理论力学期末计算题复习题timu

合集下载

理论力学复习题(含答案)

理论力学复习题(含答案)

《理论力学》复习题A一、填空题1、二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是 二力平衡是作用在一个物体上,作用效果能抵消、作用力与反作用力是作用在两个物体上,作用效果不能抵消。

2、平面汇交力系平衡的几何条件是顺次将表示各个力Fi 的有向线段首尾相接,可以构成闭合n 边形;平衡的解析条件是 ∑Fxi=0;且∑Fyi=o 。

3、静滑动摩擦系数与摩擦角之间的关系为 tanφ=fs 。

4、点的切向加速度与其速度的 方向 变化率无关,而点的法向加速度与其速度 大小 的变化率无关。

5、点在运动过程中,满足0,0=≠n a a 的条件,则点作 牵连 运动。

6、动点相对于的 定系 运动称为动点的绝对运动;动点相对于 动系 的运动称为动点的相对运动;而 动系 相对于 定系 的运动称为牵连运动。

7、图示机构中,轮A (只滚不滑)作 平面 运动;杆DE 作 定轴转动 运动。

题7图 题8图8、图示均质圆盘,质量为m ,半径为R ,则其对O 轴的动量矩为 。

9、在惯性参考系中,不论初始条件如何变化,只要质点不受力的作用,则该质点应保持 静止或等速直线 运动状态。

10. 任意质点系(包括刚体)的动量可以用 其质心 的动量来表示。

二、选择题1. 在下述公理、规则、原理和定律中,对所有物体都完全适用的有( D )。

A.二力平衡公理B.力的平行四边形规则C.加减平衡力系原理D.力的可传性2. 分析图中画出的5个共面力偶,与图(a )所示的力偶等效的力偶是(B )。

A. 图(b ) B. 图(c ) C.图(d ) D. 图(e )题2图3. 平面力系向点1简化时,主矢0='RF ,主矩01≠M ,如将该力系向另一点2简化,则( D )。

A. 12,0M M F R≠≠' B. 12,0M M F R ≠='C. 12,0M M F R=≠' D. 12,0M M F R ==' 4. 将大小为100N 的力F 沿x 、y 方向分解,若F 在x 轴上的投影为86.6 N ,而沿x 方向的分力的大小为115.47 N ,则F 在y 轴上的投影为( B )。

理论力学计算题复习

理论力学计算题复习

习题1-1 图中设AB=l ,在A 点受四个大小均等于F 的力1F 、2F 、3F 和4F 作用。

试分别计算每个力对B 点之矩。

【解答】:112()sin 452B M F F l F l =-⋅⋅︒=-⋅ 22()B M F F l F l =-⋅=-⋅332()sin 452B M F F l F l =-⋅⋅︒=-⋅ 4()0B M F =。

习题1-2 如图所示正平行六面体ABCD ,重为P F =100N ,边长AB=60cm ,AD=80cm 。

今将其斜放使它的底面与水平面成30ϕ=︒角,试求其重力对棱A 的力矩。

又问当ϕ等于多大时,该力矩等于零。

【解法1——直接计算法】:设AC 与BD 的交点为O ,∠BAO=α,则:cos()cos cos sin sin 33410.11965252αϕαϕαϕ+=-=⨯-⨯= 221806050cm=0.5m 2AO =+=()cos()1000.50.1196 5.98N mA P P P M F F d F AO αϕ=⋅=⨯⨯+=⨯⨯=⋅当()0A P M F =时,重力P F 的作用线必通过A 点,即90αβ+=︒,所以: 令cos()cos cos sin sin 0αϕαϕαϕ+=-=→34cos sin 055ϕϕ⨯-⨯=,得: 3tan 4ϕ=→3652ϕ'=︒。

【解法2——利用合力矩定理】:将重力P F 分解为两个正交分力1P F 和2P F , 其中:1P F AD ,2P F AB ,则:1cos P P F F ϕ=⨯,2sin P P F F ϕ=⨯根据合力矩定理:1212()()()22cos 0.3sin 0.411000.31000.4 5.98N m 2A P A P A P P P P P AB AD M F M F M F F F F F ϕϕ=+=⨯-⨯=⨯⨯-⨯⨯=-⨯⨯=⋅ 确定ϕ等于多大时,()0A P M F =令()0A P M F =,即:cos 0.3sin 0.40P P F F ϕϕ⨯⨯-⨯⨯= →100cos 0.3100sin 0.40ϕϕ⨯⨯-⨯⨯=→3tan 4ϕ=→3652ϕ'=︒。

