【人教A版 新高考】第2节 常用逻辑用语

合集下载

高中数学 复习课(一)常用逻辑用语讲义(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学教

高中数学 复习课(一)常用逻辑用语讲义(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学教

复习课(一) 常用逻辑用语命题及其关系通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.[考点精要]四种命题的相互改写交换原命题的条件和结论,所得的命题是原命题的逆命题;同时否定原命题的条件和结论,所得的命题是原命题的否命题;交换原命题的条件和结论,并且同时否定,所得的命题是原命题的逆否命题.[注意] 互为逆否命题的两个命题,它们具有相同的真假性.[典例] 将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.[解] (1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)[类题通法]简单命题真假的判断方法[题组训练]1.命题“若函数f (x )=x 2-ax +3在[1,+∞)上是增函数,则a ≤2”的否命题( ) A .与原命题同为假命题 B .与原命题一真一假 C .为假命题D .为真命题解析:选D 原命题显然为真,原命题的否命题为“若函数f (x )=x 2-ax +3在[1,+∞)上不是增函数,则a >2”,为真命题,故选D.2.下列命题中为真命题的是( ) A .命题“若a >b ,则3a >3b”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b”的逆否命题解析:选A 对于A ,逆命题是“若3a >3b,则a >b ”,是真命题;对于B ,否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;对于C ,否命题是“若x ≠1,则x 2-x ≠0”,是假命题,因为当x =0时,x 2-x =0;对于D ,逆否命题是“若1a ≥1b,则a ≤b ”,是假命题,如a =1,b =-1.故选A.3.下列说法中错误的个数是( )①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数” ②命题“若x >1,则x -1>0”的否命题是“若x ≤1,则x -1≤0” ③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x =-4是方程x 2+3x -4=0的根”的否命题是“x =-4不是方程x 2+3x -4=0的根”A .1B .2C .3D .4解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x 2+3x -4=0的根”.充分条件与必要条件充要条件是数学的重要概念之一,在数学中有着非常广泛的应用,在高考中有着较高的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.[考点精要]充分条件、必要条件与充要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[典例] (1)(2017·某某高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2017·某某高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. [答案] (1)C (2)A [类题通法]充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与綈B⇒綈A,B⇒A与綈A⇒綈B,A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[题组训练]1.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A 若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.2.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.3.对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B 当x=1.8,y=0.9时,满足|x-y|<1,但〈1.8〉=2,〈0.9〉=1,即〈x〉≠〈y〉;当〈x〉=〈y〉时,必有|x-y|<1,所以“|x-y|<1”是“〈x〉=〈y〉”的必要不充分条件,故选B.含有逻辑联结词、量词的命题的真假,以及全称命题,特称命题的否定.[考点精要]1.含有逻辑联结词的命题与集合之间的关系2.全称命题、特称命题的否定全称命题“∀x ∈M ,p (x )”的否定是“∃x 0∈M ,綈p (x 0)”,特称命题“∃x 0∈M ,p (x 0)”的否定是“∀x ∈M ,綈p (x )”.[典例] (1)已知命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 B .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 C .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0 D .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0(2)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,π;p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3;p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π.其中的真命题是( ) A .p 1,p 4 B .p 1,p 3 C .p 2,p 3D .p 2,p 4[解析] (1)已知全称命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)]·(x 2-x 1)≥0,则綈p :∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0,故选C.(2)由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立.[答案] (1)C (2)A [类题通法]1.判断含有逻辑联结词的命题真假的方法 (1)先确定简单命题p ,q .(2)分别确定简单命题p ,q 的真假. (3)利用真值表判断所给命题的真假. 2.判断含有量词的命题真假的方法(1)全称命题的真假判定:要判定一个全称命题为真,必须对限定集合M 中每一个x 验证 p (x )成立,一般用代数推理的方法加以证明;要判定一个全称命题为假,只需举出一个反例即可.(2)特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M 中,能找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题为假.(3)全称命题的否定一定是特称命题,特称命题的否定一定是全称命题.首先改变量词,把全称量词改为存在量词,把存在量词改为全称量词,然后把判断词加以否定.[题组训练]1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 由题意p 与q 均为假命题,故p ∧q 为假.2.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠03.已知p :点M (2,3)在直线ax -y +1=0上,q :方程x 2+y 2+x +y +a =0表示圆,p ∨q 是假命题,某某数a 的取值X 围.解:当p 是真命题时,2a -3+1=0,即a =1, 所以当p 是假命题时,a ≠1;当q 是真命题时,1+1-4a >0,即a <12,所以当q 是假命题时,a ≥12.又p ∨q 是假命题,所以p ,q 均为假命题, 所以a ≥12且a ≠1,所以实数a 的取值X 围是⎣⎢⎡⎭⎪⎫12,1∪(1,+∞).1.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ) A .綈p :∃x ∈A,2x ∈B B .綈p :∃x ∉A,2x ∈B C .綈p :∃x ∈A,2x ∉BD .綈p :∀x ∉A,2x ∉B解析:选C 命题p 是全称命题:∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.2.命题p :若ab =0,则a =0;命题q :若a =0,则ab =0,则( ) A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q 假D .p 假q 真解析:选D 由条件易知:命题p 为假命题,命题q 为真命题,故p 假q 真.从而“p 或q ”为真,“p 且q ”为假.3.下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1 D .a >1,b >1是ab >1的充分条件解析:选D ∵∀x ∈R ,e x >0,∴A 错;∵函数y =2x 与y =x 2的图象有交点,如点(2,2),此时2x=x 2,∴B 错;∵当a =b =0时,a +b =0,而0作分母无意义,∴C 错;a >1,b >1,由不等式可乘性知ab >1,∴D 正确.4.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 先证“α⊥β⇒a ⊥b ”.∵α⊥β,α∩β=m ,b ⊂β,b ⊥m ,∴b ⊥α.又∵a ⊂α,∴b ⊥a ;再证“a ⊥b ⇒/ α⊥β”.举反例,当a ∥m 时,由b ⊥m 知a ⊥b ,此时二面角α­m ­β可以为(0,π]上的任意角,即α不一定垂直于β.故选A.5.下列有关命题的说法错误的是( )A .命题“若x 2-1=0,则x =1”的逆否命题为“若x ≠1,则x 2-1≠0” B .“x =1”是“x 2-3x +2=0”的充分不必要条件 C .若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1D .对于命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0 解析:选C A 显然正确;当x =1时,x 2-3x +2=0成立,但x 2-3x +2=0时,x =1或x =2,故“x =1”是“x 2-3x +2=0”的充分不必要条件,B 正确;若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =0或k =1,故C 错误;D 显然正确.6.已知p :m -1<x <m +1,q :(x -2)(x -6)<0,且q 是p 的必要不充分条件,则m 的取值X 围是( )A .(3,5)B .[3,5]C .(-∞,3)∪(5,+∞)D .(-∞,3]∪[5,+∞)解析:选B p :m -1<x <m +1,q :2<x <6.因为q 是p 的必要不充分条件,所以由p 能得到q ,而由q 得不到p ,所以可得⎩⎪⎨⎪⎧m -1>2,m +1≤6或⎩⎪⎨⎪⎧m -1≥2,m +1<6.解得3≤m ≤5.7.命题“在△ABC 中,如果∠C =90°,那么c 2=a 2+b 2”的逆否命题是__________________________________.答案:在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°8.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件.解析:綈p :23≤x ≤2.綈q :-1≤x ≤2.因为綈p ⇒綈q ,但綈q ⇒/ 綈p . 所以綈p 是綈q 的充分不必要条件. 答案:充分不必要9.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值X 围是________.解析:命题p :“∀x ∈[1,2],x 2-a ≥0”为真,则a ≤x 2,x ∈[1,2]恒成立,所以a ≤1. 命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真, 则“4a 2-4(2-a )≥0,即a 2+a -2≥0”,解得a ≤-2或a ≥1. 若命题“p 且q ”是真命题,则实数a 的取值X 围是(-∞,-2]∪{1}. 答案:(-∞,-2]∪{1}10.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0,若p 是q 的充分不必要条件,求正实数a 的取值X 围.解:p :x 2-8x -20>0⇔x <-2或x >10, 令A ={x |x <-2或x >10},∵a >0,∴q :x <1-a 或x >1+a , 令B ={x |x <1-a 或x >1+a }, 由题意p ⇒q 且q ⇒/ p ,知A B ,应有⎩⎪⎨⎪⎧a >0,1+a <10,1-a ≥-2或⎩⎪⎨⎪⎧a >0,1+a ≤10,1-a >-2⇒0<a ≤3,∴a 的取值X 围为(0,3].11.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,x <-2,x +3-2≤x ≤12.(1)求函数f (x )的最小值;(2)已知m ∈R ,命题p :关于x 的不等式f (x )≥m 2+2m -2对任意m ∈R 恒成立;q :函数y =(m 2-1)x是增函数.若“p 或q ”为真,“p 且q ”为假,某某数m 的取值X 围.解:(1)作出函数f (x )的图象,可知函数f (x )在(-∞,-2)上单调递减,在⎝ ⎛⎭⎪⎫-2,12上单调递增,故f (x )min =f (-2)=1.(2)对于命题p ,m 2+2m -2≤1, 故-3≤m ≤1; 对于命题q ,m 2-1>1,故m >2或m <- 2.由于“p 或q ”为真,“p 且q ”为假,则p 与q 一真一假.①若p 真q 假,则⎩⎨⎧-3≤m ≤1,-2≤m ≤2,解得-2≤m ≤1.②若p 假q 真,则⎩⎨⎧m >1或m <-3,m <-2或m >2,解得m <-3或m > 2. 故实数m 的取值X 围是(-∞,-3)∪[-2,1]∪(2,+∞).。

