常用逻辑用语
常用逻辑用语

第二单元 常用逻辑用语考点要求1.常用逻辑用语 (1)命题及其关系 ① 了解命题的逆命题、否命题与逆否命题;② 理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;(2)简单的逻辑联结词 通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义. (3)全称量词与存在量词 ① 通过生活和数学中的丰富实例,理解全称量词与存在量词的意义; ② 能正确地对含有一个量词的命题进行否定.第一节 命题与充要条件自主学习1.常用逻辑用语 (1)命题命题:可以判断真假的语句叫命题; 2.四种命题的形式原命题:若p 则q , 逆命题:若q 则p ,否命题: 若p ⌝ 则q ⌝,逆否命题:若q ⌝ 则p ⌝, 3.四种命题之间的关系:注:①原命题为真,但其逆命题不一定真;其否命题不一定为真;其逆否命题为真.②互为逆否命题的两个命题同真同假.③否命题即否定条件又否定结论;命题的否定仅否定结论. 二、充分必要条件:一般地,如果已知p q ⇒,那么就说:p 是q 的充分条件;q 是p 的必要条件. 可分为四类:1. 充分不必要条件,即p q ⇒成立,而q p ⇒不成立;2. 必要不充分条件,即p q ⇒不成立,而q p ⇒成立;3. 既充分又必要条件,即p q ⇒成立,又有q p ⇒成立;4. 既不充分也不必要条件,即p q ⇒不成立,又有q p ⇒不成立.一般地,如果既有p q ⇒,又有q p ⇒,就记作:p q ⇔.“⇔”叫做等价符号.互 逆互 为 为 互否 逆 逆 否互 否互 否互 逆这时p既是q的充分条件,又是q的必要条件,称p是q的充分必要条件,简称充要条件.三、反证法的三步骤:①反设:假设命题的结论不成立,即假设命题的反面成立.②归谬:从假设出发,经过推理论证,得出矛盾.③结论:由矛盾判定假设不成立,从而原命题的结论成立.教材透析逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题.复合命题:由简单命题与逻辑联结词构成的命题.常用小写的拉丁字母p,q,r,s,……表示命题,故复合命题有三种形式:p或q;p且q;非p.(2)复合命题的真值“非p”形式复合命题的真假可以用下表表示:“p且q“p或q“非p”形式复合命题的真假与p的真假相反;“p且q”形式复合命题当p与q同为真时为真,其他情况为假;“p或q”形式复合命题当p与q同为假时为假,其他情况为真;③真值表是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容.(3)四种命题如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题.两个互为逆否命题的真假是相同的,即两个互为逆否命题是等价命题.若判断一个命题的真假较困难时,可转化为判断其逆否命题的真假.(5)全称命题与特称命题这里,短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号∀表示。
常用逻辑用语

常用逻辑用语1.充要条件的判断:(1)定义法----正、反方向推理注意区分:“甲是乙的充分条件(甲⇒乙)”与“甲的充分条件是乙(乙⇒甲)”(2)利用集合间的包含关系:例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件。
2.逻辑联结词:⑴且(and) :命题形式 p ∧q ;p q p ∧q p ∨q ⌝p ⑵或(or ): 命题形式 p ∨q ; 真真 真 真 假 ⑶非(not ):命题形式⌝p . 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 3.四种命题的相互关系4。
四种命题:⑴原命题:若p 则q ; ⑵逆命题:若q 则p ; ⑶否命题:若⌝p 则⌝q ;⑷逆否命题:若⌝q 则⌝p注:原命题与逆否命题等价;逆命题与否命题等价。
5.全称量词与存在量词⑴全称量词-------“所有的”、“任意一个”等,用∀表示; 全称命题p :)(,x p M x ∈∀;全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词--------“存在一个”、“至少有一个”等,用∃表示;特称命题p :)(,x p M x ∈∃;特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;一:例题讲解1.命题“若,则”的逆否命题是( ).A . 若,则B . 若,则C . 若,则D . 若,则2.命题:,的否定是( )A .,B .,C .,D .,3.已知命题:"若,则",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .B .C .D . 