复习(内燃机设计)

合集下载

内燃机设计考试要点

内燃机设计考试要点

第一章内燃机设计总论一、开发设计组成答:1、产品开发计划阶段;2、设计实施阶段;3、产品试制检验阶段;4、改进与处理阶段。

二、三化要求答:1、产品系列化;2、零部件通用化;3、零件设计标准化。

三、汽油机的优点答:1、空气利用率高,升功率高。

2、零部件强度要求较低,制造成本低。

3、低温起动性好,加速性好,工作柔和,噪声较小。

4、升功率高,最高燃烧压力低,机构轻巧,比质量小。

5、不冒黑烟,颗粒排放少。

柴油机的优点:1、燃料经济性好。

2、工作可靠,耐久性好。

3、通过增压和扩缸,增加攻略。

4、防火安全性好。

5、CO和HC的排放比汽油机少。

四、内燃机评定参数答:1、强化指标。

平均有效压力Pme和活塞平均速度Vm的乘积。

2、比质量m/Pe。

单位:kg/kW。

工作过程的强化程度和结构设计的完善程度。

3、升功率kW/L。

发动机工作的完善性。

五、气缸直径D和汽缸数Z答:气缸直径改变之后,除估算功率、转矩外,活塞直径、气门直径、气门最大升程要重新确定,活塞环要重新选配,曲轴平衡要重新计算,要进行曲柄连杆机构动力计算和扭振计算,要进行压缩比验算、燃烧室设计、工作过程计算甚至重新设计凸轮型线等。

六、行程S答:行程S改变后,在结构上要重新设计曲轴,要重新进行曲柄连杆机构动力计算、平衡计算、机体高度改变或者曲轴中心移动、压缩比验算与修正、工作过程计算5362411])sin 1([)( )sin 1()sin (1 cos sin sin L r sin sin r sin L AOB )cos cos ()(21222122212αλαλββλαλαββααβ--+=∴-=-===∆+-+=-'='=l l r x r l l r AOO A A A x -连杆比=有利用正弦定理,中,在第二章、曲柄连杆受理机构分析 1、曲柄连杆中力的关系 答:P33,图2-52、多缸机扭矩(动力计算),多缸机曲柄图。

合成扭矩计算。

内燃机设计重点整理

内燃机设计重点整理

第一章 内燃机设计总论1. 内燃机设计的主要指标1) 动力性指标:主要包括有效功率、转速和转矩 有效功率的计算式:ττ2300Di c p in V p P m me h me e ⋅⋅⋅∝=式中,Pme 为平均有效压力;m v 为活塞平均速度,hV 为单缸工作容积,i 为汽缸数,n 为转速,D 为气缸直径,τ为冲程数。

2) 经济型指标:燃油消耗率,燃油消耗率的公式为mi et eeKHuP B b ηηη=⨯=⨯=63106.310式中:机械效率指示功率有效功率=m η3) 可靠性和耐久性指标:可靠性是指在规定的运转条件下,规定的时间内,具有持续工作,不会因为故障而影响正常运转的能力;耐久性是指从开始使用起到大修期的时间。

4) 质量尺寸外形指标:质量、尺寸外形尺寸是评价设计的紧凑性和金属利用程度的指标。

5) 低公害指标:包括噪声和有害气体排放 2. 内燃机主要参数的选择?1) 平均有效压力me P :平均有效压力与混合气形成的方法、燃料的种类、燃烧和换气过程的质量、进气温度和压力以及机械效率等有关。

提高me P 的途径:提高充气效率;提高指示热效率;提高机械效率;调整燃油系统;采用增压或提高空气密度。

2) 活塞平均速度m v :m v 是表征发动机强化程度的主要参数。

30Sn v m =式中:S 为活塞行程(mm ),n为发动机转速(r/min );3) 汽缸直径D 和冲程数S :气缸直径D 加大,有效功率Pe 以直径的平方的速度增加,但是惯性力也以直径的平方增加,导致振动和机械负荷加剧,还会使发动起气缸、活塞组、气缸盖、气门等零件的热负荷加重。