人教高中数学必修一A版《充分条件与必要条件》集合与常用逻辑用语教学说课复习课件

人教高中数学必修一A版《充分条件与必要条件》集合与常用逻辑用语教学说课复习课件

课件 课件
课件 课件
课件
课件
1.记集合 A={x|p(x)},B={x|q(x)},若 p 是 q 的充分不必要条件,
则集合 A,B 的关系是什么?若 p 是 q 的必要不充分条件呢?
提示:若 p 是 q 的充分不必要条件,则 A B,若 p 是 q 的必要不充分 条件,则 B A.
栏目导航
2.记集合 M={x|p(x)},N={x|q(x)},若 M⊆N,则 p 是 q 的什么条 课件 课件 课件 课件 课件 课件 课件 课件
(2)若 p⇒q,但 q p,则称 p 是 q 的充分不必要条件.
(3)若 q⇒p,但 p q,则称 p 是 q 的必要不充分条件.
(4)若 p q,且 q p,则称 p 是 q 的既不充分也不必要条件.
栏目导航
思考 2:(1)若 p 是 q 的充要条件,则命题 p 和 q 是两个相互等价的命
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
充要条件的探求与证明
【例 3】 试证:一元二次方程 ax2+bx+c=0 有一正根和一负根的
充要条件是 ac<0.
[思路点拨] 从“充分性”和“必要性”两个方面来证明.
栏目导航
[证明] ①必要性:因为方程 ax2+bx+c=0 有一正根和一负根,所
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件

高中数学新人教A版选修2-1课件:模块复习课第1课时常用逻辑用语

高中数学新人教A版选修2-1课件:模块复习课第1课时常用逻辑用语
则1-m≥0,即m≤1;
命题q:“不等式x2-4x+1-m≤0无解”,
则Δ=16-4(1-m)<0,即m<-3.
如果命题p∨q为真,命题p∧q为假,则命题p,q一真一假,
若p真,q假,则-3≤m≤1,
若p假,q真,则不存在满足条件的m值,
∴-3≤m≤1.
∴实数m的取值范围是[-3,1].
课堂篇专题整合
④已知p,q为两个命题,若“p∨q”为假命题,则“( p)∧( q)”为真命
题.
其中所有真命题的序号是
.
思路分析对于②③要注意四种命题及其关系,对于④涉及含逻辑
联结词的命题,要根据真值表与逻辑联结词的含义判断.
课堂篇专题整合
专题归纳
高考体验
自主解答①∵x-3=0⇒x-3≤0,∴为真命题.
②逆命题:“若a⊥b,则a·b=0”为真命题.
的必要不充分条件.
答案B
课堂篇专题整合
专题归纳
高考体验
4.(2019 北京高考)设点 A,B,C 不共线,则“与的夹角为锐角”是
“| + |>||”的(
)
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析∵A,B,C 三点不共线,∴| + |>||⇔| + |>| −
当a>1时,由(x-1)(x-a)≤0得1≤x≤a,
若p是q的必要不充分条件,则a>3,
即实数a的取值范围是(3,+∞).
答案(3,+∞)
课堂篇专题整合
专题归纳
高考体验
专题三 全称命题与特称命题
例3 判断下列命题是特称命题还是全称命题,用符号写出其否定

