步进电机实习报告
步进电机实验报告册(3篇)

第1篇一、实验目的1. 熟悉步进电机的工作原理和特性。
2. 掌握步进电机的驱动方式及其控制方法。
3. 学会使用常用实验设备进行步进电机的调试和测试。
4. 了解步进电机在不同应用场景下的性能表现。
二、实验设备1. 步进电机:选型为双极性四线步进电机,型号为NEMA 17。
2. 驱动器:选型为A4988步进电机驱动器。
3. 控制器:选型为Arduino Uno开发板。
4. 电源:选型为12V 5A直流电源。
5. 连接线、连接器、电阻等实验配件。
三、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机。
它具有以下特点:1. 转动精度高,步距角可调。
2. 响应速度快,控制精度高。
3. 结构简单,易于安装和维护。
4. 工作可靠,寿命长。
步进电机的工作原理是:通过控制驱动器输出脉冲信号,使步进电机内部的线圈依次通电,从而产生步进运动。
四、实验步骤1. 搭建实验电路(1)将步进电机连接到驱动器上,确保电机线序正确。
(2)将驱动器连接到Arduino Uno开发板上,使用连接线连接相应的引脚。
(3)连接电源,确保电源电压与驱动器要求的电压一致。
2. 编写控制程序(1)使用Arduino IDE编写程序,实现步进电机的正转、反转、调速等功能。
(2)通过串口监视器观察程序运行情况,调试程序。
3. 调试步进电机(1)测试步进电机的正转、反转功能,确保电机转动方向正确。
(2)调整步进电机的转速,观察电机运行状态,确保转速可调。
(3)测试步进电机的步距角,确保步进精度。
4. 实验数据分析(1)记录步进电机的正转、反转、调速等性能参数。
(2)分析步进电机的运行状态,评估其性能。
五、实验结果与分析1. 正转、反转测试步进电机正转、反转功能正常,转动方向正确。
2. 调速测试步进电机转速可调,调节范围在1-1000步/秒之间。
3. 步距角测试步进电机的步距角为1.8度,与理论值相符。
4. 实验数据分析步进电机的性能指标符合预期,可满足实验要求。
步进电机实训报告

步进电机实训报告步进电机是一种控制精度高、速度稳定的电动机,广泛应用于数控机床、印刷设备、机器人等领域。
为了更好地学习和了解步进电机的工作原理和控制方法,我们在实训课程中进行了相关的实验。
以下是我对步进电机实训的报告。
一、实训目的通过本次实训,我们的目标是:1.了解步进电机的基本原理和工作方式。
2.学习步进电机的控制方法,包括常用的全步进控制和半步进控制。
3.掌握使用驱动器控制步进电机的操作方法。
4.实践操作步进电机的编程控制。
二、实训内容1.步进电机原理的学习在实训前,我们首先对步进电机的原理进行了学习。
步进电机是一种开环控制的电机,它通过移动固定步长来达到精确控制位置的目的。
其原理是利用电磁场的相互作用驱动旋转。
2.步进电机的控制方法在实训中,我们学习了两种常用的步进电机控制方法,全步进和半步进。
全步进控制是通过依次激活步进电机的每个线圈来实现的。
半步进控制是在全步进的基础上,再控制每一步的子步进。
3.步进电机驱动器的使用在实验中,我们使用了步进电机驱动器来控制步进电机的运行。
驱动器可以根据输入的控制信号来确定步进电机的运转方式,如指定转向、旋转角度等。
4.步进电机编程控制最后,我们进行了编程实验进行步进电机的控制。
通过编写程序,我们可以实现控制步进电机的转向和角度,从而实现具体的应用。
三、实训过程1.初步了解步进电机的工作原理和构造。
在实训开始前,我们先进行了步进电机原理和构造的简要介绍,包括电机的基本组成部分和工作原理等。
2.学习步进电机的控制方法。
我们学习了全步进和半步进控制方法的原理和实现方式,了解了各自的特点和适用范围。
3.实际操作步进电机驱动器。
我们进行了驱动器的安装和设置,根据实验要求设置步进电机的参数,如转向、转速等。
4.编写程序进行步进电机控制。
通过编写程序,我们实现了步进电机的控制。
在程序中,我们可以设定电机的运转方式、旋转角度和速度等,并对其进行调试。
四、实训总结通过本次步进电机实训,我们深入了解了步进电机的原理和控制方法,学习了步进电机的驱动器使用和编程控制技术。
步进电机控制实训报告

一、实训背景随着科技的飞速发展,步进电机在工业自动化、精密定位、医疗设备等领域得到了广泛的应用。
为了深入了解步进电机的原理和应用,提高自身的动手实践能力,我们进行了步进电机控制实训。
二、实训目标1. 理解步进电机的原理和工作方式。