理论力学复习题及答案(计算题部分)

理论力学复习题及答案(计算题部分)

三、计算题(计6小题,共70分)1、图示的水平横梁AB,4端为固定铰链支座,B端为一滚动支座。

梁的长为4L,梁重P,作用在梁的中点C。

在梁的AC段上受均布裁荷q作用,在梁的BC段上受力偶作用,力偶矩M=Pa。

试求A和B处的支座约束力。

2、在图示两连续梁中,已知q,M,a及θ,不计梁的自重,求各连续梁在A,B,C三处的约束力。

3、试求Z形截面重心的位置,其尺寸如图所示。

4、剪切金属板的“飞剪机”机构如图所示。

工作台AB的移动规律是s=0.2sin(π/6)tm,滑块C带动上刀片E沿导柱运动以切断工件D,下刀片F固定在工作台上。

设曲柄OC=0.6m,t=1 s时,φ=60 º。

求该瞬时刀片E相对于工作台运动的速度和加速度,并求曲柄OC转动的角速度及角加速度。

5、如图所示,在筛动机构中,筛子的摆动是由曲柄连杆机构所带动。

已知曲柄OA的转速n OA=40 r/min,OA=0.3 m。

当筛子BC运动到与点O在同一水平线上时,∠BAO=90 º。

求此瞬时筛子BC的速度。

6、在图示曲柄滑杆机构中,曲柄以等角速度ω绕 O 轴转动。

开始时,曲柄OA水平向右。

已知:曲柄的质量为m1,沿块4的质量为m2,滑杆的质量为m3,曲柄的质心在OA的中点,OA=l;滑杆的质心在点C。

求:(1)机构质量中心的运动方程;(2)作用在轴O的最大水平约束力。

7、无重水平粱的支承和载荷如题图所示。

已知力F、力偶矩为M的力偶和强度为q的均布载荷。

求支座A和B处的约束力。

8、在图所示两连续梁中,已知M 及a,不计梁的自重,求各连续梁在A ,B ,C 三处的约束力。

9、工宇钢截面尺寸如图所示。

求此截面的几何中心。

10、如图所示,半径为R 的半圆形凸轮D 以等速v 0沿水平线向右运动,带动从动杆AB 沿铅直方向上升,求φ=30º时杆AB 相对于凸轮的速度和加速度。

11、图示机构中,已知: ,OA=BD=DE=0.1m ,曲柄OA 的角速度ω=4rad/s 。

大学期末考试理论力学试卷(含答案详解)

大学期末考试理论力学试卷(含答案详解)

一、选择题(每题2分,共20分)1.若平面力系对一点A 的主矩等于零,则此力系( )。

A .不可能合成为一个力 B .不可能合成为一个力偶C .一定平衡D .可能合成为一个力偶,也可能平衡2.刚体在四个力的作用下处于平衡,若其中三个力的作用线汇交于一点,则第四个力的作用线( )。

A .一定通过汇交点B .不一定通过汇交点C .一定不通过汇交点3.将平面力系向平面内任意两点简化,所得主矢相等,主矩也相等,且主矩不为零,则该力系简化的最后结果为( )。

A .一个力 B .一个力偶 C .平衡4.图1中,已知P =60kN ,F =20kN静摩擦系数f s =0.5,动摩擦系数f d =0.4,则物体所受 摩擦力的大小为( )。

A .25kN B .20kN C .17.3kN5.一点做曲线运动,开始时的速度s m v /100=,恒定切向加速度2/4s m a =τ,则2s 末该点的速度大小为( )。

A .2m/sB .18m/sC .12m/sD .无法确定6.圆轮绕某固定轴O 转动,某瞬时轮缘上一点的速度v 和加速度a 如图2所示,试问哪些情况下是不可能的?( ) A .(a )、(b )运动是不可能的 B .(a )、(c )运动是不可能的 C .(b )、(c )运动是不可能的 D .均不可能7.如图3所示平行四边形机构,在图示瞬时,杆O 1A以角速度ω转动,滑块M 相对AB 杆运动,若取M 动点,动系固联在AB 上,则该瞬时动点M 的牵连速度与杆AB 间的夹角为( )。