2024新高考数学总复习(常用逻辑用语)

2024新高考数学总复习(常用逻辑用语)

考点二 全称量词与存在量词 1.全称量词和存在量词 全称量词(∀):所有的、任意一个等. 存在量词(∃):存在一个、至少有一个等. 2.全称量词命题和存在量词命题 全称量词命题:对M中任意一个x,p(x)成立,即∀x∈M,p(x). 存在量词命题:存在M中的元素x,p(x)成立,即∃x∈M,p(x). 3.全称量词命题和存在量词命题的否定
1 2
,
2,使得2x2-λx-1<0成立”
是假命题,则实数λ的取值范围为
.
解析
若“∃x∈
1 2
, 2,使得2x2-λx-1<0成立”是假命题,则“∀x∈
1 2
,
2,
使得2x2-λx-1≥0成立”是真命题,由于x∈
1 2
,
2
,所以λ≤
2
x2 x
1=2x-
1 x
在x

1 2
,
2
上恒成立,则λ≤
高考 数学
专题一 集合与常用逻辑用语
1.2 常用逻辑用语
基础篇
考点一 充分条件与必要条件 1.若p⇒q,则p是q的充分条件,q是p的必要条件. 2.若p⇒q,且q⇒/ p ,则p是q的充分不必要条件. 3.若p⇒/ q,且q⇒p,则p是q的必要不充分条件. 4.若p⇔q,则p是q的充要条件. 5.若p⇒/ q,且q⇒/ p,则p是q的既不充分也不必要条件.
8
题意,故选AC.
答案 (1)B (2)AC
名师点睛:判断充分、必要条件的两种方法 1.定义法:直接判断“若p,则q”“若q,则p”的真假.在判断时,确定条件 是什么、结论是什么. 2.集合法:利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围 推得大范围,即可解决充分、必要性的问题.