4.已知命题:,,则:A . ,B . ,C .,D .,5.设,则“”是“”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件二、练习题16.如果命题p ∨q 为真命题,p ∧q 为假命题,那么( ) A . 命题p ,q 均为真命题 B . 命题p ,q 均为假命题C . 命题p ,q 有且只有一个为真命题D . 命题p 为真命题,q 为假命题 7.命题:p 若0x <,则()ln 10x +<; q 是p 的逆命题,则( )A . p 真, q 真B . p 真, q 假C . p 假, q 真D . p 假, q 假 8.命题“,则”的逆否命题是( ) A . 若,则 B . 若,则 C . 若,则D . 若,则9.设,,则是成立的A . 必要不充分条件B . 充分不必要条件C . 充分必要条件D . 既不充分也不必要条件10.设命题, ,则命题成立是命题成立的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件 11.设,则“2-x ≥0”是“≤1”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件 12.已知命题;命题,.则下列命题为真命题的是( ).A .B .C .D .13.设x >0,y ∈R ,则“x >y ”是“x >|y|”的( ) A . 充要条件 B . 充分而不必要条件 C . 必要而不充分条件 D . 既不充分也不必要条件14.条件p:|x+1|>2,条件q:x ≥2,则是的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件 15.设:,:,则是的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件三、练习题216.命题“若x=3,则x 2-9x+18=0”的逆命题、否命题与逆否命题中,假命题的个数为( ) A . 0 B . 1 C . 2 D . 3 17.已知命题:,命题:,,则下列说法正确的是( )A . 命题是假命题B . 命题是真命题C . 命题是真命题 D . 命题是假命题18.命题“若0x y +=,则0x =或0y =”的逆否命题是( )A . 若0x y +=,则0x =且0y =B . 若0x y +≠,则0x ≠或0y ≠C . 若0x =或0y =,则0x y +≠D . 若0x ≠且0y ≠,则0x y +≠19.若命题“p 或q ”与命题“非p ”都是真命题,则( ) A . 命题p 与命题q 都是真命题 B . 命题p 与命题q 都是假命题 C . 命题p 是真命题,命题q 是假命题 D . 命题p 是假命题,命题q 是真命题 20.已知,都是实数,那么“”是“”的( )A . 充要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分也不必要条件 21.命题“”的否定为( ) A .B .C .D .22.设,则“”是“”的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件 23.“α=”是“sin α=”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件D . 既不充分也不必要条件24.“0x >”是“()10x x +>”成立的( )A . 充分不必要条件B . 必要不充分条件C . 既不充分也不必要条件D . 充要条件 25.设,是两个不同的平面,是直线且,则“”是“”的( )A . 必要不充分条件B . 充分不必要条件C . 充分必要条件D . 既不充分也不必要条件。
常用逻辑用语

第8讲 常用逻辑用语一、重点1.四种命题的相互关系及其真假判断;2.充分性、必要性的判断;3.命题p ∧q ,p ∨q ,⌝p 的真假判断;4.全称量词与存在量词的意义.难点:1.充分性、必要性的判断;2. 对含有一个量词的命题的否定. 三、典例分析【题型一】四种命题及其关系知识梳理1.命题(1)定义:用语言、符号或式子表达的可以 的陈述句.(2)特点:能判断真假,是陈述句. (3)分类:真命题、假命题. 2.四种命题及其关系 (1)四种命题间的相互关系(2)四种命题的真假判断①两个命题互为逆否命题,它们具有相同的 . ②两个命题互为逆命题或否命题,它们的真假性 . 