2. 掌握步进电机的驱动方法和控制方法。
3. 学会使用单片机对步进电机进行编程和控制。
4. 提高团队协作能力和问题解决能力。
三、实训内容1. 步进电机原理步进电机是一种将电脉冲信号转换为角位移或线位移的执行元件。
其特点是响应速度快、定位精度高、控制简单。
步进电机每输入一个脉冲信号,就转动一个固定的角度,称为步距角。
步距角的大小取决于电机的结构,常见的步距角有1.8度、0.9度等。
2. 步进电机驱动步进电机的驱动通常采用步进电机驱动器。
驱动器将单片机输出的脉冲信号转换为驱动步进电机的电流信号,实现对步进电机的控制。
常见的驱动器有L298、A4988等。
3. 单片机控制本实训采用AT89C51单片机作为控制核心。
通过编写程序,控制单片机输出脉冲信号,实现对步进电机的正转、反转、停止、速度等控制。
4. 实训步骤(1)搭建步进电机驱动电路,连接单片机、步进电机、按键等外围设备。
(2)编写程序,实现以下功能:- 正转、反转控制;- 速度控制;- 停止控制;- 按键控制。
(3)使用Proteus仿真软件进行程序调试,验证程序的正确性。
(4)将程序烧录到单片机中,进行实际硬件测试。
四、实训结果与分析1. 正转、反转控制通过编写程序,实现了对步进电机的正转和反转控制。
在Proteus仿真软件中,可以观察到步进电机按照设定的方向转动。
2. 速度控制通过调整脉冲信号的频率,实现了对步进电机转速的控制。
在Proteus仿真软件中,可以观察到步进电机的转速随脉冲频率的变化而变化。
3. 停止控制通过编写程序,实现了对步进电机的停止控制。
在Proteus仿真软件中,可以观察到步进电机在停止信号后立即停止转动。
步进电机驱动器实训报告

一、实训目的本次实训旨在使学生了解步进电机驱动器的基本原理、组成结构和工作方式,掌握步进电机驱动器的调试方法,并通过实际操作提高学生运用理论知识解决实际问题的能力。
二、实训内容1. 步进电机驱动器基本原理步进电机驱动器是将脉冲信号转换为角位移的执行机构。
它主要由脉冲发生器、驱动电路、电机和反馈系统组成。
当脉冲发生器输出一定频率的脉冲信号时,驱动电路根据脉冲信号控制电机的转动,实现精确的位置控制。
2. 步进电机驱动器组成结构(1)脉冲发生器:产生一定频率和周期的脉冲信号。
(2)驱动电路:将脉冲信号转换为电机驱动所需的电流和电压。
(3)电机:将电能转换为机械能,实现角位移。
(4)反馈系统:实时监测电机的位置和速度,为脉冲发生器提供反馈信号。
3. 步进电机驱动器工作方式步进电机驱动器通过控制脉冲信号的频率和周期,实现电机的精确位置控制。
当脉冲信号频率较高时,电机转速较快;当脉冲信号频率较低时,电机转速较慢。
4. 实训步骤(1)了解步进电机驱动器的基本原理和组成结构。
(2)观察步进电机驱动器的实物,了解各组成部分的功能。
(3)搭建步进电机驱动器实验电路。
(4)调试步进电机驱动器,实现电机的精确位置控制。
(5)分析实验数据,总结实验结果。
三、实训过程1. 观察步进电机驱动器实物通过观察步进电机驱动器实物,了解各组成部分的功能,为后续实验做好准备。
2. 搭建实验电路根据实验要求,搭建步进电机驱动器实验电路。
实验电路主要包括脉冲发生器、驱动电路、电机和反馈系统。
3. 调试步进电机驱动器(1)连接脉冲发生器,输出一定频率和周期的脉冲信号。
(2)调整驱动电路参数,使电机正常转动。
(3)观察电机转动情况,确保电机转动平稳、无异常。
(4)调整反馈系统,使脉冲发生器根据电机实际位置调整脉冲信号。
4. 分析实验数据通过实验数据,分析步进电机驱动器的性能。
主要分析内容包括:(1)电机转速与脉冲信号频率的关系。
(2)电机转速与负载的关系。
电机实习报告3篇

电机实习报告3篇电机实习报告篇1实习目的`:认识了解电机制造的一般工序流程及基本知识,掌握电机制造与加工的基本技能,了解社会工作岗位的基本情况。
并培养出良好的时间观念,纪律观念,工作态度和实践能力,为以后走上社会工作岗位做好准备。
实习单位综合概述:德州市恒力玛瑞电机制造有限责任公司成立于一九六六年,为原机械工业部船用电机定点生产厂家之一,长期以来一直为海军生产船用电机,是一家集电机研发,生产,销售和维修于一体的现代制造企业,拥有雄厚的资本,完整稳定的生产销售链和强大的自主研发能力,是德州制造业中有名的一家企业。
实习内容及进度:十一月一号,在进行入厂安全教育之后,参观了解电机的完整制造流程,初步接触电机定子的组装及加工。