2023年新教材高中人教A版数学必修第一册知识点(8页)全文

2023年新教材高中人教A版数学必修第一册知识点(8页)全文

新教材高一数学必修第—册知识点第一章 集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母表示,元素三大性质:互异性,确定性,无 ,,,c b a 序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母表示. ,,,C B A 3集合相等:两个集合的元素一样,记作.B A ,B A =4元素与集合的关系:①属于:;②不属于:.A a ∈A a ∉5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.N +N N 或*Z Q R 6集合的表示方法:①列举法:把集合中的全部元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中全部具有共同特征的元素所组成的集合表示为的方法; )(x P x })(|{x P A x ∈③图示法(图):用平面上封闭曲线的内部代表集合的方法.Venn 7集合间的根本关系:子集:对于两个集合,如果集合中任意一个元素都是集合中的元素,就B A ,A B 称集合为集合的子集,记作,读作包含于;真子集:如果,但存在元素,且A A A B B A ⊆B x ∈A x ∉,就称集合是集合的真子集,记作,读作真包含于.A B A B A B 8空集:不含任何元素的集合,用表示,空集的性质,空集是任何集合的子集,是任何集合的真子∅集.9集合的根本运算:并集;交集; },|{B x A x x B A ∈∈=或 },|{B x A x x B A ∈∈=且 补集(为全集,全集是含有所研究问题中涉及的全部元素). },|{A x U x x A C U ∉∈=且U 运算性质:;;;;B A B B A ⊆⇔= B A A B A ⊆⇔= A A =∅ ∅=∅ A ,.∅==∅=U C U C A A C C U U U U ,,)()()()(),()()(B A C B C A C B A C B C A C U U U U U U ==10充分条件与必要条件:一般地,“假设p ,则q 〞为真命题,p 可以推出q ,记作,称p 是q 的q p ⇒充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:假设,则p 是q 的充分不必要q q p ,⇒p 条件;假设,则p 是q 的必要充分不条件;假设,则p 是q 的充要条件;p p q ,⇒q q p ⇔假设,,则p 是q 的既不充分也不必要条件. pq q p 11全称量词及全称量词命题:短语“全部的〞,“任意一个〞在逻辑中叫做全称量词,并用符号表∀示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个〞,“至少有一个〞在逻辑中叫做存在量词,并用符号∃表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否认:全称量词命题的否认是存在量词命题;存在量词命题的否认是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质: ①对称性;②传递性;③可加性a b b a >⇔<,a b b c a c >>⇒>;④可乘性,;a b a c b c >⇒+>+,0a b c ac bc >>⇒>,0a b c ac bc ><⇒<⑤同向可加性;⑥同向可乘性; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>⑦可乘方性;()0,1n n a b a b n n >>⇒>∈N >⑧可开方性.⑨可倒数性. )0,1a b n n >>⇒>∈N >ba b a 110<⇒>>2重要不等式:假设,则,当且仅当时等号成立.R b a ∈,ab b a 222≥+b a =3根本不等式:假设,,则,即,当且仅当时等号成立. 0a >0b >a b +≥2a b+≥b a =4不等式链:假设,,则,当且仅当时等号成立;一正0a >0b >ba ab b a b a 1122222+≥≥+≥+b a =二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最gao 次数是的不等式. 26第三章 函数的概念与性质1函数的概念:一般地,设是非空的实数集,如果对于集合中的任意一个数x ,按照某种确定的B A ,A 对应关系,在集合中都有唯—确定的数y 与它对应,那么就称为从集合到集合的一f B B A f →:A B 个函数,记作,其中,x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对A x x f y ∈=),(A 应的y 值叫做函数值,函数值的集合叫做函数的值域,值域是集合的子集. }|)({A x x f ∈B 2函数的三要素:定义域、对应关系、值域. 求函数定义域的原则:(1)假设为整式,则其定义域是;()f x R (2)假设为分式,则其定义域是使分母不为0的实数集合;()f x (3)假设是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合; ()f x (4)假设,则其定义域是; ()0f x x =}{0x x ≠(5)假设,则其定义域是;()()0,1x f x a a a =>≠R (6)假设,则其定义域是; ()()log 0,1a f x x a a =>≠}{0x x >(7)假设,则其定义域是;x x f tan )(=},2|{Z k k x x ∈+≠ππ求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数. 6函数的单调性:(1)单调递增:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x <函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x >函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数的定义域为,如果存在实数满足:,都有)(x f y =I M I x ∈∀;使得,那么称是函数的最大(小)值. ))(()(M x f M x f ≥≤I x ∈∃0M x f =)(0M10函数的奇偶性:偶函数:一般地,设函数的定义域为,如果,都有,且,那么函)(x f y =I I x ∈∀I x ∈-)()(x f x f =-数叫做偶函数;偶函数的图象关于y 轴对称;偶函数满足;)(x f y =|)(|)()(x f x f x f ==-奇函数:一般地,设函数的定义域为,如果,都有,且,那么)(x f y =I I x ∈∀I x ∈-)()(x f x f -=-函数叫做奇函数;奇函数的图象关于原点对称;假设奇函数的定义域中有零,则其函数图象必过原点,即)(x f y =.(0)0f =11幂函数:一般地,函数叫做幂函数,其中是自变量,是常数. αx y =x α12幂函数的性质:()f x x α=①全部的幂函数在都有定义,并且图象都通过点;()0,+∞()1,1②如果,则幂函数的图象过原点,并且在区间上是增函数;0α>[)0,+∞③如果,则幂函数的图象在区间上是减函数,在第—象限内,当从右边趋向于原点时,0α<()0,+∞x 图象在轴右方无限地逼近轴,当趋向于时,图象在轴上方无限地逼近轴; y y x +∞x x ④在直线的右侧,幂函数图象“指大图高〞; 1=x ⑤幂函数图象不出现于第四象限. 第四章 指数函数与对数函数1n 次方根与分数指数幂、指数幂运算性质(1)假设,则;; n x a =))n x n=⎪⎩为奇数为偶数()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3);(4);na =*0,,,1)m na a m n N n =>∈>且(5);*0,,1)m naa m n N n -=>∈>,且(6)的正分数指数幂为,的负分数指数幂没有意义.000(7);()0,,r s r sa a a a r s R +⋅=>∈(8);()()0,,r s rsa a a r s R =>∈(9).()()0,0,,rrrab a b a b r s R =⋅>>∈2对数、对数运算性质(1);(2); ()log 0,1xa a N x N a a =⇔=>≠()log 100,1a a a =>≠(3);(4);;()log 10,1a a a a =>≠()log 0,1a Na N a a =>≠(5);()log 0,1m a a m a a =>≠(6);()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >(7); ()log log log 0,1,0,0aa a MM N a a N=->≠M >N >(8);()log log 0,1,0n a a M n M a a =⋅>≠M >(9)换底公式; ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠(10); ()log log 0,1,,*m na a nb b a a n m N m =>≠∈(11);()1log log 0,1,0,aa M a a M n R n=>≠>∈(12). ()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠3指数函数及其性质:)1,0(≠>=a a a y x 且①定义域为; ②值域为;③过定点;(),-∞+∞()0,+∞()0,1④单调性:当时,函数在上是增函数;当时,函数在上是减函数; 1a >()f x R 01a <<()f x R ⑤在y 轴右侧,指数函数的图象“底大图高〞. 