小学数学概念及公式大全(上海版)
上海小学数学知识点总结

上海小学数学知识点总结第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
上海沪版小学三年级上下册数学公式(全)

一.用字母表示运算定律或性质1,加法交换律:两数相加交换加数的位置,和不变。
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
加法交换律: a+b=b+a加法结合律:(a+b)+c=a+(b+c)3,乘法交换律:两数相乘,交换因数的位置,积不变。
乘法交换律: a×b=b×a4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
乘法结合律:(a×b)×c=a×(b×c)5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
乘法分配律:a×(b+c)=a×b+a×c如:(2+4)×5=2×5+4×56,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
9,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
10,分数大小的比较:A:同分母的分数相比较,分子大的大,分子小的小。
B:异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
11,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
12,分数的乘法则:用分子的积做分子,用分母的积做分母。
13,分数除以整数(0除外),等于分数乘以这个整数的倒数。
14,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变15,一个数除以分数,等于这个数乘以分数的倒数。
(全网最全)沪教版小学数学知识点梳理总结

————徐公子亮
一 个 循 环 小 数 的 小 数 部 分 ,依 次 不 断 重 复 出 现 的 数 字 叫 做 这 个 循 环 小 数 的 循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是 “ 54 ” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例 如: 3.111 …… 0.5656 …… 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小 数。 3.1222 …… 0.03333 …… 写 循 环 小 数 的 时 候 ,为 了 简 便 ,小 数 的 循 环 部 分 只 需 写 出 一 个 循 环 节 ,并 在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数 字,就只在它的上面点一个点。例如: 3.777 …… 简写 作 0.5302302 …… 简写作 。 (三)分数 1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在 分 数 里 ,中 间 的 横 线 叫 做 分 数 线 ;分 数 线 下 面 的 数 ,叫 做 分 母 ,表 示 把 单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多 少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于 1。 假 分 数 :分 子 比 分 母 大 或 者 分 子 和 分 母 相 等 的 分 数 ,叫 做 假 分 数 。假 分 数 大于或等于 1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 (四)百分数 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或
沪教版小学数学总复习知识概念汇总(全)

百 分 不可以表示具体数量,不可以有单位 关系 数 名称
分数的 以分母。
(2)把小数化成分数,先改写成分母是 10、100、1000……的分数,再约分。 (3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。 (4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。 (5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数) ,
=0.95=95% =0.04=4%
8、应得利息是税前利息,实得利息是税后利息。 9、利息=本金×利率×时间 10、应得利息-利息税=实得利息 11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百 分之几十几。 12、原价×折扣=现价 现价÷原价=折扣 现价÷折扣=原价
13、几成表示十分之几,表示百分之几十;几成几表示十分之几点几,表示百 分之几十几。 因数与倍数【素数、合数、奇数、偶数】 1、4×3=12,12 是 4 的倍数,12 也是 3 的倍数,4 和 3 都是 12 的因数。 2、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限 的。 3、一个数最小的因数是 1,最大的因数是它本身。一个数因数的个数是有限 的。 4、5 的倍数:个位上的数是 5 或 0。 2 的倍数:个位上的数是 2、4、6、8 或 0。2 的倍数都是双数。 3 的倍数:各位上数的和一定是 3 的倍数。 5、是 2 的倍数的数叫做偶数。不是 2 的倍数的数叫做奇数。 6、一个数,如果只有 1 和它本身两个因数,这样的数就叫做素数(或质数) 。 7、一个数,如果除了 1 和它本身还有别的因数,这样的数就叫做合数。 8、在 1—20 这些数中: (1 既不是素数,也不是合数)
新人教版小学数学总复习知识概念大全 第一单元 数与代数
沪教版六年级数学知识点

