《数学建模》作业1

合集下载

数学建模_大作业1

数学建模_大作业1

数学建模大作业姓名1:赵成宏学号:201003728姓名2:吴怡功学号:201003738姓名3:蒲宁宁学号:201004133专业:车辆工程2013年5 月28 日直升机运输公司问题一家运输公司正考虑用直升机从某城市的一摩天大楼运送人员。

你被聘为顾问,现在要确定需要多少架飞机。

按照建模过程仔细分析,建模。

为了简化问题,可以考虑升机运输公司问题。

基本假设如下:假设运载的直升机为统一型号; 假设每架飞机每次载人数相同;假设飞机运送的人员时互不影响;假定人员上了飞机就安全,因此最后一次运输时,只考虑上飞机所花时间。

1、按照数学建模的全过程对本题建立模型,并选用合理的数据进行计算(模型求解); 2、本问题是否可以抽象为优化模型;除了考虑建立优化模型之外,是否可以采用更简单的方法建立模型。

注意考虑假设条件。

甚至基于不同的假设建立多个模型。

归纳起来,有以下假设:(H1)所有飞机的飞行高度度均为10 000m ,飞行速度均为800km/h 。

(H2)飞机飞行方向角调整幅度不超过6,调整可以立即实现;(H3)飞机不碰撞的标准是任意两架飞机之间的距离大于8km; (H4)刚到达边界的飞机与其他飞机的距离均大于60km; (H5)最多考虑N 架飞机;(H6)不必考虑飞机离开本区域以后的状况. 为方便以后的讨论,我们引进如下记号: D 为飞行管理区域的边长;S 为飞行管理区域取直角坐标系使其为[0,D ]×[0,D]; v 为飞机飞行速度,v=800km/h;(x 0i ,y i)第i 架飞机的初始位置;()(),(t t y x ii )为第i 架飞机在t 时刻的位置;θ0i为第i 架飞机的原飞行方向角,即飞行方向与x 轴夹角,0≤θ≤2π;θi ∆第i 架飞机的方向角调整,-6π≤i θ∆≤6π; i θ﹦i 0i θθ∆+为第i 架飞机调整后的飞行方向角;一、两架飞机不碰撞的条件1、两架飞机距离大于8km 的条件设第i 架和第j 架飞机的初始位置为(0i 0i y x ,),(0j 0j y x ,),飞行方向角分别为错误!未找到引用源。

数学建模作业-1

数学建模作业-1

数学建模作业一学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生们要组织一个10人的委员会,试用下列方法分配各宿舍的委员数:(1) 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大的。

(2) Q 值方法:m 方席位分配方案:设第i 方人数为i p ,已经占有i n 个席位,i=1,2,…,m .当总席位增加1席时,计算2(1)i i i i p Q n n =+,i=1,2,…,m 把这一席分给Q 值大的一方。

(3) d ’Hondt 方法:将A ,B ,C 各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

(试解释其道理。

)(4) 试提出其他的方法。

数学建模作业二假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+∆t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。

数学建模作业三一容器内盛入盐水100L ,含盐50g .然后将含有2g/L 的盐水流如容器内,流量为3L/min.设流入盐水与原盐水搅拌而成均匀的混合物。

同时,此混合物又以2L/min 的流量流出,试求在30min 时,容器内所含的盐量。

若以同样流量放进的是淡水,则30min 时,容器内还剩下多少盐? 要求写出分析过程。

数学建模作业四商业集团公司在123,,A A A 三地设有仓库,它们分别库存40,20,40个单位质量的货物,而其零售商店分布在地区,1,,5i B i = ,它们需要的货物量分别是25,10,20,30,15个单位质量。

产品从i A 到jB 的每单位质量装运费列于下表:数学建模作业五设有9个节点,他们的坐标分别为:a (0,15),b (5,20),c (16,24),d (20,20),e (33,25),f (23,11),g (35,7),h (25,0),i (10,3)。

数学建模作业1 长方形椅子能在不平的地面上放稳吗?

数学建模作业1 长方形椅子能在不平的地面上放稳吗?