A .00 B .300 C .600图28.平面机构如图4所示,选小环M 为动点,动系固联 在曲柄OCD 杆上,则动点M 的科氏加速度的方向( )。

A .垂直于CD B .垂直于AB C .垂直于OM D .垂直于纸面9.如图5所示,两物块A 、B ,质量分别为A m 和B m 初始静止。

如A 沿斜面下滑的相对速度为r v ,设B 向左运动的速度为v ,根据动量守恒定律理有(A .v m v mB r A =θcos B.v m v m B r A=C.v m v v m B r A =+)cos (θD. v m v v m B r A =-)cos (θ10.已知刚体质心C 到相互平行的z '、z 轴之间的距离分别为a 、b ,刚体的质量为m ,对z 轴的转动惯量为z J ,则'z J 的计算公式为( )。

哈工大理论力学期末考试及答案

哈工大理论力学期末考试及答案

三、计算题(本题10分)分)图示平面结构,自重不计,B 处为铰链联接。

已知:P = 100 kN ,M = 200 kN ·m ,L 1 = 2m ,L 2 = 3m 。

试求支座A 的约束力。

的约束力。

四、计算题(本题10分)分)在图示振系中,已知:物重Q ,两并联弹簧的刚性系数为k 1与k 2。

如果重物悬挂的位置使两弹簧的伸长相等,试求:(1)重物振动的周期;(2)此并联弹簧的刚性系数。

)此并联弹簧的刚性系数。

五、计算题(本题15分)分)半径R =0.4m 的轮1沿水平轨道作纯滚动,轮缘上A 点铰接套筒3,带动直角杆2作上下运动。

已知:在图示位置时,轮心速度C v =0.8m/s ,加速度为零,L =0.6m 。

试求该瞬时:(1)杆2的速度2v 和加速度2a ;(2)铰接点A 相对于杆2的速度r v 和加速度r a 。

六、计算题(本题15分)分)在图示系统中,已知:匀质圆盘A 和B 的半径各为R 和r ,质量各为M 和m 。

试求:以φ和θ为广义坐标,用拉氏方程建立系统的运动微分方程。

七、计算题(本题20分)分)在图示机构中,已知:纯滚动的匀质轮与物A 的质量均为m ,轮半径为r ,斜面倾角为β,物A 与斜面的动摩擦因数为'f ,不计杆OA 的质量。

试求:(1)O 点的加速度;(2)杆OA 的内力。

的内力。

答案三、解,以整体为研究对象,受力如图所示。

由()0C M F =å 11222(2)20A x A y P L F L L F L M ×-×--×-= …………(1) (1) 再以EADB 为研究对象受力如图所示为研究对象受力如图所示, ,由12()00B Ax Ay M F F L F L M =×-×-=å ......(......( (22)联立(联立(11)(2)两式得)两式得600kN 85.71kN 7Ax F == 400kN 19.05kN 21Ay F ==四、解:(1)选取重物平衡位置为基本原点,并为零势能零点,其运动规律为sin(x A ωt θ)=+在瞬时t 物块的动能和势能分别为物块的动能和势能分别为22221cos ()22n n Q T mv ωA ωt θg==+()22122121()()21()2st st st st V k k x δδQ x δδk k xéù=++--+-ëû=+当物块处于平衡位置时当物块处于平衡位置时22max 12n Q T ωA g =当物块处于偏离振动中心位置极端位置时,221max )(21A k k V +=由机械能守恒定律,有由机械能守恒定律,有,max max V T = 2221211()22n Q ωA k k A g =+12()n k k ωg Q +=重物振动周期为重物振动周期为1222()n πQT πωk k g==+× (2)两个弹簧并联,则弹性系数为21k k k +=。

理论力学__期末考试试题(题库_带答案)

理论力学__期末考试试题(题库_带答案)

