2020年全国数学中考试题精选50题(4)——方程的解法和应用
2020中考数学 基础专题:方程(组)的解法和应用(含答案)

2020中考数学基础专题:方程(组)的解法及应用【例题1】我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?【分析】设这批书共有3x本,根据每包书的数目相等.即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这批书共有3x本,根据题意得:=,解得:x=500,∴3x=1500.答:这批书共有500本.【例题2】(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【分析】(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.【例题3】小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.【考点】9A:二元一次方程组的应用.【专题】12 :应用题.【分析】被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x 元,空调每台y元,根据题意列出方程组,求出方程组的解即可得到结果.【解答】解:被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视每台x元,空调每台y元,根据题意得:,解得:,则“五一”前同样的电视每台2500元,空调每台3000元.【例题4】某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.【解答】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据题意,得:,解得:,∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得:20(1﹣y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.巩固练习一、选择题:1.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.2.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选D.3.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【解答】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得y=.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.4.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3【考点】97:二元一次方程组的解.【分析】把代入方程组,得出关于a、b的方程组,求出方程组的解即可.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选B.5. 如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.二、填空题:6.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是100元.【分析】此题的等量关系:实际售价=标价的六折=进价×(1+获利率),设未知数,列方程求解即可.【解答】解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.7.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需48元.【分析】设1套文具的价格为x元,一套图书的价格为y元,根据“1套文具和3套图书需104元,3套文具和2套图书需116元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入x+y中,即可得出结论.【解答】解:设1套文具的价格为x元,一套图书的价格为y元,根据题意得:,解得:,∴x+y=20+28=48.故答案为:48.8.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为10%.【分析】先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1﹣x),第二次降价后的售价是原来的(1﹣x)2,再根据题意列出方程解答即可.【解答】解:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.9.在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为2.【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2﹣4x+b=0有两个相等的实数根,∴△=16﹣4b=0,∴AC=b=4,∵BC=2,AB=2,∴BC2+AB2=AC2,∴△ABC是直角三角形,AC是斜边,∴AC边上的中线长=AC=2;故答案为:2.10.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是k≤5且k≠1.【考点】AA:根的判别式.【分析】根据一元二次方程有实数根可得k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解之即可.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.三、解答题:1.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.2.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.3.东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?【分析】(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11.答:该烘焙店生产的是第5档次或第11档次的产品.4.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.2020中考数学基础专题:方程(组)的解法和应用(含答案)【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.11 / 11。
中考数学《方程与不等式》专题知识训练50题(含参考答案)

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x >yB .x <yC .x ﹣y >0D .x +y >02.如果1x -大于0,那么x 的取值范围是( ) A .1x >B .1x <C .0x <D .0x >3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C .D .4.不等式﹣3x≤9的解集在数轴上表示正确的是( ) A .B .C .D .5.用配方法解方程22990x x --=,配方后得( ) A .2(1)99x -=B .2(1)100x +=C .2(1)98x -=D .2(1)100x -=6.若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .57.一项工程,A 独做10天完成,B 独做15天完成,若A 先做5天,再A 、B 合做,完成全部工程的23,共需( ) A .8天B .7天C .6天D .5天8.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .29.不等式组372378x x -≥⎧⎨-<⎩的所有整数解共有( )A .1个B .2个C .3个D .4个10.下列运用等式性质进行的变形中,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么23a b -=- C .如果2a a =,那么1a =D .如果a bc c=,那么a b = 11.下列是一元一次方程的是( ) A .231x y +=B .20x -=C .3x +D .11x= 12.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( ) A .30252=+x x B .30252=+x x C .30252=-x x D .30252=-x x13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .B .C .D .14.如图所示两个天平都平衡,则3个球体的质量等于( )个正方体的质量,括号内应填A .2B .3C .4D .515.若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤516.下列变形中,正确的是( ) A .