【例1】1、判断下列命题的真假(1)若B A x ⋂∉,则A x ∉且B x ∉; (2)若022≠+y x ,则0≠xy ; (3)若y x ≠或y x -≠,则y x ≠2、下列命题:①“全等三角形的面积相等”的逆命题; ②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60°”的逆否命题; ④“若x ≤-3,则x 2+x -6>0”的否命题;⑤“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题.其中真命题的序号是________(把所有真命题的序号填在横线上).解析 ①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab =0,则a =0”的否命题为“若ab ≠0,则a ≠0”, 而由ab ≠0可得a ,b 都不为零,故a ≠0,所以该命题是真命题;③由于原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是真命 题;④易判断原命题的逆命题假,则原命题的否命题假;⑤逆命题为“a ,b ∈R ,若a ≠0或b ≠0,则a 2+b 2≠0”为真命题. 答案 ②③⑤【题型二】 充分、必要、充要条件的判断 知识梳理1.充分条件与必要条件命题真假 “若p ,则q ”是真命题“若p ,则q ”是假命题推出关系 p qp q条件关系p 是q 的_____条件 q 是p 的_____条件p 不是q 的_____条件 q 不是p 的_____条件注:在逻辑推理中p ⇒q ,能表达成以下5种说法:①“若p ,则q ”为真命题;②p 是q 的充分条件;③q 是p 的必要条件;④q 的充分条件是p ;⑤p 的必要条件是q. 这五种说法表示的逻辑关系是一样的,都能表示p ⇒q ,只是说法不同而已.2. 充要条件:一般地,如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,此时,我们说p 是q 的充分必要条件,简称_________.显然,如果p 是q 的充要条件,那么q 也是p 的_________ ,即如果p ⇔q ,那么p 与q 互为充要条件.3. 充分条件、必要条件、充要条件的判断(1)若p ⇒q ,但q p ,则p 是q 的充分而不必要条件; (2)若q ⇒p ,但p q ,则p 是q 的必要而不充分条件; (3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p q 且q p ,则p 是q 的既不充分也不必要条件. 【例2】1.(2016年江西师大附中高三上学期期末) “”是“曲线为双曲线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】当3>m 时,02>-m ,121)2(2222=--⇒=--m y m x y m mx ,原方程是双曲线方3m >22(2)1mx m y --=程;当原方程为双曲线方程时,有202,0>⇒>->m m m ;由以上说明可知3>m 是“曲线1)2(22=--y m mx 是双曲线”充分而非必要条件.故本题正确选项为A.2、(2016届安徽合肥中学等六校高三第二次联考)在等差数列{}n a 中,“13a a <”是“数列{}n a 是单调递增数列”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要件 【答案C 】3. (2015—2016学年度內蒙古巴彥一中高二理数检测题)设()1:210,:021x p x m m q x -+<>>-,若p 是q 的充分不必要条件,则实数m 的取值范围为 .【答案: (]02,】【变式训练2】1. 若不等式a x <-|1|成立的充分条件是40<<x ,则实数a 的取值范围是 .2. 已知p :020-8-2≤x x ,q :0-12-22≤+m x x (m>0),且p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围。
数学常用逻辑用语

数学常用逻辑用语
1. 嘿,数学常用逻辑用语就像一把神奇的钥匙,能打开好多知识大门呢!比如“如果今天下雨,我就带伞”,这不就是典型的条件语句嘛!
2. 哇塞,数学常用逻辑用语可是很重要的呀!就像我们说话做事要有条理一样,比如“要么吃苹果,要么吃香蕉”,多明确呀!
3. 哎呀,数学常用逻辑用语真的超有意思!就像走迷宫有了指引,比如“所有的三角形内角和都是 180 度”,这就是普遍真理呀!
4. 嘿呀,数学常用逻辑用语可不是吃素的!就好像给你指明方向的灯塔,比如“若一个数是偶数,那它一定能被 2 整除”。
5. 哇哦,数学常用逻辑用语那可太关键啦!就如同游戏规则一样,比如“存在一个数使得等式成立”,这多神奇!
6. 哟呵,数学常用逻辑用语简直妙不可言!好比是搭建房子的基石,比如“只要努力学习,就会取得好成绩”。
7. 哈哈,数学常用逻辑用语太好玩啦!就像一个神秘的密码锁,比如“当且仅当条件满足时才成立”,是不是很特别!