理论⼒学__期末考试试题(题库_带答案)理论⼒学期末考试试题1-1、⾃重为P=100kN 的T 字形钢架ABD,置于铅垂⾯内,载荷如图所⽰。

其中转矩M=20kN.m ,拉⼒F=400kN,分布⼒q=20kN/m,长度l=1m 。

试求固定端A 的约束⼒。

解:取T 型刚架为受⼒对象,画受⼒图.1-2 如图所⽰,飞机机翼上安装⼀台发动机,作⽤在机翼OA 上的⽓动⼒按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作⽤⼒偶矩M=18kN.m 。

求机翼处于平衡状态时,机翼根部固定端O 所受的⼒。

解:1-3图⽰构件由直⾓弯杆EBD以及直杆AB组成,不计各杆⾃重,已知q=10kN/m,F=50kN,M=6kN.m,各尺⼨如图。

求固定端A处及⽀座C的约束⼒。

1-4 已知:如图所⽰结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束⼒.解:1-5、平⾯桁架受⼒如图所⽰。

ABC 为等边三⾓形,且AD=DB 。

求杆CD 的内⼒。

1-6、如图所⽰的平⾯桁架,A 端采⽤铰链约束,B 端采⽤滚动⽀座约束,各杆件长度为1m 。

在节点E 和G 上分别作⽤载荷E F =10kN ,G F =7 kN 。

试计算杆1、2和3的内⼒。

解:2-1 图⽰空间⼒系由6根桁架构成。

在节点A上作⽤⼒F,此⼒在矩形ABDC平⾯内,且与铅直线成45o⾓。

ΔEAK=ΔFBM。

等腰三⾓形EAK,FBM和NDB在顶点A,B和D处均为直⾓,⼜EC=CK=FD=DM。

若F=10kN,求各杆的内⼒。

2-2 杆系由铰链连接,位于正⽅形的边和对⾓线上,如图所⽰。

在节点D沿对⾓线LD⽅向F。

在节点C沿CH边铅直向下作⽤⼒F。

如铰链B,L和H是固定的,杆重不计,作⽤⼒D求各杆的内⼒。

2-3 重为1P =980 N ,半径为r =100mm 的滚⼦A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。