4对数函数及其性质:)1,0(log ≠>=a a x y a 且①定义域为;②值域为;③过定点;()0,+∞(),-∞+∞()1,0④单调性:当时,函数在上是增函数;当时,函数在上是减函1a >()f x ()0,+∞01a <<()f x ()0,+∞数;⑤在直线的右侧,对数函数的图象“底大图低〞.1=x 5指数函数与对数函数互为反函数,它们的图象关于直线对称. x a y =)1,0(log ≠>=a a x y a 且x y =6不同函数增长的差异:线性函数模型的增长特点是直线上升,其增长速度不变;指数)0(>+=k b kx y 函数模型的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸〞状)1(>=a a y x 态;对数函数模型的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长)1(log >=a x y a 速度平缓;幂函数模型的增长速度介于指数函数和对数函数之间.)0(>=n x y n 7函数的零点:在函数的定义域内,使得的实数叫做函数的零点.)(x f y =0)(=x f x 8零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,且有,()f x [],a b ()()0f a f b ⋅<那么函数在区间内至少有一个零点,即存在,使得,这个也就是方程()y f x =(),a b (),c a b ∈()0f c =c 的根.()0f x =9二分法:对于区间上图象连续不断且的函数,通过不断把它的零点所在],[b a ()()0f a f b ⋅<)(x f y =区间一分为二,使得区间的两个端点逐渐逼近零点,进而得到零点近似值的方法.10给定准确度,用二分法求函数零点近似值的步骤: ε)(x f y =0x ⑴确定零点的初始区间,验证; 0x [],a b ()()0f a f b ⋅<⑵求区间的中点;[],a b c ⑶计算,并进一步确定零点所在的区间; )(c f ①假设,则就是函数的零点;0)(=c f c ②假设(此时),则令; 0)()(<c f a f ),(0c a x ∈c b =③假设(此时),则令;0)()(<b f c f ),(0b c x ∈c a =⑷推断是否到达准确度:假设,则得到零点的近似值(或);否则重复上面的⑵至⑷. εa b ε-<a b 第五章 三角函数1任意角的分类:按终边的旋转方向分: ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第αx α几象限角.第—象限角的集合为;{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为;{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为; {}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z角的终边不在任何一个象限,就称这个角不属于任何一个象限 α终边在轴非负半轴的角的集合; x },2|{Z k k ∈=παα终边在轴非正半轴的角的集合; x },2|{Z k k ∈+=ππαα终边在轴非负半轴的角的集合;y },22|{Z k k ∈+=ππαα终边在轴非正半轴的角的集合;y },22|{Z k k ∈+-=ππαα终边在轴的角的集合;x },|{Z k k ∈=παα终边在轴的角的集合;y },2|{Z k k ∈+=ππαα终边在坐标轴的角的集合; },2|{Z k k ∈=παα2终边相同的角:与角终边相同的角的集合为.α{}360,k k ββα=⋅+∈Z 3弧度制:长度等于半径长的弧所对的圆心角叫做弧度.14角度与弧度互化公式:,,.2360π=1180π=180157.3π⎛⎫=≈ ⎪⎝⎭5扇形公式:半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.假设扇形r αl αlrα=的圆心角为,半径为,弧长为,周长为,面积为,则,,()αα为弧度制r l C S l r α=2C r l =+.21122S lr r α==6三角函数的概念:设是一个任意大小的角,的终边上任意一点P 的坐标是,它与原点的距αα(),x y离是,则,,. ()0r r =>sin y r α=cos x r α=()tan 0yx xα=≠7三角函数的符号:一全正二正弦三正切四余弦. 8记忆特别角的三角函数值:α 15 30 45 60 75 90 120 135 150180 270 360 α 12π 6π 4π 3π 125π 2π 32π 43π 65π π 23ππ2 αsin 426- 21 22 23 426+ 1 23 22 210 1-0 αcos 426+ 23 22 21 426-0 21- 22- 23-1-01 αtan 32- 1 3 32+不存在 3- 1- 33-0 不存在9同角三角函数的根本关系:,;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫==⎪⎝⎭10诱导公式口诀:奇变偶不变,符号看象限.,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,. ()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,. ()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-,.,. ()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭11三角函数的图象与性质:sin y x = cos y x =tan y x =图象定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R 函数性质12两角和差的正弦、余弦、正切公式:(1);(2); ()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-(3);(4);()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+(5);()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+(6). ()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-13二倍角公式:(1);(2);sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-(,);(3);2cos 21cos 2αα+=21cos 2sin 2αα-=22tan tan 21tan ααα=-14半角公式:(1);(2);(3);(4)2cos 12sin αα-±=2cos 12cos αα+±=αααcos 1cos 12tan +-±=αααααcos 1sin sin cos 12tan +=-=15辅助角公式:.的终边上在角点其中ϕϕϕ),(,tan ),sin(cos sin 22b a abx b a x b x a =±+=±16函数的图象与性质:b x A y ++=)sin(ϕω图象变换:先平移后伸缩:函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x =ϕ的图象;再将函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐()sin y x ϕ=+()sin y x ϕ=+1ω标不变),得到函数的图象;再将函数的图象上全部点的纵坐标伸长(缩()sin y x ωϕ=+()sin y x ωϕ=+短)到原来的倍(横坐标不变),得到函数的图象. A ()sin y x ωϕ=A +先伸缩后平移:函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函sin y x =1ω最值当时,22x k ππ=+()k ∈Z ;当max1y =22x k ππ=-时,.()k ∈Z min 1y =-当时,()2x k k π=∈Z ;当max 1y =2x k ππ=+时,.()k ∈Z min 1y =-既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数奇函数单调性在 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在()k ∈Z 32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.()k ∈Z 在上是[]()2,2k k k πππ-∈Z 增函数;在[]2,2k k πππ+上是减函数.()k ∈Z 在,22k k ππππ⎛⎫-+ ⎪⎝⎭上是增函数.()k ∈Z 对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心 (),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z 对称中心 (),02k k π⎛⎫∈Z⎪⎝⎭无对称轴数的图象;再将函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x ω=sin y x ω=ϕω的图象;再将函数的图象上全部点的纵坐标伸长(缩短)到原来的倍(横()sin y x ωϕ=+()sin y x ωϕ=+A 坐标不变),得到函数的图象. ()sin y x ωϕ=A +五点法画图函数的性质:()()sin 0,0y x ωϕω=A +A >>①定义域为R ;②值域为;③单调性:依据函数的单调区间求函数的单调区间; ],[A A -x y sin =④奇偶性:当时,函数是奇函数;当时,函数Z k k ∈=,πϕ()sin y x ωϕ=A +Z k k ∈+=,2ππϕ是偶函数;⑤周期:;⑥对称性:依据函数的对称性研究函数的对称()sin y x ωϕ=A +ωπ2=T x y sin =性12π17函数的应用B x A y ++=)sin(ϕω①振幅:A ;②周期:;③频率:;④相位:;⑤初相:.2πωT =12f ωπ==T x ωϕ+ϕ⑥最值:函数,当时,取得最小值为 ;当时,取得最大值为B x A y ++=)sin(ϕω1x x =min y 2x x =maxy ,则,,.()max min 12y y A =-()max min 12y y B =+()21122x x x x T=-<。