8. 哎呀呀,数学常用逻辑用语真的很神奇呢!就像我们走路要有路线一样,比如“非此即彼”的判断。
9. 嘿哟,数学常用逻辑用语真的超厉害!就如同给你力量的魔法,比如“若 A 则B”这样的逻辑关系。
10. 哇啦,数学常用逻辑用语那可是相当重要啊!就好像是航行中的指南针,比如“不是正数就是负数或0”。
我觉得数学常用逻辑用语是数学中非常基础且关键的部分,掌握了它,能让我们更好地理解和运用数学知识呀!。
高中数学:常用逻辑用语

常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。
其中,判断为真的即为真命题,为假的即为假命题。
2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。
(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。
3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。
(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。
【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。
5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。
(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。
6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。
常用逻辑用语

常用逻辑用语知识要点
1、逻辑联结词:
命题.逻辑联结词.
简单命题.复合命题.
构成复合命题的三种形式.
简单命题的真假判断.
复合命题的真假判断
2、四种命题的关系:
原命题.逆命题.否命题.逆否命题.
等价命题.
基本关系
3、全称量词、存在量词
(1) 全称量词:短语“对所有的”,“对任意一个”在逻辑中通常叫做.
(2) 全称命题:含有全称量词的命题,叫做,全称命题“对M中任意一个x,有
p(x)成立”,简记作.
(3)存在量词:短语“存在一个”、“至少有一个”在逻辑中通常叫做.
(4) 特称命题:含有存在量词的命题,叫做,特称命题“在M中存在一个x,使p(x)
成立”,简记作.
(5)命题的否定与否命题:
命题的否定.否命题.
(6)全称命题与特称命题的关系:
全称命题的否定是特称命题;特称命题的否定是全称命题.
4.充分条件与必要条件:
(1)若,则p是q的充分条件
(2)若,则p是q的不充分条件
(3)若,则p是q的必要条件
(4)若,则p是q的不必要条件
(5)若,则p是q的充分不必要条件;
(6)若,则p是q的必要不充分条件
(7)若,则p是q的既充分又必要条件,简称充要条件
(8)若,则p是q的既不充分也不必要条件。
法学学硕常用逻辑用语

法学学硕常用逻辑用语
法学学硕常用的逻辑用语包括:
1. 因果关系 (Causal Relationship):由于、因此、所以、导致、致使、原因是、结果是等。
例如:由于被告的行为严重违反了合同条款,因此原告遭受了经济损失。
2. 比较关系 (Comparison):与……相比、与……类似、相对于、在……方面等。
例如:相对于其他证据,这个证人的证言更具可信度。
3. 前提条件 (Premise):如果、只要、假设等。
例如:只要被告能够提供充分的证据证明自己的清白,那么法庭有必要重新考虑此案。
4. 让步转折 (Concession):尽管、虽然、即使等。
例如:虽然被告辩称他是出于善意而行动,但这并不能免除他的法律责任。
5. 排除他因 (Exclusion of Other Causes):除非、唯一、无他等。
例如:除非被告能提供其他合理解释,否则很难排除他与案件有关。
6. 权威论证 (Appeal to Authority):根据、据……所述、据……研究等。
例如:根据专家所述,这种行为明显违反了相关法规。
7. 归纳推理 (Inductive Reasoning):一般来说、通常、一般情况下等。
例如:一般来说,合同的违约方都会承担相应的法律责任。