注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。

把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置。

为此,在平面上建立直角坐标系来解决问题。

如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系。

椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置。

其次,把椅脚是否着地用数学形式表示出来。

我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。

由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。

由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数。

而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。

因此,只需引入两个距离函数即可。

考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。

数学模型:已知f(θ)和g(θ)是θ的非负连续函数,对任意θ,f(θ)•g(θ)=0,证明:存在θ0∈[0,π],使得f(θ0)=g(θ0)=0成立。

五、模型求解(显示模型的求解方法、步骤及运算程序、结果)如果f(0)=g(0)=0,那么结论成立。

如果f(0)与g(0)不同时为零,不妨设f(0)>0,g(0)=0。

此时,将长方形ABCD。

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

数学建模作业(1)

数学建模作业(1)

数学建模作业(1)
数模
数模
1.学校共学校共1000名学生,235人住在宿名学生,人住在A宿名学生人住在人住B宿舍人住在C宿舍舍,333人住宿舍,432人住在宿舍人住宿舍,人住在宿舍.学生们要组织一个10人的委员会人的委员会,学生们要组织一个人的委员会,试用下列办法分配各宿舍的委员数:列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名按比例分配取整数的名额后,按比例分配取整数的名额后额按惯例分给小数部分较大者。

额按惯例分给小数部分较大者。

(2)用Q值方法。

值方法。

用值方法
数模
如果委员会从10人增至人如果委员会从人增至15人,用以上人增至2种方法再分配名额。

将2种方法两次分配种方法再分配名额。

种方法再分配名额种方法两次分配的结果列表比较。

的结果列表比较。

(3)你能提出其它的方法吗?用你的方你能提出其它的方法吗?你能提出其它的方法吗法分配上面的名额。

法分配上面的名额。

数模
2.考察模拟水下爆炸的比例模型.爆炸物质量m,在距爆炸点距离r处设置仪器,接收到的冲击波压强为p,记大气初始压强p0,水的密度ρ,水的体积弹性模量k,用量纲分析法已经得到
p0ρrp=p0(,)km3
数模
设模拟实验与现场的p0,ρ,k相同,而爆炸物模型的质量为原模型的1/1000.为了使实验中接收到与现场相同的压强p,问实验时应如何设置接收冲击波的仪器,即求实验仪器与爆炸点之间的距离是现场的多少倍?
p0,ρ,k。

福师《数学建模》在线作业一1答案

福师《数学建模》在线作业一1答案

福师《数学建模》在线作业一1答案
福师《数学建模》在线作业一-0005
试卷总分:100 得分:0
一、判断题(共40 道试题,共80 分)
1.数据的动态性又称为记忆性
A.错误
B.正确
正确答案:B
2.大学生走向工作岗位后就不需要数学建模了
A.错误
B.正确
正确答案:A
3.图示法是一种简单易行的方法
A.错误
B.正确
正确答案:B
4.明显歪曲实验结果的误差为过失误差
A.错误
B.正确
正确答案:B
5.任意齐次线性方程组的基本解组仅有一组
A.错误
B.正确
正确答案:A
6.任何一个模型都会附加舍入误差
A.错误
B.正确
正确答案:B
7.模型不具有转移性
B.正确
正确答案:A
8.获取外部信息时必须考虑其可靠性和权威性
A.错误
B.正确
正确答案:B
9.求常微分方程的基本思想是将方程离散化转化为递推公式以求出函数值
A.错误
B.正确
正确答案:B
10.利用乘同余法可以产生随机数
A.错误
B.正确
正确答案:B
11.数学建模的真实世界的背景是可以忽视的
A.错误
B.正确
正确答案:A
12.预测战争模型是牛顿提出的
A.错误
B.正确
正确答案:A
13.引言是整篇论文的引论部分
A.错误
B.正确
正确答案:B
14.数学建模是一种抽象的模拟,它用数学符号等刻画客观事物的本质属性
B.正确
正确答案:B
15.建模中的数据需求常常是一些汇总数据。