4) 缸径比S/D :S/D 增加导致活塞的平均速度m v 增加,磨损加速,寿命降低。

第二章:曲柄连杆机构的受力分析1. 活塞的运动规律?(1)活塞位移:=()()αα2cos 141cos 1-+-(简化后的公式由一阶和二阶量组成)(2)活塞速度:=αλα2sin 2sin +(3)活塞加速度:=a 2cos cos λα+ 时41<λ:λλαα+=⇒<--⇒=10410max 22j d j d =()λλαα--=⇒>-⇒︒=1041180min 22j d j d =时41>λ:λλαα+=⇒<-⇒︒=10410max 22j d j d =()λλαα--=⇒<-⇒︒=1041180max 22j d j d =2.活塞受力分析?曲柄连杆中的作用力分为:气体作用力,惯性力(往复惯性力和旋转惯性力),合成力F 。

内燃机设计期末试题

内燃机设计期末试题

内燃机设计试卷一、简答题(24分)1. 发动机的支承力有哪些?哪些是引起发动机振动的力?2. 凸轮缓冲段的高度主要考虑了哪些因素?采用液压挺柱时是否还应该设计缓冲段?3. 活塞环工作应力与装配应力之间是什么关系,写出表达式,并说明设计时如何选择?4. 发动机转速提高,意味着活塞平均速度Vm高,根据公式2)100(7854.0DVpZPmmeeτ=可知,可以提高发动机的有效功率;请回答Vm增加带来的负面作用有哪些?二、填空(20分)1. 机体的设计原则为:在尽可能的条件下,尽量提高机体的。

2. 往复惯性力αcosCF j=I始终沿作用。

3. 发动机的主临界转速与发火次序的变化。

4. 如果需要在轴瓦上开油槽,应该开在主轴瓦的,连杆轴瓦的。

5. 从等刚度出发,主轴颈D1 连杆轴颈D2;从等强度出发,D1 D2;实际设计时D1 D2。

6. 润滑系机油循环量根据来确定。

三、分析(20分)已知一单列四行程三缸发动机,发火次序1-3-2,请分析往复惯性力的平衡性,如必要,请采取整体平衡措施,写出质径积表达式,在轴侧图上标出平衡重布置。

四、计算(16分)已知一台单列四行程三缸发动机(1-3-2),进排气门在一条直线上,凸轮轴顶置,图中虚线L与气门轴线平行,摆杆以及配气相位如附图求:1.各缸排气凸轮相对于第一缸排气凸轮的夹角;2.同缸异名凸轮夹角;3.排气凸轮工作半包角;4. 一缸活塞位于压缩上止点时,其排气凸轮桃尖相对于图中虚线L的夹角。

一、叙述(12分)1. 请叙述气缸套产生穴蚀的原因,并说出减轻穴蚀的设计和结构措施。

2. 请结合作图叙述活塞工作时销轴方向变形大的原因,并说明结构设计时怎样考虑。

内燃机设计试题标准答案A一、简答题(24)1答:往复惯性力是由往复运动质量Mj 高速运动产生的,它的运动加速度为)(αλαωcos2cos r a 2+=,所以)(αλαωcos2cos r m Fj 2j +=。

惯性力不参与做功,因为正负做功在一个循环内相抵消。

内燃机复习资料已整理

内燃机复习资料已整理

内燃机复习资料已整理
概述:
内燃机是一种利用燃料在发动机内燃烧产生高温高压气体推动活塞运动的装置。

内燃机广泛应用于交通工具、发电厂和工业生产中。

本文档为内燃机的复习资料,整理了内燃机的基本原理、工作循环、构造和性能参数等内容。

一、内燃机基本原理
内燃机是通过在活塞内部进行燃烧来产生高压气体推动活塞运动的一种热机。

其基本原理是燃料与空气在气缸内混合并点燃,产生高温高压气体,推动活塞运动,从而驱动机械装置。

二、内燃机工作循环
内燃机的工作循环分为四个连续的过程,即吸气、压缩、燃烧和排气。

在吸气过程中,活塞下行,气门打开,燃料空气混合物进入气缸;在压缩过程中,活塞上行,气门关闭,混合物被压缩至高压;在燃烧过程中,点火系统点火,混合物燃烧产生高温高压气体推动活塞运动;最后,在排气过程中,活塞再次上行,排出废气。