完整版理论力学期末考试试题题库带答案

完整版理论力学期末考试试题题库带答案

理论力学期末测试试题1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如下列图.其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m.试求固定端A的约束力.解:取T型刚架为受力对象,画受力图其中耳一;q •次-3(ikN工已二“产看十骂—F£m6<r = 0工弓=0 ^-?-Fcos600 = 0一.一^ A必-W-Fi/十外必60F + F疝g= 0i^ = 3164kN 为二SOQkNMi= - IlSSkNm1-2如下列图,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布:解:q i=60kN/m, q2 =40kN/m ,机翼重P i=45kN ,发动机重P2 =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m .求机翼处于平衡状态时,机翼根部固定端.所受的力.幅研究机翼.把梯形教荷分解为一三角形载荷与一轮修救荷,其合力分利为Fja = y(^)- q2) , 9 = 90 kN,F k2= 9 * = 36° kN分别作用在矩赛.点3m与4.5 m处,如下列图,由= 口,F山=01Y = 0, F% - K - P# 1 中k=0SM0(F1 = Q t Mo - 3.6P| — 4.2尸工一M + 3F RI + 4.$F R1 = 0解得For = 0T F Q,=- 3S5 k\, M0 二-1 626 kN * m1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,q=10kN/m , F=50kN , M=6kN.m ,各尺寸如图.求固定端A处及支座C的约束力.6 m 1 i m } I m !M 先研究构架EBD如图(b),由WX= 0, F小-F sin30' = 0E Y = 0.F HJ + F3 - F mfi30 = 02A什⑺=0T F2 T - M + 2F = 0 解得= 25 kN. = 87.3 kN. F/ =-44 kN 再研究AB梁如图(a).由解:XX = 04 -如* 6 sinJO* * F旭一Fn, = 0XV - 0,为-1 6 (xx3tf . F* 二UEM八F) - 0, - 2 * -j * & * fl coeJO -白产皿"0懈得F〞 = 40 kN. F A I= 113 3 kN. M A= 575,S kN - m it愿也可先研究EBD,求得F*之后.再研究整体,求a处反力।这样祈减少平街方程数■但计算鼠并未明髭减少,1-4:如下列图结构, a, M=Fa, F1 F2 F,求:A, D处约束力.以上修为明究时聚.受力如下列图.广%-0 加-:'=. T工… 4・%七.二工9口 : 0 A<P -I %'二昌1'二小l nF吗一:F /=F1-5、平面桁架受力如下列图. ABC为等边三角形,且AD=DB .求杆CD的内力.H 翌体受力如图Q).由工M A(F)=0,方,/\ *F\B"4B - F - 1■心・sinbU- - Q 6蹲得Fw 一§F⑸.反将桁架微升.研究右边局部,如图化)所 \ __________________示,由人汽J^*Wf)= g Fft* ■ DB * sinfiO f+ F.nc , flH - F , £)P - sinGO,= 0 %⑻解樗Ffp = -|F/再研究节点匚,如图(cl由尔工K =①(Ftr- F在加曲,=0 代〞的EV = 0, -(F CF +F C¥)m&S0,- F QJ = Q *3 57ffl解得Fm =一与F t) 866F(压)本剧晟筒单的解法是.菖先断定QE杆为零杆,再觎取&BDF来研兆,只由一个方覆LM a(f> =.,即可健出R* ,读者不妨一试.1-6、如下列图的平面桁架,A端采用钱链约束,B端采用滚动支座约束, 各杆件长度为1m.在节点E和G上分别作用载荷F E=10kN, F G=7 kN.试计算杆1、2和3的内力.解:取圣体.求支庄为束力.工…小口口小0%+品一3%A取= 9kN / = SLN用盘面法,取疗架上边局部,s城■ g一月1 y〔峪3.“ 一/.」二9▽5=.&+鸟/疝16.“ 一鸟二0 E氏=0 F{\H 十巴83600 —.^ = l04kN(aj ^=l.l?kN 但弓।牛iilkNlji】2-1图示空间力系由6根桁架构成.在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角.A EAK= A FBM.等腰三角形EAK , FBM和NDB在顶点A, B和D处均为直角,又EC=CK=FD=DM .假设F=10kN ,求各杆的内力.解节点受力分别如图所开:,对节点八,由工X —0, F1 sin45 - % sin45 = 0+ F sin45' = 0£Y " F3= 0, —F] C3s45 —F± COH45-F cos45 - 0解得Fi = F:= -5kN〔压〕, F3=一7.07 kN〔压〕再对节点B,由SX ~ 0, F$ stn45* - F< sin45, ; 0EV = 0. Fi sin45 - F3 = 0三2 士0, 一居a>s45 - F? crt?45" - F6 co^45' = 0 解得F4 = 5 kN〔拉〕,R=5卜^1〔拉〕,5& =- 10 kN〔压〕2-2杆系由钱链连接, 位于正方形的边和对角线上,如下列图.