沪教版六年级数学知识点一、整数1. 整数的概念整数是由0、正整数和负整数组成的数集,用Z表示。
2. 整数的比较(1)同号相比,绝对值大的数较大;(2)异号相比,正数大于负数。
3. 整数的加法与减法(1)同号整数相加,保持符号,相加后取绝对值相加;(2)异号整数相加,取绝对值相减,结果的符号与绝对值较大的整数的符号相同;(3)整数的减法可以转化为加法,即a-b=a+(-b)。
4. 整数的乘法与除法(1)同号整数相乘,结果为正数;(2)异号整数相乘,结果为负数;(3)除法运算:a÷b=a×(1/b),若a与b同号,则结果为正数;若a与b异号,则结果为负数。
5. 整数的绝对值整数a的绝对值记作|a|,表示a的非负值。
二、小数1. 小数的概念小数是整数与分数的结合表示形式,用有限小数和循环小数来表达。
2. 小数的读法与写法(1)小数点的读法:十位小数点、百位小数点;(2)小数的读法:整数部分按正常读法,小数部分按每个数位的读法读出。
3. 小数的大小比较比较小数的大小时,先比较整数部分大小,再比较小数部分大小。
4. 小数的加法与减法(1)小数的加法:对齐小数点,按位相加,注意进位;(2)小数的减法:转化为加法求解。
5. 小数的乘法与除法(1)小数的乘法:去掉小数点,按整数乘法规则进行计算,最后加上小数点,位数为两个小数位数之和;(2)小数的除法:移动除数和被除数的小数点,使除数成为整数,然后按整数除法的规则进行计算。
三、分数1. 分数的概念分数是整数与整数的有理数表示形式,由分子和分母组成,用a/b表示。
2. 分数的读法与写法(1)带分数的读法:整数部分按正常读法,分数部分按分子在前、分母在后的顺序读出;(2)普通分数的读法:分子读作序数词,分母读作基数词。
3. 分数的大小比较比较同分母的分数大小时,分子大的分数较大;比较分母相同但分子不同的分数大小时,分子小的分数较小。
4. 分数的加法与减法(1)分母相同分数的加减:分子相加减,分母保持不变;(2)分母不同分数的加减:先通分,再进行相加减。
小学数学概念及公式大全(完整版)

小学数学概念及公式大全(完整版)一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学概念及公式大全(完整版)

小学数学概念及公式大全(完整版)一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
沪教版小学数学知识点

沪教版小学数学知识点一、整数与小数1.整数的认识:正整数、负整数、零的概念;整数的比较2.整数的加减法:同号相加减,异号相加减3.小数的认识:小数的读法、写法和意义4.小数的加减法:小数的加减法和整数的加减法结合5.小数的乘除法:小数的乘法和整数的乘法结合;小数的除法和整数的除法结合二、小数的运算1.计算四则混合运算:加法、减法、乘法和除法混合的运算2.有分数的加减乘除运算:分数的加法、减法、乘法和除法运算三、图形的认识1.点、线、面的认识:点的特征;直线是由无数个点组成的;平面是由无数个直线组成的2.直线的知识:线段、射线、垂直线、水平线、平行线、相交线等3.角的认识:直角、锐角、钝角、对顶角和相对角等4.多边形的认识:三角形、四边形、五边形、六边形等四、长度、面积与体积1.长度的认识:长度的比较、长度的测量和长度的换算2.面积的认识:面积的初步认识、面积的计算和单位换算3.体积的认识:体积的初步认识、体积的计算和单位换算五、分数1.分数的认识:真分数、假分数、带分数和分数的意义2.分数的构成:分子和分母、分子比分母小的分数、分子与分母相等的分数3.分数的比较与约分:分数的大小比较和约分六、约数与倍数1.因数和倍数的认识:因数的定义和倍数的定义2.素数与合数:素数的概念和合数的概念3.最大公因数和最小公倍数:最大公因数的定义和最小公倍数的定义七、计算方法1.快速计算:利用数的性质进行计算,如:各位上的数相等时,十位上的数相等时等2.算式的变形:运算顺序的改变,如:加法、减法、乘法、除法的运算顺序改变时的计算结果的变化八、数据与概率1.数据的收集与整理:通过进行实际的观察、调查和实验来收集数据,将数据进行整理和统计2.数据的表示与分析:用表格、折线图、柱状图等来表示和分析数据3.概率的认识:事件的可能性大小,通过实验来计算和估计概率九、时间与时钟的认识1.时间的认识:钟表的读法,认识到一天有24小时,一个小时有60分钟,一分钟有60秒2.时钟的读法:时刻的读法,如上午、下午和24小时制的读法3.时间的计算:时间的加减和时间的比较以上是沪教版小学数学的主要知识点,通过系统地学习这些知识,可以帮助学生掌握基本的数学概念和运算方法,培养他们的数学思维和解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学概念及公式大全(完整版) 一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1 /3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k ( k一定)或k / x = y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)35、互质数:公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)39、最简分数:分子、分母是互质数的分数,叫做最简分数。
40、分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行42、约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。
43、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)47、利率:利息与本金的比值叫做利率。
一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如3. 141414 50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如圆周率:3. 14159265451、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
如3. 141592654……52、什么叫代数? 代数就是用字母代替数。
53、什么叫代数式?用字母表示的式子叫做代数式。
如:3x =ab+c 关系表达式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)单位间进率1公里=1千米1千米=1000 米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=1 00平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径11、长方体的表面积=(长×宽+长×高+宽×高)×2 公式:S=(a×b+a×c+b×c)×212、长方体的体积=长×宽×高公式:V = abh13、正方体的表面积=棱长×棱长×6 公式:S=6a214、长方体(或正方体)的体积=底面积×高公式:V = abh15、正方体的体积=棱长×棱长×棱长公式:V = a316、圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。