三、内燃机构造
内燃机由气缸、活塞、曲柄连杆机构、燃料系统和点火系统等
组成。

1. 气缸:内燃机的工作腔,通常呈圆筒形,可容纳活塞和混合
气体。

2. 活塞:气缸内能够往复运动的密封装置,将高压气体的作用
转化为机械能。

3. 曲柄连杆机构:将活塞往复运动转化为旋转运动的机构,由
曲轴、连杆和曲柄轴组成。

4. 燃料系统:负责供给燃料和空气混合物到气缸中,包括燃料
喷射器、油泵和进气系统等。

5. 点火系统:提供可靠的点火能量,使混合气体能够燃烧起来。

典型的点火系统包括点火塞、点火线圈和点火控制单元等。

四、内燃机的性能参数
内燃机的性能受到多个参数的影响,包括排量、压缩比、热效率、功率和扭矩等。

内燃机复习提纲学习资料

内燃机复习提纲学习资料

内燃机复习提纲内燃机复习提纲1.内燃机,是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。

2.内燃机的常用结构术语上止点:活塞顶端离曲轴旋转中心最远处。

下止点:活塞顶端离曲轴中心最近处。

活塞行程S:上下止点间的距离称为活塞行程。

燃烧室容积:当活塞位于上止点时,活塞顶以上的气缸容积。

用Vc表示。

气缸工作容积:活塞从一个止点到另一个止点所扫过的气缸容积。

用Vs表示。

气缸总容积:当活塞位于下止点时,活塞顶端上方的气缸容积。

用Va表示。

内燃机排量:内燃机所有气缸工作容积总和。

用VL表示,压缩比:气缸总容积与燃烧室容积之比。

用ε表示。

公式见书3.四冲程内燃机的工作原理四冲程汽油机的工作循环由4个活塞行程组成,即进气行程、压缩行程、作功行程和排气行程。

①进气行程:活塞在曲轴的带动下由上止点移至下止点。

此时排气门关闭,进气门开启。

在活塞移动过程中,气缸容积逐渐增大,气缸内形成一定的真空度。

空气和汽油的混合物通过进气门被吸入气缸,并在气缸内进一步混合形成可燃混合气。

②压缩行程:进气行程结束后,曲轴继续带动活塞由下止点移至上止点。

这时,进、排气门均关闭。

随着活塞移动,气缸容积不断减小,气缸内的混合气被压缩,其压力和温度同时升高。

③做功行程:压缩行程结束时,安装在气缸盖上的火花塞产生电火花,将气缸内的可燃混合气点燃,火焰迅速传遍整个燃烧室,同时放出大量的热能。

燃烧气体的体积急剧膨胀,压力和温度迅速升高。

在气体压力的作用下,活塞由上止点移至下止点,并通过连杆推动曲轴旋转作功。

④排气行程:排气门开启,进气门仍然关闭,曲轴通过连杆带动活塞由下止点移至上止点,此时膨胀过后的燃烧气体(或称废气)在其自身剩余压力和在活塞的推动下,经排气门排出气缸之外。

4.二冲程内燃机的工作原理如果在两个冲程里完成进气、压缩、做功、排气这些循环动作,就叫二冲程,相应的内燃机叫二冲程内燃机①第一行程:活塞在曲轴带动下由下止点移至上止点。