在节点D沿对角线LD方向作用力F D.在节点C沿CH边铅直向下作用力F.如钱链B, L和H是固定的,杆重不计, 求各杆的内力.求解TY = 0,SZ = 0,求二 0,F| 4M5* + Fj + F. sn45 = 0 厕 4,30 图解得 Fi = F D (1C),F $ =F J =二 Ji F 虱电然后研究节点c ,由SX = 0, - Fj - F*W cut45' - 0v3 £Y = ar -Fj - Fi — sin45 = 0心SZ = 0h - F, - F - F4言=0得 Fj = 7年户口,匕=-/5匹口. Fs M- (F + \2F D )2-3 重为R=980 N,半径为r =100mm 的滚子A 与重为P 2 = 490 N 的板B 由通过定滑轮 C 的柔绳相连.板与斜面的静滑动摩擦因数f s =0.1 o 滚子A 与板B 间的滚阻系数为8C 为光滑的.求各杆的内力. 先研究节点D,由- F)cts?45 + F 口 au45 - 0=0.5mm,斜面倾角a =30o,柔绳与斜面平行,柔绳与滑轮自重不计,钱链 拉动板B 且平行于斜面的力 F 的大小.〔l i 设闻拄口有向下漆动慧等.取国校DFsu 话出—凡-H-3=0EFf =❶ /一 Fcosfl = 0一% /Vine 7- co*?i 算豉圄杜.有向匕浪动越势.虢S ]社“ 三H 』二UJ£ 一%】R l J 'O U _EF F - 0 及-Fai%一.又Mn>« =的&- /J(siii 口 \ — u.凶 81J JI ,13.jp."系怩平衍叶F4五河n 日一)co* 6}工A4 尸I 五m n 8一 3 cow R'\-3/c - 0 1氏-A& =0 工尸j 二.尸M -FCQ博.二.只浪不滑3t.应点 门“用=¥斗型8那么上之£ y K 同理一圆柱.有向上填动趋势时得二二三 K 间柱匀速蛇淳时. f一 R2-4两个均质杆AB 和BC 分别重P i 和P 2 ,其端点A 和C 用球较固定在水平面, 另一端B 由 球镀链相连接,靠在光滑的铅直墙上,墙面与 AC 平行,如下列图.如 AB 与水平线的交角 为45o, / BAC=90.,求A 和C 的支座约束力以及墙上点B 所受的压力.解先研究AB 杆,受力如图(b),由। n 投阅柱.有向下滚动越舜O题4.27-SMjF)三0, 一几,QA = 0 得1 0 再取AB、CD两杆为一体来研究,受力如图(月海茉:由EM AC(F)= 0t(P[ + Pj) <WG45_F N* AB 热in45 —0XX = 0,九十 % = 0工My(F)= 0, Fc - AC - pj • AC = 0 LNZ 〞开工+如一2】一丹=0(F) —0, -(F AT+ FQ • OA - Fc y *- AC= 0工M塞2 K = 0, % + % + Fn = 0解得Fx = y(Pi + Pj)»Fer =.产值=2^P:t町=Pi +yp2>F o= 0,%=-2(P[ + 尸口3-1:如下列图平面机构中,曲柄OA=r,以匀角速度°转动.套筒A沿BC杆滑动.BC=DE ,且BD=CE=l.求图示位置时,杆BD的角速度和角加速度.解:].动点:滑块T 动系:贰广杆绝对运动:国周运动〔.点〕相对运动:直线运动〔£「二)j|iij V V V&加速度4_ 3/十&*)疝13伊_ J5诏r(/+r)耳cos30Q ST?收属/(/ + r)cz w= 1—1=----- 不 ------w BD 3 户3-2 图示钱链四边形机构中, O i A = O2B =100mm ,又QO2 = AB,杆O〔A以等角速度=2rad/s绕轴01转动.杆AB上有一套筒C,此套筒与杆CD相较接.机构的各部件都在同一铅直面内.求当①二60o时杆CD的速度和加速度.〔15分〕解取CD杆上的点C为动点,AB杆为动系,时动点作速度分析和加速度分析,如图S〕、〔b〕所示,图中式中口月=〔八一4 •田二0一2 ir〕/s5 - 0iA • J = 0*4 m/s2 解出杆CD的速度.加速度为G =-UA coep = 0. I mA&3 = since;= 0,3464 m/s2«1aAM1Al1V!4-1:如下列图凸轮机构中,凸轮以匀角速度3绕水平.轴转动,带动直杆AB沿铅直线上、下运动,且O, A, B共线.凸轮上与点A接触的点为A',图示瞬时凸轮轮缘线上' '点A的曲率半径为 A ,点A的法线与OA夹角为e , OA=l.求该瞬时AB的速度及加速度.〔15 分〕绝对运动: 相对运动: 奉连道处:2.速度大小 方向 1, 二、Ja 】iH=「WkmH I丫3,加速度 比=凡."'+ %r 门 大小9炉『『、;"2 方向 / /4-2:如下列图,在外啮合行星齿轮机构中,系杆以匀角速度 定,行星轮半径为r,在大轮上只滚不滑.设 A 和B 是行星轮缘 上的两点,点 A 在O 1O 的延长线上,而点 B 在垂直于o 1o 的半径上.求:点 A 和B 的加速度.