8. 反证法 (Argument from Contrary):实际上、事实上等。
例如:事实上,被告并没有提供充分的理由来解释他的行为。
以上只是一些常见的逻辑用语,实际上法学学硕中可以根据具体的情况、论证的需要使用更加复杂的逻辑用语。
“常用逻辑用语”教案

常用逻辑用语教案一、教学目标1. 让学生理解并掌握常用的逻辑用语,提高学生的逻辑思维能力。
2. 培养学生运用逻辑用语进行有效沟通和表达的能力。
3. 引导学生运用逻辑思维解决实际问题,培养学生的创新能力和实践能力。
二、教学内容1. 概念:什么是逻辑用语?2. 常用逻辑用语:(1)且(并且、、并列):表示两个或多个事物存在或发生。
(2)或(或者、要么、选择):表示两个或多个事物中至少有一个存在或发生。
(3)非(不是、并非、否定):表示事物的相反或否定。
(4)如果……(因果关系):表示一种条件与结果的关系。
(5)只有……才(必要条件):表示一种必要条件与结果的关系。
(6)不等式:表示两个事物之间的比较关系。
三、教学重点与难点1. 重点:让学生掌握并运用常用的逻辑用语。
2. 难点:让学生理解逻辑用语的含义及运用场景。
四、教学方法1. 案例分析法:通过分析具体案例,让学生了解逻辑用语的应用。
2. 小组讨论法:分组讨论,培养学生合作学习的能力。
3. 实践演练法:设计相关练习题,让学生在实际操作中掌握逻辑用语。
五、教学过程1. 导入:通过一个谜语,引发学生对逻辑用语的兴趣。
2. 讲解:介绍常用逻辑用语的定义和用法。
3. 案例分析:分析具体案例,让学生理解逻辑用语的实际应用。
4. 小组讨论:分组讨论,让学生运用逻辑用语进行分析。
5. 实践演练:设计相关练习题,让学生进行实际操作。
6. 总结:对本节课的内容进行总结,强调逻辑用语的重要性。
7. 作业布置:布置课后练习题,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对逻辑用语的理解程度。
2. 练习反馈:收集学生的练习成果,评估学生对逻辑用语的掌握情况。
3. 小组讨论观察:观察学生在小组讨论中的表现,了解学生的合作能力和逻辑思维能力。
七、教学拓展1. 逻辑游戏:设计一些逻辑游戏,让学生在游戏中运用逻辑用语,提高学生的逻辑思维能力。
2. 逻辑竞赛:组织学生参加逻辑竞赛,激发学生的学习兴趣,提高学生的逻辑思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点
(1)2的意义及推导; (2)相关系数r的意义。
§10.4 统计案例 基础知识 自主学习
要点梳理 1.回归分析 (1)定义:对具有 相关关系 的两个变量进行统计分析 的一种常用方法. (2)样本点的中心 对于一组具有线性相关关系的数据(x1, y1), (x2, y2), „, (xn,yn),其回归直线 y=bx+a 的斜率和截距的最小 二乘法估计分别为: ∑ xi- x yi- y ^ ^ i =1 b = ,a = y - b x . n 2 ∑ xi- x =
题型二
充分、必要、充要条件的概念与判断
例 2 指出下列命题中,p 是 q 的什么条件(在“充分不 必要条件”、“必要不充分条件”、“充要条件”、 “既不充分也不必要条件”中选出一种作答). (1)在△ABC 中,p:∠A=∠B,q:sin A=sin B; (2)对于实数 x、y,p:x+y≠8,q:x≠2 或 y≠6; (3)非空集合 A、B 中,p:x∈A∪B,q:x∈B; (4)已知 x、y∈R,p:(x-1)2+(y-2)2=0, q:(x-1)(y-2)=0.
思维启迪:(1)先根据已知计算相关系数 r,判断是否具有相关关系. (2)再利用公式求出回归方程进行回归分析.
2+3+4+5+6 解 (1) x = =4, 5 2.2+3.8+5.5+6.5+7.0 y= =5. 5 (2) ∑ xiyi-5 x y =112.3-5×4×5=12.3, =
2 2 2 ∑ x i -5 x =90-5×4 =10, = 2 2 ∑ y i -5 y =140.8-125=15.8, = i 1 i 1 5 5 i 1 5
解析 由观测值 k=27.63 与临界值比较, 我们 有 99.9%的把握说打鼾与患心脏病有关.