内燃机设计复习

内燃机设计复习

1、提高转速的优劣势:优势:提高功率,从而使单位功率的体积减小,总量减轻。

劣势:(1)惯性力增加,从而导致机械负荷增加,平衡、振动问题突出,噪声增加。

(2)工作频率增加,从而导致活塞、气缸盖、气缸套、排气门等零件的热负荷增加。

(3)摩擦损失增加,机械效率增加,燃油消耗率增加,磨损寿命变短。

(4)进排气系统阻力增加,充气效率下降。

2、内燃机噪声来源:燃烧、气体流动、机械噪声。

3、有害气体排放种类:CO、HC、NO x、PM。

4、汽油机优点:(1)空气利用率高,升功率高。

(2)制造成本低。

(3)低温启动性好,加速性好,工作柔和,运转平顺,噪声低。

(4)结构轻巧,比质量小。

(5)不冒黑烟,PM排放少。

5、柴油机优点:(1)燃料经济性好。

(2)工作可靠性和耐久性好。

(3)可以通过增压、扩缸的方法增加功率。

(4)防火安全性好。

(5)CO和HC的排放比汽油机少。

6、P26 中心曲柄连杆机构运动规律7、内燃机平衡:传给支承作用力的大小和方向均不随时间变化。

8、内燃机振动(不平衡)的原因:(1)发动机转矩是周期性变化的。

(2)旋转惯性力、往复惯性力是周期性变化的。

9、研究内燃机平衡的目的:(1)为分析和选型提供依据。

(2)寻求改善平衡性的措施10、研究内燃机平衡的方法:解析法、图解法、11、扭振:使曲轴各轴段间发生周期性相互扭转的振动。

12、扭振发生的原因:(1)曲轴有固有频率。

(2)系统上作用有大小和方向呈周期性变化的干扰力矩。

(3)当干扰力矩的变化频率与系统固有频率合拍时,系统产生共振。

13、研究扭振的目的:通过计算找出临界转速、振幅、扭振应力,决定是否采取减震措施,或避开临界转速。

14、曲轴扭振计算步骤:(1)当量系统换算(2)自由振动计算(3)强迫振动计算(4)减振或避振计算15、阻尼分类:外阻尼、内阻尼、假阻尼。

16、扭转振动的消减措施:(1)使曲轴转速远离临界转速。

(2)改变曲轴的固有频率。

(3)提高轴系的阻尼。

内燃机设计期末复习资料

内燃机设计期末复习资料

内燃机设计期末复习资料引言:内燃机是一种将燃料通过燃烧的方式转化为机械能的装置。

它在现代工业中起着至关重要的作用。

内燃机设计是一个综合性的工程问题,需要涉及到热力学、机械学、材料科学等多个学科知识。

本文将围绕内燃机设计的基本原理、燃料选择、热力学循环、缸内流动以及燃烧控制等方面进行说明,帮助读者对该领域的知识进行系统的复习。

一、基本原理内燃机的基本原理是将燃料在氧气的存在下进行燃烧,通过燃烧释放的热能将气体推动活塞运动,从而产生机械能。

内燃机根据燃料的不同可以分为汽油发动机、柴油发动机和天然气发动机等多种类型。

其工作循环可以分为吸气、压缩、燃烧和排气四个过程。

二、燃料选择选择合适的燃料对内燃机的性能和使用寿命有着重要的影响。

常见的燃料有汽油、柴油、天然气等。

汽油是一种易挥发的液体燃料,适用于高速运转的汽油发动机;柴油是一种低挥发的液体燃料,适用于长时间运转的柴油发动机;天然气是一种清洁能源,适用于环保要求较高的天然气发动机。

三、热力学循环内燃机的热力学循环包括奥托循环和迪塞尔循环。

奥托循环适用于汽油发动机,其过程包括进气、压缩、燃烧和排气;迪塞尔循环适用于柴油发动机,其过程包括进气、压缩、燃烧和排气。

热力学循环的目标是提高内燃机的热效率,同时降低废气排放。

四、缸内流动缸内流动是内燃机中重要的研究方向之一。

它的目的是使燃料在进气、压缩、燃烧和排气过程中能够更加均匀和充分地与空气混合。

通过合理设计缸内形状、进气、排气道和喷油系统等,可以改善燃烧的稳定性和效率,提高内燃机的性能。

五、燃烧控制。

内燃机设计答案

内燃机设计答案

第一章:内燃机设计总论1-1根据公式 ,可以知道,当设计的活塞平均速度Vm 增加时,可以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些?具体原因是什么?答:①摩损增,机效ηm 下,活塞组的热负荷增,机油温度升,承载力下,发寿命降。

②惯增,导致机负和机振加剧、ηm 降低、寿命低。

③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。

1-2汽油机的主要优点是什么?柴油机主要优点是什么?答:柴优:1)燃经好。

2)因为没有点火系统,所以工作可靠性和耐久性好。

3)可通过增压、扩缸来增加功率 4)防火安全性好,因为柴油挥发性差 5)CO 和HC 的排放比汽油机少。

汽优:1)空利率搞,n 高,因而PL 高。

2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。

3)低温启动性好、加速性好,噪声低。

4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。

5)不冒黑烟,颗粒排放少。

1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高?为什么?答:汽升功率高,在相同进气方式的条件下,①由PL=Pme*n/30τ可知,平均有效压力相差不多。