人教A版数学理安徽 集合与常用逻辑用语

人教A版数学理安徽       集合与常用逻辑用语

5.常用主要性质
25 26 () A∩B=□________⇔A⊆B⇔A∪B=□________. 1 27 () ∁U(A∩B)=□____________________; 2 28 ∁U(A∪B)=□____________________.
考源教学资源网 www.
第12页
高考进行时 一轮总复习 新课标A版数学(理)·安徽
第一章
集合与常用逻辑用语
考源教学资源网 www.
第1页
返回导航
第一章 集合与常用逻辑用语
高考进行时 一轮总复习 新课标A版数学(理)·安徽
[考纲研读
明确考向]
考源教学资源网 www.
第2页
返回导航
答案:B
考源教学资源网 www.
第19页
返回导航
第一章 · 第一节
高考进行时 一轮总复习 新课标A版数学(理)·安徽
4.已知 A、B 均 集 为合
U={1,3,5,7,9}的子集,且 A∩B ) B.{3,7,9} D.{3,9}
={3},(∁UB)∩A={9},则 A=( A.{3 1} , C.{3,5,9}
M={0,1,2,3,4},N={1,3,5},P=M∩N,则 ) B.4 个 D.8 个
考源教学资源网 www.
第18页
返回导航
第一章 · 第一节
高考进行时 一轮总复习 新课标A版数学(理)·安徽
解析:由题意得 P=M∩N={1,3}, ∴P 的子集为∅,{1},{3},{1,3},共 4 个,故选 B.
第15页
返回导航
第一章 · 第一节
高考进行时 一轮总复习 新课标A版数学(理)·安徽
2.已知全集 U=R,那么正确表示集合 M={-1,0,1}和 N={x|x2+x=0}关系的韦恩(Venn)图是( )