14秋福师《数学建模》在线作业一答案

14秋福师《数学建模》在线作业一答案

福师《数学建模》在线作业一
判断题多选题
一、判断题(共40 道试题,共80 分。


1. 不必认真设计结果的输出格式
A. 错误
B. 正确
-----------------选择:A
2. Shapley将问题抽象为特征函数解决n人合作对策问题
A. 错误
B. 正确
-----------------选择:B
3. 题名是人们检索文献资料的第一重要信息
A. 错误
B. 正确
-----------------选择:B
4. 将所有可能提供选择的变量都放入模型中,不加剔除叫做淘汰法
A. 错误
B. 正确
-----------------选择:A
5. 测试分析将研究对象视为一个白箱系统
A. 错误
B. 正确
-----------------选择:A
6. 利用偏回归平方和评价一个自变量在一组自变量中的重要性
A. 错误
B. 正确
-----------------选择:B
7. 原型指人们在社会和生产实践中关心和研究的现实世界中的实际对象
A. 错误
B. 正确
-----------------选择:B
8. 在建模中要不断进行记录
A. 错误
B. 正确
-----------------选择:B
9. 利用理论分布基于对问题的实际假设选择适当的理论分布可以对随机变量进行模拟
A. 错误
B. 正确
-----------------选择:B
10. 现在世界的科技文献不到2年就增加1倍。

数学建模作业答案

数学建模作业答案

习题1第4题(1)(i )拟合得r=0.021194,误差平方和等于17418;(ii )拟合得0x =14.994,r=0.014223,误差平方和等于2263.9;(iii )拟合得0t =1743.6,0x =7.7507,r=0.014223,误差平方和等于2263.9,但是MA TLAB 给出警告信息,指出存在病态条件,参数未必能拟合得好,综上所述,(ii )是本问题的最佳拟合方案。

(2)对指数增长模型0()0()r t t x t x e -=两边求对数得00ln ()()ln x t r t t x =-+固定0t =1790,引进变量替换ln ()Y x t =,0X t t =-,1r β=,00ln x β=,则转化为一次多项式10Y X ββ=+,然后用MALAB 函数polyfit 拟合0β,1β,进而得到0x =6.045,r=0.020219,误差平方和等于34892.(3)指数增长模型线性化拟合得误差平方和比非线性拟合大得多。

用MALAB 函数plot 绘制拟合误差比较图可以发现:非线性拟合的误差比较比较均匀,线性化拟合的误差却随着人口的增加越来越大,原因是因为对于x(t)数值越大的数据,ln ()Y x t =由于求对数带来的损失越大,以至于线性化拟合得误差越大。

(4)(i )拟合得r=0.027353,N=342.44,误差平方和等于1224.9;(ii)拟合得0x =7.6981,r=0.021547,N=446.57,误差平方和等于457.74;(iii )拟合得0t =1771.3,0x =5.1752,r=0.021547,N=446.57,误差平方和等于457.74,但MALAB 给出警告信息,指出存在病态条件,参数未必能拟合得好。

综上所述,(ii )是本问题的最佳拟合方案。

习题2第1题“两秒准则”表明前后车距D 与车速v 成正比例关系2D K v =,其中2K =2s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模》作业1
一、判断题。

1、建模活动中,合作者一方可以使用“这绝对不行”、“这根本行不通”这类武断评价的语句。

(×)
2、原型与模型是一样的。

(×)
3、评价模型优劣的唯一标准是实践检验。

(√)
4、模型误差是可以避免的。

(×)
二、用框图说明数学建模的过程。

三、浙江声自1993年10月开始实行职工住房公积金制度,主要用于职工的住房建设及政策性住房贷款的发放。

某职工欲从银行贷款,购买一套住房,按规定,政策性贷款的年息为9.6%,最长年限为五年,可以分期付款。

该职工根据自己的实际情况估计每年最多可偿还1万元,打算平均分五年还清。

问如果银行的贷款利率按单利计算,该职工合理的最大限额贷款是多少?如果银行的贷款利率按复利计算,那么该职工最大限额的贷款又是多少?(只列式,不计算)
解:设该职工合理的最大贷款额为x(x小于5)万元
(1)如果银行的贷款利率按单利计算
0.096x+0.096(1.096x-1)+0.096(1.096(1.096x-1)-1)+0.096(1.096(1.096(1.096x-1)-1)-
1)+0.096(1.096(1.096(1.096(1.096x-1)-1)-1)-1)+x=5
(2)如果银行的贷款利率按复利计算
(1+0.096)^5=5。

相关文档
最新文档