但由于柴后燃较多,在缸径相同时,转速明显低于汽,因此柴油机的升功率小。

②柴的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同时,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽升功率低。

1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm 、S=90mm ,是否都可以达到相同的最大设计转速(如n=6000r/min )?为什么? 答:.汽能,柴不能。

因为柴油机是扩散燃烧形式,混合气的燃烧速度慢,达不到汽油混合气的燃烧速度,所以达不到6000r/min 的设计转速。

缸径越大,柴油混合气完成燃烧过程的时间越长,设计转速越低。

1-6目前使发动机产生性能大幅度提高的新型结构措施有哪些?为什么?答:新型燃烧室,多气门(提高ηv ),可变配气相位VVT (提高ηv ),可变进气管长度(提高ηv ),可变压缩比,可变增压器VGT 、VNT (可根据需要控制进气量),机械-涡轮复合增压,顶置凸轮机构DOHC 、SOHC (结构紧凑,往复惯性力小)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章内燃机设计总论1、内燃机主要设计指标有哪些?动力性指标、经济性指标、紧凑性指标、可靠性与耐久性指标、适应性指标、运转性能指标、低公害指标。

2、内燃机的动力性指标有哪些?标定功率,标定转速,活塞平均速度,平均有效压力及扭矩3、经济性指标有哪些?生产成本,运转中的消耗,以及维修费用等,燃油消耗率作为主要指标。

4、内燃机设计工作中的“三化”?产品系列化,零部件通用化,零件设计标准化。

5、内燃机主要结构参数有哪些?内燃机的主要结构参数,是指决定内燃机总体尺寸的参数,这些参数为:活塞行程S与气缸直径D的比值S/D;曲柄半径R与连杆长度L的比值λ,λ=R/L;气缸中心距L0与气径直径D的比值L0/D;对于V型内燃机还包括气缸夹角γ。

6、活塞行程与气缸直径的比值活塞行程S与气缸直径D的比值S/D,是决定内燃机设计的基本条件,由此即可确定气缸直径D及活塞行程S这两个主要参数。

同一气缸容积的值,可以由不同的活塞行程与气缸直径组合而成。

要正确确定出活塞行程和气缸直径值,必须正确确定S/D值。

7、曲柄半径R与连杆长度L的比值λ曲柄半径R与连杆L的比值λ是决定内燃机连杆长度L的一个结构参数。

在确定参数λ之后,即可决定连杆长度的大小。

8、分析曲柄半径R与连杆长度L的比值λ对内燃机结构的影响对于单列式内燃机,λ值越大,连杆长度越短,D、S相同的条件下,内燃机的高度或宽度也越小,可是内燃机的外形尺寸减小,重量减轻。

同时,连杆缩短后,使连杆杆身具有较大的刚度和强度。

虽然由于λ加大,使往复运动质量的加速度和连杆摆角也加大,但因连杆重量减轻,往复惯性力与侧压力并没有什么增加。

所以在设计时,为了尽可能缩小内燃机的外形尺寸和减轻重量,一般尽可能选取较大的 值,以使连杆的长度尽量短一些。

9、连杆长度的缩短,受到什么条件的限制:(1)活塞在下止点时,裙部不应与平衡重相碰。

(2)活塞在上止点时,曲柄臂不应与气缸套下部相碰。

(3)连杆在气缸套内摆动时,连杆杆身不应与气缸套下部相碰。

10、气缸中心距Lo与气缸直径D的比值Lo/D Lo/D是决定内燃机长度的主要参数第二章内燃机曲柄连杆机构1、作用在曲柄连杆机构上的力运动质量产生的惯性力和作用在活塞上的气体力,这些力随着曲柄转角的不同而变化,在稳定情况下,曲柄每转二周为一个变化周期,实际上,内燃机的工况是不断变化的,因此作用在曲柄连杆机构上的力和力矩也是在不断变化的。