2022版高考数学总复习第一章集合与常用逻辑用语不等式第二节命题及其关系充分条件与必要条件练习含解析

2022版高考数学总复习第一章集合与常用逻辑用语不等式第二节命题及其关系充分条件与必要条件练习含解析

高考数学总复习:第二节命题及其关系、充分条件与必要条件学习要求:1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题间的相互关系.3.理解必要条件、充分条件与充要条件的意义.1.命题的概念在数学中用语言、符号或式子表达的,可以①判断真假的陈述句叫做命题,其中②判断为真的语句叫做真命题,③判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系:(2)四种命题的真假关系:(i)两个命题互为逆否命题,它们有⑦相同的真假性;(ii)两个命题互为逆命题或互为否命题,它们的真假性⑧没有关系.▶提醒在判断命题之间的关系时,要先分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性.3.充分条件与必要条件(1)若p⇒q,则p是q的⑨充分条件,q是p的⑩必要条件.(2)若p⇒q,且q⇒/p,则p是q的充分不必要条件.(3)若p⇒/q,且q⇒p,则p是q的必要不充分条件.(4)若p⇔q,则p是q的充要条件.(5)若p⇒/q,且q⇒/p,则p是q的既不充分也不必要条件.▶提醒不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”.知识拓展从集合的角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A⫋B,则p是q的充分不必要条件;(5)若A⫌B,则p是q的必要不充分条件;(6)若A⊈B且A⊉B,则p是q的既不充分也不必要条件.1.判断正误(正确的打“√”,错误的打“✕”).(1)“x2-3x+2=0”是命题.()(2)一个命题的逆命题与否命题,它们的真假没有关系. ()(3)命题“若p不成立,则q不成立”等价于“若q成立,则p成立”.()(4)若p是q成立的充分条件,则q是p成立的必要条件.()(5)命题“若p,则q”的否命题是“若p,则¬q”.()(6)一个命题非真即假.()答案(1)✕(2)✕(3)√(4)√(5)✕(6)√2.“若x>1,则x>0”的否命题是()A.若x>1,则x≥0B.若x≤1,则x>0C.若x≤1,则x≤0D.若x<1,则x<0答案 C3.当命题“若p,则q”为真时,下列命题中一定为真的是()A.若q,则pB.若¬p,则¬qC.若¬q,则¬pD.若p,则¬q答案 C4.(新教材人教A版必修第一册P34复习参考题1T5改编)已知a>0,b>0,则“ab>1”是“a+b>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A已知a>0,b>0,充分性:若ab>1,因为a2+b2≥2ab,所以(a+b)2≥4ab,所以(a+b)2>4,所以a+b>2;必要性:时,ab=1,所以必要性不成立.若a+b>2,则当a=3,b=13因此“ab>1”是“a+b>2”的充分不必要条件.5.(易错题)“ln x<0”是“x<1”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案B因为ln x<0,所以0<x<1,又集合(0,1)为集合(-∞,1)的真子集,所以“ln x<0”为“x<1”的充分不必要条件.故选B.易错分析本题容易忽视x的取值范围.命题及其相互关系典例1 (多选题)下列命题为真命题的是( )A.“若xy=1,则lg x+lg y=0”的逆命题;B.“若a·b=a·c,则a⊥(b-c)”的逆否命题;C.“若b≤0,则方程x2-2bx+b2+b=0有实根”的否命题;D.“等边三角形的三个内角均为60°”的逆命题.答案ACD名师点评1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,则写其他三种命题时需保留大前提.2.(1)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.1.[2021年1月“八省(市)联考”]关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根; 乙:x=3是该方程的根;丙:该方程两根之和为2; 丁:该方程两根异号.如果只有一个假命题,则该命题是()A.甲B.乙C.丙D.丁答案A若甲是假命题,则乙、丙、丁是真命题,则x1=3,x2=-1,符合.若乙是假命题,则甲、丙、丁是真命题,则x1=1,x2=1,两根不异号,不符合.若丙是假命题,则甲、乙、丁是真命题,x1=1,x2=3,两根不异号,不符合.若丁是假命题,则甲、乙、丙是真命题,则x1=1,x2=3,两根和不为2,不符合.综上可知,选A.2.(多选题)下列命题为真命题的是()A.“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;B.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;C.命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;D.命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.答案BD充分条件、必要条件的判断1.(2020四川达州高三第三次诊断性测试)已知条件p:a>b,条件q:a2>b2,则p是q的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案D当a=1,b=-2时,a2<b2,故充分性不成立;当a2>b2时,a2-b2>0,即(a-b)(a+b)>0,所以a>b且a+b>0或a<b且a+b<0,故必要性不成立.故选D.2.(2020北京,9,4分)已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ”是“sinα=sinβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C(1)充分性:已知存在k∈Z使得α=kπ+(-1)kβ,(i)若k为奇数,则k=2n+1,n∈Z,此时α=(2n+1)π-β,n∈Z,sinα=sin(2nπ+π-β)=sin(π-β)=sinβ;(ii)若k为偶数,则k=2n,n∈Z,此时α=2nπ+β,n∈Z,sinα=sin(2nπ+β)=sinβ.由(i)(ii)知,充分性成立.(2)必要性:若sinα=sinβ成立,则角α与β的终边重合或角α与β的终边关于y轴对称,即α=β+2mπ或α+β=2mπ+π,m∈Z,即存在k∈Z使得α=kπ+(-1)kβ,必要性也成立,故选C.≥a成立”的()3.(2020山东潍坊高三模拟)“a=2”是“∀x>0,x+1xA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≥2,答案A∵∀x>0时,x+1x≥a”等价于a≤2,∴“∀x>0,x+1x而a=2可以推出a≤2,但a≤2不能推出a=2,≥a成立”的充分不必要条件,故选A.∴“a=2”是“∀x>0,x+1x4.集合A={x|x>1},B={x|x<2},则“x∈A或x∈B”是“x∈(A∩B)”的条件.答案必要不充分名师点评充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据p,q成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,判断原命题的逆否命题的真假.这个方法特别适合以否定形式给出的问题.充分、必要条件的应用典例2(1)设α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,若α是β的充分条件,则m的取值范围是.(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是 .答案 (1)[-12,0] (2)[0,12]解析 (1)若α是β的充分条件,则α对应的集合是β对应集合的子集,则{x +1≤1,2x +4≥3,解得-12≤m ≤0.(2)由2x 2-3x +1≤0,得12≤x ≤1,设条件p 对应的集合为P ,则P ={x |12≤x ≤1}.由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,设条件q 对应的集合为Q ,则Q ={x |a ≤x ≤a +1}. ∵¬p 是¬q 的必要不充分条件,∴q 是p 的必要不充分条件, ∴P ⫋Q ,∴0≤a ≤12,∴实数a 的取值范围是[0,12].名师点评1.解题“2关键”:(1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.2.解题“1注意”:求参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求参数的取值范围时,不等式能否取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.1.(2020陕西山阳中学高三月考)已知集合A ={x |2xx -2<1},集合B ={x |x 2-(2m +1)x +m 2+m <0},p :x ∈A ,q :x ∈B ,若p 是q 的必要不充分条件,则实数m 的取值范围是 . 答案 [-2,1] 解析 集合A ={x |2xx -2<1}={x |x +2x -2<0}={x |-2<x <2},集合B ={x |x 2-(2m +1)x +m 2+m <0} ={x |m <x <m +1},因为p 是q 的必要不充分条件, 所以B ⫋A ,得{x ≥-2,x +1≤2,解得-2≤m ≤1,所以m 的取值范围为[-2,1].2.(2020河南高三月考)已知p :|x -1|≤2,q :x 2-2x +1-a 2≥0(a >0),若p 是¬q 的必要不充分条件,则实数a 的取值范围是 . 答案 (0,2]解析 ∵|x -1|≤2,∴-1≤x ≤3,即p :-1≤x ≤3; ∵x 2-2x +1-a 2≥0(a >0),∴x ≤1-a 或x ≥1+a , ∴¬q :1-a <x <1+a ,∵p 是¬q 的必要不充分条件,∴{x >0,1-x ≥-1,1+x ≤3,解得0<a ≤2, ∴实数a 的取值范围是(0,2].A 组 基础达标1.命题“若x ≥a 2+b 2,则x ≥2ab ”的逆命题是 ( ) A.若x <a 2+b 2,则x <2ab B.若x ≥a 2+b 2,则x <2ab C.若x <2ab ,则x <a 2+b 2D.若x ≥2ab ,则x ≥a 2+b 2答案 D2.(2020河北邯郸鸡泽第一中学高三月考)下列命题是真命题的为 ( )A.若1x =1x ,则x =y B.若x 2=1,则x =1C.若x=y,则√x=√xD.若x<y,则x2<y2答案 A3.(2020浙江高三开学考)“x=1”是“lg2x-lg x=0”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A因为lg2x-lg x=0,所以lg x=0或lg x=1,解得x=1或x=10,所以由“x=1”可以推出“lg2x-lg x=0”成立;但由“lg2x-lg x=0”不能推出“x=1”,所以“x=1”是“lg2x-lg x=0”成立的充分不必要条件.故选A.4.(2019河北承德第一中学高三月考)命题“若两个整数a,b都是奇数,则它们的和a+b是偶数”的逆否命题是()A.若两个整数a与b的和a+b是偶数,则a,b都是奇数B.若两个整数a,b不都是奇数,则a+b不是偶数C.若两个整数a与b的和a+b不是偶数,则a,b都不是奇数D.若两个整数a与b的和a+b不是偶数,则a,b不都是奇数答案 D5.(多选题)下列命题中是真命题的是()A.∀x∈R,2x-1>0B.∀x∈N+,(x-1)2>0C.∃x∈R,lg x<1D.∃x∈R,tan x=2答案ACD6.(2020浙江高三模拟)已知a,b为正实数,则“a+1x >b+2x”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A 若0<a ≤b ,则1x ≥1x ,所以2x ≥1x ,所以a +1x ≤b +2x , 所以由a +1x >b +2x能够推出a >b.当a =19,b =110时,满足a >b ,但此时a +1x <b +2x , 所以a >b 推不出a +1x>b +2x ,综上,“a +1x>b +2x”是“a >b ”的充分不必要条件.故选A .7.(多选题)已知a ,b ,c 是实数,则下列结论正确的是 ( ) A.“a 2>b 2”是“a >b ”的充分条件 B.“a 2>b 2”是“a >b ”的必要条件 C.“ac 2>bc 2”是“a >b ”的充分条件D.“|a |>|b |”是“a >b ”的既不充分也不必要条件 答案 CD8.(多选题)下列命题错误的是 ( ) A.∃x ∈R,e x≤0 B.∀x ∈R,2x >x 2C.a +b =0的充要条件是xx =-1D.若x ,y ∈R,且x +y >2,则x ,y 中至少有一个大于1答案 ABC 根据指数函数的性质可得e x >0,故A 错误;当x =2时,2x >x 2不成立,故B 错误;当a =b =0时,xx 没有意义,故C 错误;因为“若x ,y ∈R,且x +y >2,则x ,y 中至少有一个大于1”的逆否命题为“若x ,y ∈R,且x ,y 都小于等于1,则x +y ≤2”,是真命题,所以原命题为真命题,故选ABC.B 组 能力拔高 9.圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是 ( )A.k ≤-2√2或k ≥2√2B.k ≤-2√2C.k ≥2D.k ≤-2√2或k >2答案 B 若直线与圆有公共点,则圆心(0,0)到直线kx -y -3=0的距离d =√≤1,即√x 2+1≥3,∴k 2+1≥9,即k 2≥8,∴k ≥2√2或k ≤-2√2,∴由选项知圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是k ≤-2√2,故选B .10.已知条件p :|x -4|≤6;条件q :(x -1)2-m 2≤0(m >0),若p 是q 的充分不必要条件,则m 的取值范围是 ( )A.[21,+∞)B.[9,+∞)C.[19,+∞)D.(0,+∞)答案 B 由题意知,条件p :-2≤x ≤10,条件q :1-m ≤x ≤m +1,又p 是q 的充分不必要条件,故有{1-x ≤-2,1+x ≥10,x >0,解得m ≥9.11.(2020江苏扬州中学高三月考)“a >b ”是“3a >3b ”的 条件(填“充分不必要”“必要不充分”“既不充分也不必要”或“充要”).答案 充要解析 因为y =3x 在R 上是增函数,所以当a >b 时,3a >3b ,故充分性成立;当3a >3b 时,a >b ,故必要性成立.故“a >b ”是“3a >3b”的充要条件.12.(2020黑龙江鹤岗一中期末)下列命题中为真命题的是 .(填序号)①命题“若x >y ,则x >|y |”的逆命题;②命题“若x >1,则x 2>1”的否命题;③命题“若x =1,则x 2+x -2=0”的否命题;④“若x 2<4,则-2<x <2”的逆否命题.答案 ①④解析 对于①,命题的逆命题为“若x >|y |,则x >y ”,为真命题,对于②,命题的否命题为“若x ≤1,则x 2≤1”,为假命题,对于③,命题的否命题为“若x ≠1,则x 2+x -2≠0”,为假命题,对于④,命题“若x2<4,则-2<x<2”为真命题,故其逆否命题为真命题,综上,①④为真命题.C组思维拓展13.(2020河南高三模拟)若关于x的不等式(x-a)(x-3)<0成立的充要条件是2<x<3,则a=.答案 2解析因为2<x<3是不等式(x-a)(x-3)<0成立的充分条件,所以a≤2,因为2<x<3是不等式(x-a)(x-3)<0成立的必要条件,所以2≤a<3,故a=2.14.设集合A={x|x(x-1)<0},B={x|0<x<3},那么“m∈A”是“m∈B”的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案充分不必要解析由m∈B不能推出m∈A,如x=2,故必要性不成立.由x∈A能推出x∈B,所以“m∈A”是“m∈B”的充分不必要条件.15.在熟语“水滴石穿”中,“石穿”是“水滴”的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案必要不充分解析“水滴”可以推出“石穿”,但“石穿”推不出“水滴”,有可能是“化学腐蚀”,故“石穿”是“水滴”的必要不充分条件.。