5.①若 r>0,则 x 增大时,y 也相应增大;②若 r<0, 则 x 增大时,y 也相应增大;③若 r=1 或 r=-1, 则 x 与 y 的关系完全对应(有函数关系),在散点图上 各个点均在一条直线上. 上面是关于相关系数 r 的几种说法, 在上面的说法中, ①③ . 所有正确的序号是________
[难点正本
疑点清源 ]
独立性检验是本节内容的重点.独立性检验的一般 步骤为:(1)根据样本数据制成 2×2 列联表;(2)根 据公式计算 K2 的值;(3)比较 K2 与临界值的大小关 系作统计推断. 值得注意的是,使用 K2 统计量作 2×2 列联表的独 立性检验时,要求表中的 4 个数据都要大于 5,所 以,在选取样本容量时一定要注意.
第一部分 常用逻辑 用语
知识网络
四种命题
命题及其关系
充分条件与必要条件
用常 语用 逻 辑
简单的逻辑联结词
或
并集
且
非 量词
交集
补集
运算
全称量词 存在量词
全称量词与存在量词
含有一个量词的否定
概念与规律总结
• (1)命题的结构 • 命题的定义:可以判断真假的语句叫做命题。 • “或”、“且”、“非”这些词叫做逻辑联 结词;不含有逻辑联结词的命题是简单命题; 由简单命题和逻辑联结词“或”、“且”、 “非”构成的命题是复合命题 • 构成复合命题的形式:p或q(记作p∨q);p且 q(记作p∧q);非p(记作┑q)
=
; 2 2 2 2 ∑ x i -n x ∑yi -n y = =
n n i 1 i 1
∑ xiyi-n x y =
i 1
②当 r>0 时,表明两个变量 正相关 ; 当 r<0 时,表明两个变量 负相关 . r 的绝对值越接近于 1,表明两个变量的线性相关性 越强 .r 的绝对值越接近于 0,表明两个变量之间几乎 不存在线性相关关系 .通常|r|大于 0.75 时,认为两个 变量有很强的线性相关性.
2.独立性检验 (1)分类变量:变量的不同“值”表示个体所 属的 不同类别 ,像这类变量称为分类变量. (2)列联表:列出两个分类变量的频数表,称 为列联表.假设有两个分类变量 X 和 Y,它们 的可能取值分别为{x1,x2}和{y1,y2},其样本 频数列联表(称为 2×2 列联表)为
2×2列联表
论;再写其他命题.,写其他命题时应该保留,
原命题的条件是 a>b,结论是 ac>bc.因此它的逆命题: 当 c>0 时,若 ac>bc,则 a>b.它是真命题; 否命题:当 c>0 时,若 a≤b,则 ac≤bc.它是真命题; 逆否命题:当 c>0 时,若 ac≤bc,则 a≤b.它是真命题.
思维启迪 首先分清条件和结论, 然后根据充要条件的
定义进行判断.
解
(1)在△ABC 中,∠A=∠B⇒sin A=sin B,反之,
若 sin A=sin B, 因为 A 与 B 不可能互补(因为三角形三 个内角和为 180° ),所以只有 A=B.故 p 是 q 的充要条 件. (2)易知,綈 p:x+y=8,綈 q:x=2 且 y=6,显然 綈 q⇒綈 p,但綈 p⇒綈 q,即綈 q 是綈 p 的充分不必要 条件,根据原命题和逆否命题的等价性知,p 是 q 的充 分不必要条件. (3) 显然 x∈A∪B 不一定有 x∈B ,但 x∈B 一定有 x∈A∪B,所以 p 是 q 的必要不充分条件. (4)条件 p:x=1 且 y=2,条件 q:x=1 或 y=2, 所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
^
5
a = y -b x =5-1.23×4=0.08, 所以线性回归方程为y =1.23x+0.08. ^ (4)当 x=10 时,y =1.23×10+0.08=12.38(万 元) , 即估计使用年限为 10 年时, 维修费用约为 12.38 万元.
y1 a c a+c y2 b d 总计 a+b c+d
x1 x2 总计
b+d a+b+c+d
2 n ad - bc 构造一个随机变量 K2= ,其中 a+bc+da+cb+d
n=a+b+c+d 为样本容量.