二号到四号,在装配车间进行定子加工的具体学习和操作。
五号和六号,在装配车间和加工车间进行转子组装及加工,电机整体组装及加工的观摩学习和操作。
第七天上午参观学习数控加工,下午进行实习总结。
实习体验与心得:一号上午,进入车间,一切都是那么的陌生,大型机器的轰鸣声掩盖了几乎所有说话的声音,工人师傅都在忙碌,一切的一切在进入工厂的瞬间发现:现实与梦想之间是有距离的,在实习一周后我发现,这距离也并不是遥不可及的。
工厂,车间,陌生的环境,我只有在师傅的讲解与自己的观察中去慢慢了解他们的工作、生活并学习师傅众多的生活工作经验。
工作,师傅的工作看上去似乎很简单,但亲自动手操作后才发现并非如此,在看到、想到和做到之间还有很远的距离,不要理所当然的认为,看上去很简单的东西做起来也很简单。
有些同学认为很简单就不去亲手操作,有些同学认为这么简单,做了没有意义。
到此,我想起电视剧《士兵突击》里的一句话:不要对没做过的事说没意义。
才发现很多听过的至理名言以前并没有真正懂得。
一句话,知道它的意思不能叫懂得,最多算是了解,只有因此产生对人生的感悟才算是真正懂得了前辈们用实践换来的经验。
刚实习的第一天,分配给我的任务是对电机定子进行线圈紧固绑扎,我按照技术员教我的方法,运用操作工具开始慢慢学着绑扎定子,在加工的同时注意操作流程及有关注意事项等。
步进电机正反转实验报告

一、实验名称:
步进电机正反转训练
二、控制要求
要求实现电机的正转三圈, 反转三圈, 电机正转和反转的频率可不相同, 然后这样循环3次, 3次后电机停止转动。
三、PLC I/O地址分配表
PLC的I/O地址连接的外部设备
Y0 电机转向输出点控制转速点CP
Y1 电机的转速输出点控制转向点CW
四、程序梯形图
五、程序分析:
M11.M12、M13的波形图M21.M22.M23的波形图
电机正转的频率是20赫兹, 通过MOV指令送到D5中, 在电机正传三圈后, 电机反转, 反转的频率是40赫兹, 通过MOV指令送到D5中。
电机正转3次, 反转2次, 再通过M23得电进入正转, 重复上面的循环, 即电机正转后再反转, M23才得电一次, 所以可以加一个M23控制一个计数器计数, 当计数器计数到3时, 再通过计数器的常闭开关把M10线圈断电, 从而实现电机停止。
步进电机单片机实习报告

步进电机单片机实习报告一、实习目的本次实习旨在将所学理论知识与实际操作相结合,深入理解步进电机的工作原理和单片机控制技术。
通过实习,锻炼自己的动手能力,提高自己在电机控制领域的实践经验,为将来的学习和工作打下坚实的基础。
二、实习内容1. 步进电机的基本原理及其特性步进电机是一种将电脉冲信号转换为机械角位移的电机。
每接收到一个脉冲信号,步进电机就转动一个固定的角度(步距角)。
步进电机的转速、停止位置取决于脉冲信号的频率和脉冲数,而与负载无关。
通过控制脉冲个数,可以实现对步进电机角位移的精确控制;通过控制脉冲频率,可以实现对电机转速和加速度的控制。
2. 单片机控制步进电机的基本原理及方法单片机控制步进电机主要通过单片机发出的脉冲信号来驱动步进电机。
单片机根据程序的指令,控制步进电机的转向、速度和步数。
通过改变单片机发出的脉冲信号的频率和脉冲数,可以实现对步进电机运动状态的精确控制。
3. 实习过程(1)搭建步进电机和单片机的控制系统硬件平台,包括步进电机驱动器、电源、控制电路等。
(2)编写单片机控制程序,实现对步进电机的转向、速度和步数的控制。
(3)通过实验验证程序的正确性,并对程序进行优化和改进。
三、实习心得与体会本次实习使我深入理解了步进电机的工作原理和单片机控制技术,提高了自己在电机控制领域的实践经验。
在实习过程中,我学会了如何搭建步进电机和单片机的控制系统硬件平台,掌握了编写单片机控制程序的基本方法。
同时,通过实验验证程序的正确性,我对步进电机的控制有了更深刻的认识。
此外,实习过程中我意识到理论知识与实际操作的重要性。
在实际操作中,我发现理论知识能够为解决问题提供指导,而实际操作则能够加深对理论知识的理解。
在未来的学习中,我将更加注重理论知识的学习,努力提高自己的实践能力。
四、总结通过本次实习,我对步进电机和单片机控制技术有了更深入的了解,收获颇丰。
在今后的学习和工作中,我将继续努力提高自己在电机控制领域的实践经验,为实现理论知识与实际操作的有机结合而努力。
步进电机报告

步进电机报告一、引言本次报告主要介绍步进电机的原理、特点、应用场景以及在实验中的表现和优劣点。