解:2.选基点为〔〕亓*二后.*疗;口 +疗;. 大小0 *忒0 1时 方向“ J JJi7A ~ a ? +^C?I .轮I 作平面运动,瞬心为「沿"轴投勉乙8々4 * ■献i 1+ .1绕O i 转动.大齿轮固S 二「" 直线运动 曲线运动 定购林动 功系:凸轮. C 凸轮外边瘴〕〔.轴〕大小,方向?% ="g =仃口+ "什=fuclaii——=闺.㈢11 -4-3: 动.摇杆OC铅直,〔科氏加速度〕如下列图平面机构, AB长为1,滑块A可沿摇杆OC的长槽滑OC以匀角速度3绕轴O转动,滑块B以匀速v 1沿水平导轨滑动.图示瞬时AB与水平线OB夹角为300.求:此瞬时AB杆的角速度及角加速度.〔20分〕* *沿】:方向投彩大小方句V4B COS30J LD F福:速度分析1-杆.〞作平面运动,族点为瓦V A = V S - y AP2.动点:滑块.心动系:〞抨沿£方向强彩以一=1■沿吃方向表恁% ; gin 30" -4?os 对15-1如下列图均质圆盘,质量为m 、半径为R,沿地面纯滚动,角加速为3.求圆盘对图中A,C 和P 三点的动量矩. 平行轴定理:4二=一十/嫉 一或点P 为睡心 3hL ? = ^^R-\ L e =mP 2it 〕\ 1相?\"= -15-2 〔动量矩定理〕:如下列图均质圆环半径为 r,质量为m,其上焊接刚杆 OA,杆加生度介册 0f Ai = = 3VJtv 2AB点「为眉心上匚二J屯+ 1师;-G长为r,质量也为m.用手扶住圆环使其在OA水平位置静止.设圆环与地面间为纯滚动.独汰庵一方「.斗管力加玛所示建丸平为走动微分方程2f -月—+Y2由朱加R先K熹法瑞拽彩到水平强错乱两个才向20 r3"悟105-3 11-23 〔动量矩定理〕均质圆柱体的质量为m,半径为r,放在倾角为60o的斜面上, 一细绳绕在圆柱体上,其一端固定在A点,此绳和A点相连局部与斜面平行,如下列图.如圆柱体与斜面间的东摩擦因数为f=1/3,求圆柱体的加速度.〔15〕(15)解:解IW柱受力与运动分析如图.平而运动徽分方程为nta〔;= mg sin60* 一尸一Fj,.=F\ —fiig CQt^ff』社- 〔F=—广〕『式中F = /Fv» ac - fQ解得口c=O.355q5-4 11-28 〔动量矩定理〕均质圆柱体A和B的质量均为m,半径均为r, 一细绳缠在绕固定轴.转动的圆柱A上,绳的另一端绕在圆柱B上,直线绳段铅垂,如下列图.不计摩擦.求:〔1〕圆柱体B下落时质心的加速度;〔2〕假设在圆柱体A上作用一逆时针转向力偶矩M,试问在什么条彳^下圆柱体B的质心加速度将向上.〔15分〕解:解“〕两轮的受力与运动分析分别如用w.1 2 ET™r=近]对E轮,有以轮与直樊和切点为基点,明轮心B的加速度〃工,M t s4解得5g〔2〕再分别对两卷作受力与运动分析如图〔b〕对内轮,有fflaa =ntg -Ppj~2 tfrr~afj —rFj2依然存运动学关系dj}二皿用+的日J但Q.i中也B〕令< 0,可解得31柱体B的质心加速度向上的条件:M〉217UJT6-1:轮O的半径为R1 ,质量为ml,质量分布在轮缘上;均质轮C的半径为R2 , 质量为m2 ,与斜面纯滚动,初始静止.斜面倾角为.,轮.受到常力偶M驱动. 求: 轮心C走过路程s时的速度和加速度.〔15分〕韩:轮C1月轮0扶同作为一个质点系九一a『w 一阁7j = o石—,血人"吊斗!岫甘&岫对网」言必二% =9 1V :3/聚TH得J弘口日=-^―〔+3JJL〕旭〕中二二¥ =:羡居迎日一式G〕是函数关系式.两端计『求导,得-〔Jffij + 访看网收=M -Kin H - 鸟2 例U 尸―- :〔加1+.%啊〕局6-2均质杆 OB=AB=l,质量均为 m,在铅垂面内运动,AB 杆上作用一不变的力偶矩M,系统初始静止,不计摩擦.求当端点 A 运动到与端点 .重合时的速度. 〔15分〕解:由于A 京不离并地面,那么,EAO= /BOA.牝=可=H嫌同:是否可以利用求寻求此蜓时的商和速段? 〔H 与行没 有必然联系,角度不是时间的函数.〕6-3:重物m,以v 匀速下降,钢索刚度系数为 k .求轮D 突然卡住时,钢索的最大张 力.〔15分〕1J 上口『9-"将『〔1-E 穹 2/ V itt由「二心〞;有6-4均质杆 AB 的质量m=4kg,长l=600mm,均匀圆盘B 的质量为6kg,半径为r=600mm, 作纯滚动.弹簧刚度为 k=2N/mm,不计套筒A 及弹簧的质量.连杆在与水平面成 30o 角时无 初速释放.求〔1〕当AB 杆达水平位置而接触弹簧时,圆盘与连杆的角速度;〔2〕弹簧的最大压缩量 max o 〔 15分〕彝:卡住前E 二些 s* kF - kS SJ - mg - 2.45kN卡隹后取点物平街位苜1为更力加弹性力的 搴势T ; 一"解U〕该系统初始静tL.动能为杆达水平位置时.B 点是33杆的速度瞬心,网盅的角速度3H = 0,设杆的角速度为那么业,山幼能近理,得\ * ;配%品-0 = mg * ~ 5in341,解得连杆的角速度号〞:4;殳巴丝⑵AB杆达水平位置接触赢亚,统的动能为“,弹簧达到最大压缩量bz.的瞬时,系魂再次鄢止.动能丁;:= 0.由72 - 7】二五得0 _ [■闻]品=-J 6ra«二+ mJ片0 W *■解得1AM= 87.1 mm。

