整,胞壁还有较多的位错缠结,这种不完整的亚组织正好有利于再结晶形核,所有这些都有利于动态再结晶的发生。
需要更大的变形量上面已经提到了。
5.什么是动态再结晶?影响动态再结晶的主要因素有哪些?动态再结晶是在热塑性变形过程中发生的再结晶。
动态再结晶和静态再结晶基本一样,也会是通过形核与长大来完成,其机理也是大角度晶界(或亚晶界)想高位错密度区域的迁移。
动态再结晶的能力除了与金属的层错能高低(层错能越低,热加工变形量很大时,容易出现动态再结晶)有关外,还与晶界的迁移难易有关。
金属越存,发生动态再结晶的能力越强。
当溶质原子固溶于金属基体中时,会严重阻碍晶界的迁移、从而减慢动态再结晶的德速率。