步进电机是一种特殊的电机,与传统的直流电机、交流电机不同,它具有精准的步进控制和较高的速度稳定性,在控制和自动化领域有着广泛应用。
二、步进电机原理步进电机是一种以脉冲信号为控制输入,通过多级传动和特定结构的构造使转子产生固定量(步进角)转动的电机。
其转子每次转动一定的角度称为步进角,可通过调整脉冲宽度和频率来控制转动速度和角度精度。
三、步进电机特点1. 高精度:步进电机通过精细的控制系统可实现高精度的定位和转动。
2. 高速度:步进电机在一定的负载下可实现高速度稳定转动,可达数百转/秒。
3. 低功耗:步进电机有着较高的效率和低功耗,且在不外接负载的情况下无需保持力。
4. 节能环保:与传统电机相比,步进电机无需额外的控制元件,更加简洁,应用更为普遍。
4. 应用场景步进电机适用于需要经常变换转子位置的场景,如激光切割机、机器人、打印机、医疗器械和家用电器等领域。
尤其在包装、装配、印刷、纺织及玻璃等行业有着广泛的应用。
5. 实验结果在实验中,步进电机表现出了很好的性能和稳定性,通过调整脉冲宽度和频率可以控制电机的转速和角度精度。
同时,步进电机在低负载下的能耗和功率也较低。
6. 优缺点步进电机有着精准定位、高速度稳定性、低功耗和节能环保等优点。
但由于其结构复杂,易受到外界噪声干扰,同时也存在着步进位误差和相位长时间漂移等缺点,需要进行精细的调整和控制。
七、结论综上所述,步进电机作为一种具有特殊控制方式的电机,具有广泛的应用场景和良好的性能。
在实际应用中需要结合实际情况和控制要求进行具体调整和控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进电机控制摘要:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
关键词:AT89C51芯片;L298驱动;数码管;步进电机1 引言单片机的应用正在不断深入和创新,作为一门我们专业相当重要的专业课程,同时带动着传统控制检测日新月异的更新。
此次设计利用单片机芯片作为核心部件进行调试与创新,其中对步进电机背景于现状,系统硬件设计,软件设计及其仿真调试过程都做了介绍,是我对步进电机的院里有了深入的了解,也对单片机的设计研发过程以及知识的学习都有了很深的体会和提高。
本控制系统的设计采用单片机芯片控制,通过人为按动各开关实现步进电机的开关,另外还增加了正转、反转、加速、减速的功能。
2 总体设计方案步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。
而方向由导电顺序决定。
不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。
并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。
只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。
拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n 表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相拍运行方式即AB-BC-CD-DA-AB,四相八拍运动方式即A-AB-B-BC-C-CD-D-DA-A.注:2相励磁通过的电流是1相励磁时通过电流的2倍,转矩也是1相励磁的2倍。
此时电机的振动较小且应答频率升高,目前仍广泛使用此种方式。
2.1 设计思路使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图2.1如下:图2.1 控制系统组成图脉冲信号一般由单片机或CPU 产生,一般脉冲信号的占空比为0.3-0.4左右,电机转速越高,占空比则越大。
功率放大是驱动系统最为重要的部分。
步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流(而样本上的电流均为静态电流)。
平均电流越大电机力矩越大,要达到平均电流大这就需要驱动系统尽量克服电机的反电势。
因而不同的场合采取不同的的驱动方式,到目前为止,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。
为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。
步进电机一经定型,其性能取决于电机的驱动电源。