(3)独立性检验 2 K 利用随机变量 来判断“两个分类变量 有关系 ” 的方法称为独立性检验.
解析 1+2+3+4+5 x= =3, 5
1.2+1.8+2.5+3.2+3.8 y= =2.5. 5 ∴样本点中心为(3,2.5).回归直线过样本点中心.
4.在一项打鼾与患心脏病的调查中,共调查了 1 671 人,经过计算 K2 的观测值 k=27.63, 根据这一数据分析,我们有理由认为打鼾与 有关 的(有关,无关). 患心脏病是________
题型分类
题型一
深度剖析
含有逻辑联结词命题的真假判断
例 1 写出由下列各组命题构成的“p∨q”、“p∧q”、 “綈 p”形式的复合命题,并判断真假. (1)p:1 是质数;q:1 是方程 x2+2x-3=0 的根; (2)p:平行四边形的对角线相等;q:平行四边形的对 角线互相垂直; (3)p:5≤5;q:27 不是质数.
解析
若 r>0,表示两个相关变量正相关,x 增大时,y
也相应增大,故①正确;r<0,表示两个变量负相关, x 增大时,y 相应减小,故②错误; |r|越接近 1 ,表示 两个变量相关性越高,|r|=1 表示两个变量有确定的关 系(即函数关系),故③正确.
题型分类
深度剖析
题型一 线性回归分析 例 1 假设关于某种设备的使用年限 x(年)与所支出的维修 费用 y(万元)有如下统计资料: 2 3 4 5 6 x y 2.2 3.8 5.5 6.5 7.0
12.3 12.3 12.3 12.3 ∴r= = = ≈ ≈0.987. 158 2× 79 1.4×8.9 10×15.8 ∵r>0.75, 所以认为 x 与 y 之间具有线性相关关系,求线性回归方程是有 意义的.
∑ xiyi-5 x y 112.3-5×4×5 i=1 (3)b = 5 2 = =1.23, 2 2 90-5×4 ∑ x i -5 x =
解 (1)p 为假命题,q 为真命题.
p∨q:1 是质数或是方程 x2+2x-3=0 的根,真命题. p∧q: 1 既是质数又是方程 x2+2x-3=0 的根, 假命题. 綈 p:1 不是质数,真命题.
(2)p 为假命题,q 为假命题. p∨q:平行四边形的对角线相等或互相垂直,假命题. p∧q:平行四边形的对角线相等且互相垂直,假命题. 綈 p:有些平行四边形的对角线不相等,真命题. (3)p 为真命题,q 为真命题, ∴p∨q:5≤5 或 27 不是质数,真命题. p∧q:5≤5 且 27 不是质数,真命题. 綈 p:5>5,假命题.
概念与规律总结
• (4)“或”、“且”、“非”的真值判断 • “﹃p”形式复合命题的真假与P的真假相反; • “p∧q”形式复合命题当P与q同为真时为真, 其他情况时为假; • “p∨q”形式复合命题当p与q同为假时为假, 其他情况时为真.
概念与规律总结
• (5)全称量词与存在量词 • 全称量词:所有的,一切,全部,都,任意一个, 每一个等; • 存在量词:存在一个,至少有一个,有个,某个, 有的,有些等; • 全称命题P:M, p(x) 否定为 P: M, P(x) • 特称命题P:M, p(x) 否定为 P: M, P(x)
基础自测 1.相关系数度量( A ) A. 两个变量之间线性相关关系的强度 B.散点图是否显示有意义的模型 C.两个变量之间是否存在因果关系 D.两个变量之间是否存在关系
解析 相关系数来衡量两个变量之间线 性相关关系的强弱.
3.已知 x,y 之间的数据如表所示,则回归直线过点( C ) 1 2 3 4 5 x 1.2 1.8 2.5 3.2 3.8 y A.(0,0) B.(2,1.8) C.(3,2.5) D.(4,3.2)
第二部分