通常在动力学分析中,只计算标定工况下的作用力和力矩。

并认为曲柄是作等速旋转运动。

2、进行内燃机的动力学计算的步骤在进行动力学计算之前,必须根据实测的示功图或对工作过程的循环模拟计算来确定气体作用力的变化情况再根据运动学求出的各运动件的加速度,由此求出惯性力的变化情况,从而得到总的作用力及力矩,在此基础上,进一步分析这些力和力矩对内燃机平衡与振动的影响。

3、活塞、连杆的运动规律 当曲柄按等角速度ω旋转时,连杆本身的运动是由旋转运动和往复运动合成的平面复合运动。

在实际分析中,为使问题简化,一般将连杆为分别集中于连杆大头和小头的两个集中质量,认为它们分别作旋转与往复运动。

4、研究曲柄连杆机构运动学的主要任务 活塞在作往复运动时,其速度和加速度是变化的。

它的速度和加速度的数值及变化规律对曲柄连杆机构以及内燃机整体的工作有很大的影响,因此,研究曲柄连杆机构运动学的主要任务实际上就是研究活塞的运动规律。

5、连杆的角位移、角速度与角加速度的特殊值(最大或最小)及所在位置当α=0°或180°时,连杆角位移有最小值,即 0m i n =β当α=90°或270°时,连杆角位移有最大值当α=0°或180°时,连杆角速度有最大值当α=90°或270°时,连杆角速度为0,即0=∙β当α=90°或270°时,∙∙β有最大值当α=0°或180°时,∙∙β有最小值6、活塞的位移的特点 即曲柄转角α从0°到90°时活塞的位移值比曲柄转角α从90°到180°时活塞的位移值大,而且是λ值越大,其差值也越大。

7、活塞的位移曲线的作用 活塞的位移曲线可用来对p-v 示功图与p-α示功图两者之间进行转换;它与气门的运动曲线配合,还可用来检验活塞与气门之间发生干涉;在柴油机直接喷射燃烧室的设计中,喷油柱的位置与活塞上燃烧室的配合,也要用到活塞的位移曲线;此外二冲程内燃机排气口与扫气口位置的确定,与活塞位移变化也是密切相关的。

8、活塞速度组成的特点 活塞速度可以写成两个速度分量之和,即 αλϖαϖ2sin 2sin R R v +=因此,活塞速度可视为由αωsin 1R v =与αλω2sin 22R v =两部分简谐运动速度所组成。

9、活塞速度在特殊位置时的值 当α=0°或180°时,活塞速度等于零。

当α=90°或270°时,ωR v =,此时活塞速度等于曲柄销中心的圆周速度。

但是,这并不是活塞的最大速度。

10、活塞的速度α=0°~180°时,v 为正值;α=180°~360°时v 为负值;α=0°、180°、360°时,v =0(活塞正在改变运动方向);α=90°、270°时,v R ω=,但并不是max v 。

活塞的速度在旋转一周中,时快时慢的变化着,它的平均速度可以表示为 30sn c m = (m/s)活塞平均速度c m 虽然只能粗略地估计活塞运动的快慢,但它是表征内燃机性能指标的重要参数之一。

11、活塞的最大速度 活塞速度最大时的曲柄转角max v α: ⎥⎦⎤⎢⎣⎡++-=)811(41a r c c o s 2m i n λλαv 可见,1cos 0max v α,因此max cos v α小于90°或大于270°,即活塞速度的最大值出现在偏向上止点一边,大体上在上止点前后75°左右。

不同λ值时,有不同活塞速度的位置不同。

λ值越大,活塞速度最大值也越大,相应的曲柄转角max α便越小。

12、活塞的加速度 当λ≤1/4时,α在0°、360°有最大的正加速度值)1(2λω+R ;当α在180°时,有最大的负加速度值)1(2λω--R 。

当λ>1/4时,α在0°、360°有最大的正加速度值,其大小也为)1(2λω+R ;而α在α'、360°-α'两处有最大的负加速度值,此值为)811(2λω+-R ,而此时在处的加速度值仍为)1(2λω--R 。

13、沿活塞销中心线作往复运动的零件——活塞组的质量活塞组的质量p m 包括活塞、活塞环、活塞销以及装在这些零件上的其它附件的质量。

可以认为p m 集中在活塞销的轴线中心上,因为活塞销中心线是活塞组的传力点.\15、作复合平面运动的零件——连杆组的质量连杆组的质量包括连杆体、连杆小头衬套、连杆盖以及连杆螺栓等质量。