高中数学(新人教A版)必修第一册:第1章章末 集合与常用逻辑用语【精品课件】

高中数学(新人教A版)必修第一册:第1章章末 集合与常用逻辑用语【精品课件】

达标检测
1.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有
A.2个
√B.4个
C.6个
D.8个
2.命题p:“对任意一个实数x,均有x2≥0”,则 命题 的否定p为( C ) (A)存在x0∈R,使得x02 ≤0 (B)对任意x∈R,均有x2≤0 (C)存在x0∈R,使得 x02 <0 (D)对任意x∈R,均有x2<0
解题技巧: 1.若已知集合是用描述法给出的,则读懂集合的代表元 素及其属性是解题的关键. 2.若已知集合是用列举法给出的,则整体把握元素的共 同特征是解题的关键. 3.对集合中的元素要进行验证,保证集合内的元素不重 复.
【跟踪训练1】 设集合A={x∈Z|0<x<4},B={x|(x4)(x-5)=0},M={x|x=a+b,a∈A,b∈B},则集合M中元素 的个数为( )
解:CU B x x 1或x>2 可画数轴如下:
1
12
1
数形结合的思想 x 1 1 2数轴法 x
A B=x 1 x 2 A B=x x>-1
A (CU B) x x 2 A (CU B) x x 1或x 1
点评 (I),画数轴上方的线时,同一集合画同一高度,
不同的集合画不同的高度。
3 2

a≥32
解题技巧:
1.若所给集合是有限集,则首先把集合中的元素一一列举 出来,然后结合交集、并集、补集的定义来求解.另外,针对 此类问题,在解答过程中也常常借助Venn图来求解.这样处 理起来比较直观、形象,且解答时不易出错.
分析: 画出韦恩图,形 象地表示出各数 量关系的联系
方法归纳:解决这一类问题一般借用数形结合,借 助于Venn 图,把抽象的数学语言与直观 的图形结合起来
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2节常用逻辑用语
考试要求 1.通过对典型数学命题的梳理,理解必要条件的意义,理解性质定理与必要条件的关系;理解充分条件的意义,理解判定定理与充分条件的关系;理
解充要条件的意义,理解数学定义与充要条件的关系;2.通过已知的数学实例,理解全称量词与存在量词的意义;3.能正确使用存在量词对全称命题进行否定;能正确使用全称量词对特称命题进行否定.
知识梳理
1.充分条件、必要条件与充要条件的概念
若p⇒q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件p⇒q且q⇒p
p是q的必要不充分条件p⇒q且q⇒p
p是q的充要条件p⇔q
p是q的既不充分也不必要条件p⇒q且q⇒p
2.
1
(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.
(2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.
3.全称命题和特称命题(命题p的否定记为綈p,读作“非p”)
名称全称命题特称命题
结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立
简记∀x∈M,p(x)∃x0∈M,p(x0)
否定∃x0∈M,綈p(x0)∀x∈M,綈p(x)
[常用结论与微点提醒]
1.区别A是B的充分不必要条件(A⇒B且B⇒A),与A的充分不必要条件是B(B⇒A且A⇒B)两者的不同.
2.A是B的充分不必要条件⇔綈B是綈A的充分不必要条件.
3.含有一个量词的命题的否定规律是“改量词,否结论”.
诊断自测
2
1.判断下列结论正误(在括号内打“√”或“×”)
(1)若已知p:x>1和q:x≥1,则p是q的充分不必要条件.( )
(2)“长方形的对角线相等”是特称命题.( )
(3)当q是p的必要条件时,p是q的充分条件.( )
(4)若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.( )
解析(2)错误.命题“长方形的对角线相等”是全称命题.
答案(1)√(2)
×(3)√(4)√
2.(新教材必修第一册P34复习参考题T5改编)设a,b∈R且ab≠0,则ab>1
是a>1
b的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析若“ab>1”,当a=-2,b=-1时,不能得到“a>1 b”,
若“a>1
b”,例如当
a=1,b=-1时,不能得到“ab>1”,
3
故“ab>1”是“a>1
b”的既不充分也不必要条件.
答案 D
3.(新教材必修第一册P29习题1.5T3(3)改编)命题“表面积相等的三棱锥体积也相等”的否定是________________________.
答案有些表面积相等的三棱锥体积不相等
4
5
4.(2020·成都诊断)已知命题p :∃x 0∈R ,x 20+4x 0+6<0,则綈p 为( )
A.∀x ∈R ,x 2+4x +6≥0
B.∃x ∈R ,x 2+4x +6>0
C.∀x ∈R ,x 2+4x +6>0
D.∃x ∈R ,x 2+4x +6≥0
解析 依据特称命题的否定是全称命题,由此知答案A 是正确的.
答案 A
5.(2020·青岛二中检测)直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点的充要条件是________.
解析 直线x -y -k =0
与圆(x -1)2+y 2=2有两个不同交点等价于|1-0-k |2
<2,解得-1<k <3. 答案 -1<k <3
6.(2019·郑州模拟)已知p :x >a 是q :2<x <3的必要不充分条件,则实数a 的取值范围是________.
解析 由已知,可得{x |2<x <3}{x |x >a },∴a ≤2.
答案 (-∞,2]。

相关文档
最新文档