步进电机转速越高,力距越大则要求电机的电流越大,驱动电源的电压越高。
控制步进电机的速度如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。
两个脉冲的间隔越短,步进电机就转得越快。
调整单片机发出的脉冲频率,就可以对步进电机进行调速。
具体实现用延时时间的长短来决定,程序如下。
DELAY: MOV R6,#125 ;延时50ms脉 冲 信号 信号 分 配 功 率 放 大 步进 电 机负载L1: MOV R5,#200 L2: DJNZ R5,L2 DJNZ R6,L1 RET2.2、步进电机设计方框图图2.1A T89c51 单片机时钟 振荡 器及 RST 信号电机正转反转 1正转2反转 1反转2正转停止 加速减速显示速度图2.2本系统是用单片机软件程序来产生脉冲分配信号,即把数字控制计数的高精度等方面的优势有效地应用于步进电机控制系统,同时本系统设计的步进电机控制器硬件电路十分简单,成本低,使用方便。
本电路包括开关控制电路,时钟电路,功率放大电路等的选择。
3 设计原理分析步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
AT89C51芯片简介:AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM —Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如图1。
XTAL1:振荡器反相放大器及内部时钟发生器的输入端。
XTAL2:振荡器反相放大器的输出端。
时钟振荡器:AT89C51中有一个用于构成内部振荡器的高增益反相放大器,引起XTAL1和XTAL2分别是该放大器的输入端和输出端。
这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器。
外接石英晶体及电容C1、C2接在放大器的反馈回路中构成并联振荡电路。
对外接电容C1、C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,如果使用石英晶体,推荐使用30pF左右,如果使用陶瓷谐振器建议选择40pF左右。
芯片主要特性〃与MCS-51 兼容,4K字节可编程闪烁存储器,寿命:1000写/擦循环,数据保留时间:10年〃全静态工作:0Hz-24Hz〃三级程序存储器锁定,128*8位内部RAM〃32可编程I/O线,两个16位定时器/计数器,5个中断源〃可编程串行通道,低功耗的闲置和掉电模式,片内振荡器和时钟电路XTAL218XTAL119ALE 30EA31PSEN 29RST9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1AT89C51+88.8R110kR210kR310kR410kR510kR610k正转反转加速减速R710kC11nFC21nFX1CRYSTALC31nFIN15IN27ENA 6OUT12OUT23ENB 11OUT313OUT414IN310IN412SENSA 1SENSB 15GND8VS 4VCC 9U2L2983.1.1硬件设计及调试图3.1.1 步进电机与单片机连接原理图3.1.2软件设计及调试图3.1.2 程序流程图4 总结与体会这次课程设计是我最喜欢的一次,因为这次课程设计需要动脑动手,把自己课堂上学到的软件和硬件知识全部应用进来。
要想完成好这次课程设计,首先要弄懂步进电机的工作原理,与外部电路的连接,单片机原理,汇编语言等。
这其中有以前课堂上学过的也有需要我们自学研究的,这不仅考察了自己原来的知识程度还加强了我们独立获取知识并加以运用的能力。
结束扫描K1、K3(正加) K1、K4(正减)K2、K3(反加) K2、K4(反减)K5(停止)步数读取按键这次课程设计我收获很多,因为我学到了很多的东西,还制作了自己的东西,使自己很有成就感。
在这么多次课程设计中这次是我最难忘的一次,因为是三人一组团队完成,使我体会到了分工合作的力量与重要性。
虽然电机部分我没有花太多的精力,但通过合理分工,我们仍然按时完成了指定任务,并且通过相互帮助相互指点,使我们对彼此负责的那部分任务都有了更好的了解和掌握。
我想通过这次实验,我对电机的了解扩宽了,对单片机和外围电路的认识也更为清晰了,这为我以后工作提供了坚实的基础。
三个星期很快过去了,看着自己的劳动成果,心里满是欣慰。
最后感谢老师和同学们的悉心指导和帮助。