为了计算简便,一般认为连杆小头随活塞作往复运动,连杆大头随曲柄作旋转运动,而连杆杆身则作复合的平面运动(既有平面移动又有平面摆动),因此将连杆质量换算成集中于活塞销中心处作往复运动的质量1m 和集中于曲柄销处作旋转运动的质量2m ,由此来代替原来作复合运动的连杆的质量。

16、连杆组质量系统动力学的简化原则 (1)质量不变——所有简化后的质量总和应等于原连杆组总质量c m ,(2)系统的质心位置不变——所有简化后质量的质心应与连杆组原来的质心位置相重合。

如果简化为两个质量,则 012=-b m a m (3)系统对质心的转动惯量不变——所有简化后的质量对于连杆组质心的转动惯量之和应等于连杆原来的转动惯量c I 。

17、作用于曲柄连杆机构的力 曲柄连杆机构中,主要作用力有气体作用力,运动质量的惯性力及外界负荷对内燃机运动的反作用力。

18、连杆机构中主要零件的主要受力 曲柄连杆机构中主要零件的主要受力有:往复惯性力、旋转惯性力、气体作用力。

19、连杆机构的往复惯性力 连杆机构的往复惯性力在忽略了高次项之后,可以看作由一次往复惯性力P j1和P j2二次往复惯性力所组成。

第三章 内燃机的平衡1、静平衡和动平衡曲柄旋转质量系统,不但要求静平衡,也要求动平衡。

静平衡:质量系统旋转时离心合力等于零,即系统的质心(重心)位于旋转轴线上。

动平衡:质量系统旋转是,旋转惯性力合力等于零,而且合力矩r M 也等于零。

2、旋转惯性力及其平衡 单缸内燃机的总旋转惯性力,包括曲柄不平衡质量和连杆换算到大头处的质量所产生离心力之和。

2ωR m P r r -= 该离心力的作用线与曲柄重合,方向背离曲柄中心,因此,只需在曲柄的对方,装上平衡重,使其所产生的离心力与原有的总旋转惯性力大小相等、方向相反即可将其平衡。

4、单列式多缸内燃机的平衡的项目 旋转惯性力的合力;一次往复惯性力的合力;二次往复惯性力的合力;旋转惯性力的合力矩;一次往复惯性力的合力矩;二次往复惯性力的合力矩;8、四冲程四缸机的平衡情况1、旋转惯性力已得到平衡2、一次往复惯性力也已平衡。

3、二次往复惯性力的合力 ∑-=αλϖλ2c o s 42R m P j j I I 4、旋转惯性力矩 ∑=0r M旋转惯性力矩已平衡5、 一次往复惯性力矩已平衡6、二次往复惯性力矩已平衡 9、四冲程六缸机的平衡情况∑=0jI P ∑=0jII P ∑=0r P ∑=0r M ∑=0jI M ∑=0jII M第四章 活塞组的设计1、活塞组的工作条件 活塞组是工作强度最大的组件之一。

工作中承受的载荷:(1)承受很大的机械负荷;(2)承受很高的热负荷;(3)强烈的磨损。

2、活塞的基本结构 活塞头部 包括活塞顶,顶岸(火力岸)及活塞环带。

组成燃烧室,承受气体压力,接受高温气体的作用。

活塞裙部 环带以下的部分,起导向作用力。

活塞销座 位于裙部中央上方,销座中安装活塞销。

活塞通过销座将气体作用力及惯性力经由活塞传递给连杆。

3、活塞的主要尺寸 活塞高度H 活塞高度与顶岸高度、环带高度及裙部高度有关。

压缩高度H1 压缩高度决定了活塞销的位置,它与顶岸高度、环带设计及上裙高度有关。

顶岸高度h 顶岸高度确定了第一环的位置。

环带高度h 环带高度取决于活塞环数、环高及环岸高度。

4、活塞顶的厚度的确定 活塞顶的厚度δ是根据强度、刚度及散热条件来确定的。

由于δ值越大,顶部热应力也越大,因此在满足强度要求的条件下,尽量使δ值取得小些。

对于直径较小的活塞若能满足散热要求,一般也能满足强度要求。

相关文档
最新文档