理论力学期末复习

理论力学期末复习

讨论三种可能发生
FD f D FND 0.4 300N 120N, 的运动情况 FE f E FNE 0.2 643N 128.6N
Fx 0, FT1 FD FE 0
FT1 FD FE 248.6N
线圈架沿AB梁滚动而无滑动
FD f D FND , FE f E FNE =128.6 N
解:解除约束,画整体受力图
列平衡方程
M A F 0

FNB AB FT AD r FT DE r 0
FNB FT AD DE 120 2 1.5 kN 105 kN AB 4
FAy FNB FT 0

Fy 0
2-4-2 物系平衡问题解法
受力分析
① 首先从二力构件入手,可使受力图比较简单,易于求解。
② 解除约束时,要严格地按照约束的性质,画出相应的约 束力,切忌凭主观想象。对于一个销钉连接三个或三个以上物 体时,要明确所选对象中是否包括该销钉?解除了哪些约束? 然后正确画出相应的约束力。
③ 画受力图时,关键在于正确画出铰链约束力,除二力构
d FR
MO FR
FR 0 M O 0
FR 0
MO 0
合力 力螺旋
FR 0 M O 0 FR // MO
FR 0 M O 0 ( FR , MO )= 力螺旋
1-3-3 力系的最简形式
1.图示力系沿正方体棱边作用,F1=F2=F3=F,
三 点的复合运动
3-1 运动学基础(填空题) 3-2 点的复合运动概念 3-3 点的运动合成定理(注意科氏加速度) 3-4 点的复合运动问题(计算题2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理论力学期末复习(计算题部分)
1、连杆机构OABC 受铅直力P 和水平力F 作用而在图示位置平衡。

已知P=4kN ,不计连杆自重,求力F 的大小。

2、图示简易起重装置。

已知载荷重量G 1=1000N ,吊杆AB 重量G 2=200N ,重心C 在AB 的中点,其它重量不计。

AE=4m ,BD=1m ,滑轮大小可以略去,钢丝绳的BH 段成水平。

试求拉索DE 的拉力和固定铰链支座A 的反力。

3、杆OB 以角速度ω绕O 轴转动,带动滑块A 沿水平直线导轨运动。

设距离h 已知,试求当OB 与水平线的夹角为ϕ时滑块A 的速度。

4、曲柄OA 以匀转速min /60r n =绕O 轴转动,通过连杆AB 带动圆柱沿水平地面作无滑动的滚动。

圆柱借摩擦带动物体DE 沿水平方向平行移动,设圆柱与DE 间也没有滑动。

已知OA=100mm ,AB=300mm ,圆柱半径R=100mm ,O 点和B 点在同一水平线上。

在图示瞬时,曲柄OA 处于铅直位置,试求该瞬时物体DE 的速度和加速度。

纯滚动 接触点为瞬心 v DE =图形角速度*R ,。

相关文档
最新文档