参考文献[1] 李朝青.单片机原理及接口技术(第三版)[M].北京:北京航空航天大学出版社,2006.12[2] 石磊.Altium designer8.0中文版电路设计标准教程[M].北京:清华大学教育出版社,2009.11[3] 杨天明,陈杰.电机拖动[M]..北京:北京大学出版社,2006.8附录1设计程序代码org 00hjmp disp ;显示初始速度为0stop:orl p1,#0ffh ; 步进电机停止loop:jnb p0.0,for2 ; 如果p0.0按下正转jnb p0.1,rev2 ; 如果p0.1按下反转jnb p0.2,stop1 ; 如果p0.2按下停止jmp loop ;反复监测键盘for:mov r0,#00h ;正转到tab取码指针初值for1:mov a,r0 ;取码mov dptr,#table ;movc a,@a+dptrjz for ;是否到了结束码00hcpl a ;把acc反向mov p1,a ;输出到p1开始正转jnb p0.2,stop1 ; 如果p0.2按下停止jnb p0.1,rev2 ; 如果p0.1按下反转call delay ;转动的速度inc r0 ;取下一个码jmp for1 ;继续正转rev:mov r0,#05h ;反转到tab取码指针初值rev1:mov a,r0mov dptr,#table ;取码movc a,@a+dptrjz rev ;是否到了结束码00hcpl a ;把acc反向mov p1,a ;输出到p1开始反转jnb p0.2,stop1 ; 如果p0.2按下停止 jnb p0.1,rev2 ; 如果p0.1按下反转 call delay ;转动的速度inc r0 ;取下一个码jmp rev1 ;继续反转stop1:call delay ; 按p0.2的消除抖动 jnb p0.2,$ ; p0.2放开否?call delay ;放开消除抖动jmp stopfor2:call delay ; 按p0.0的消除抖动 jnb p0.0,$ ; p0.0放开否?call delay ;放开消除抖动jmp forrev2:call delay ; 按p0.1的消除抖动 jnb p0.1,$ ; p0.0放开否?call delay ;放开消除抖动jmp revdelay:jnb p0.3,fast ;判断p0.3是否按下jnb p0.4,slow ;判断p0.4是否按下mov r1,#250 ;步进电机的转速20msd1:mov r2,#248djnz r2,$djnz r1,d1mov a,#5 显示速度 mov dptr,#tabmovc a,@a+dptrmov p2,amov a,#4mov dptr,#tabMOVC A,@A+DPTRMOV P3,Aretfast:mov r5,#150 ;加速d2:mov r6,#148djnz r6,$djnz r5,d2mov a,#9 ;显示速度 mov dptr,#tabmovc a,@a+dptrmov p2,amov a,#7mov dptr,#tabMOVC A,@A+DPTRMOV P3,Aretslow:mov r3,#75 ;减速d3:mov r4,#48djnz r4,$djnz r3,d3mov a,#1 ;显示速度mov dptr,#tabmovc a,@a+dptrmov p2,amov a,#8mov dptr,#tabMOVC A,@A+DPTRMOV P3,Arettable:db 03h,09h,0ch,06h ;正转表db 00 ;正转结束db 03h,06h,0ch,09h ;反转db 00 ;反转结束disp:mov a,#0 ;显示子程序 mov dptr,#tabmovc a,@a+dptrmov p2,amov a,#0mov dptr,#tabMOVC A,@A+DPTRMOV P3,Ajmp looptab: db 0c0h,0f9h,0a4h,0b0h,99h;数码表db 092h,082h,0f8h,080h,090h;end附录210111213141520191817161514131211102019181716151413121110101112131415161718192040393837363534333231302928272625242322211010附录3流程图A T89c51 单片机时钟 振荡 器及 RST 信号电机正转 反转 1正转2反转 1反转2正转停止 加速减速显示速度。