若a b =,则11a b +=-B .若32a b =,则a b =C .若2a b -=,则2a b =-D .若44b a -=-,则a b =17.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=3218.三元一次方程组10318x y z x y x y z ++=⎧⎪+=⎨⎪=+⎩的解是( )A .532x y z =⎧⎪=⎨⎪=⎩B .352x y z =⎧⎪=⎨⎪=⎩C .542x y z =⎧⎪=⎨⎪=⎩D .431x y z =⎧⎪=⎨⎪=⎩19.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A .3瓶B .4瓶C .5瓶D .6瓶20.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( )A .1316小时B .1312小时C .1416小时D .1412小时二、填空题21.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为____克. 22.如果方程23252x x -+=-的解与方程72x b -=的解相同,则b =________. 23.由4x ﹣3y +6=0,可以得到用y 表示x 的式子为x =__.24.已知不等式组212(1)43x x x+>⎧⎨-+>⎩,请写出一个该不等式组的整数解___________.25.已知关于x 的一元二次方程x 2+x+m =0有实数根,则m 的取值范围是_____.26.若关于x 的方程()21410k x x ---=是一元二次方程,则k 的取值范围是______.27.当a =_____时,分式32a a +-的值为-4. 28.三角形的三边长分别为7,1+2x ,13,则x 的取值范围是___ 29.25y x +=用含x 的式子表示y 为________________________.30.若关于x ,y 的二元一次方程组2630x my x y -=⎧⎨-=⎩的解是正整数,则整数m =_______.31.某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,则成本价为______元.32.已知A ∠与的B ∠两边分别平行,且A ∠比B ∠的3倍少20°,则A ∠的大小是__________.33.已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩, (1)代数式224x y +的值是_____. (2)代数式112x y+的值是______.34.已知关于x ,y 的方程组225,234x y m x y m +=-⎧⎨-=-⎩的解满足1x <,2y <,则m 的取值范围为______.35.已知关于x ,y 的不等式组100x x a ->⎧⎨-⎩有以下说法:①若它的解集是1<x ≤4,则a =4;①当a =1时,它无解;①若它的整数解只有2,3,4,则4≤a <5;①若它有解,则a ≥2.其中所有正确说法的序号是_____.36.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为__.37.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.38.如果关于x 的方程x2+2ax ﹣b2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a +b=_____.39.某车间 56 名工人,每人每天能生产螺栓 16 个或螺母 24 个,设有 x 名工人生产螺栓, 有 y 名工人生产螺母,每天生产的螺栓和螺母按 1:2 配套,所列方程组是________. 40.若分式方程2211x m x x x x x+-=++有增根,则m 的值是______.三、解答题 41.解下列方程: (1)3x +7=32﹣2x ; (2)121224x x +--=+. 42.解方程:242111x x x++=---. 43.解方程组:(1)32528x y x y +=⎧⎨-=⎩;(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩.44.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 45.当k 为何值时,方程x 2﹣6x+k ﹣1=0, (1)两根相等; (2)有一根为0. 46.解方程组或不等式组:(1)20346x y x y +=⎧⎨+=⎩;(2)53231204x x x +≥⎧⎪⎨--<⎪⎩ 47.已知一个四位自然数N ,它的各个数位上的数字均不为0,且满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“和对称数”,将这个四位自然数N 的千位数字和百位数字互换,十位数字和个位数字互换,得到N ',规定()101N N F N '+=. 例如:4536N =,①4536+=+,①4536是“和对称数”,()45365463453699101F +==.2346N =,①2346+≠+,①2346不是“和对称数”.(1)请判断2451、3972是不是“和对称数”,并说明理由.若是,请求出对应的()F N 的值.(2)已知A ,B 均为“和对称数”,其中100010746A a b =++,1002026B m n =++(其38a ≤≤,05b ≤≤,29m ≤≤,512n ≤≤,且均为整数),令()()32k F A F B =+,当k能被77整除时,求出所有符合条件的A 的值. 48.解决以下问题:(1)221x y ±++,的算术平方根是5,求2318x y -+的立方根; (2)的值互为相反数,求a b c 、、的值. 49.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A 品牌足球共花费2880元,B 品牌足球共花费2400元,且购买A 品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A 品牌比B 品牌便宜12元. (1)求去年A ,B 两种足球的售价;(2)今年由于参加俱乐部人数增加,需要从该店再购买A ,B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A 品牌比去年提高了5%,B 品牌比去年降低了10%,如果今年购买A ,B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B 品牌足球?50.某生态柑橘园现有柑橘31吨,租用9辆A 和B 两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A 型货车的总费用500元,B 型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?参考答案:1.D【分析】利用不等式的性质由已知条件可得到x+y>0,从而得到正确选项.【详解】①3x>﹣3y,①3x+3y>0,①x+y>0.故选D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.Ax->,即可求得x的取值范围.【分析】1x-大于0即10【详解】根据题意得:x->10x>解得:1故选A.【点睛】本题主要考查了一元一次不等式的应用,把判断一个式子的值的取值范围的问题掌握不等式的问题,这是解本题的关键.3.B【分析】求出不等式的解集,表示出数轴上即可.【详解】解:不等式x+1<2,解得:x<1,如图所示:故选B.【点睛】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.A【详解】试题分析:本题考查了在数轴上表示不等式的解集:利用数轴表示不等式的解集体现了数形结合的思想.也考查了解一元一次不等式.先解不等式得到x≥﹣3,在数轴上表示为﹣3的右侧部分且含﹣3,这样易得到正确选项. 考点:在数轴上表示不等式的解集;解一元一次不等式 5.D【分析】把常数项-99移项后,应该在左右两边同时加上一次项系数-2的一半的平方. 【详解】把方程x 2-2x -99=0的常数项移到等号的右边,得到x 2-2x =99 方程两边同时加上一次项系数一半的平方,得到x 2-2x +1=100 配方得(x -1)2=100. 故选D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 6.D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:①分式方程43233m xx x +=+--有增根, ①3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 7.C【分析】此题是工程问题,它的等量关系是A 独做的加上A 、B 合做的是总工程的23,此题可以分段考虑,A 独做了5天,合作了(x -5)天,利用等量关系列方程即可解得. 【详解】设共需x 天. 根据题意得:5112(5)()1010153x +-+= 解得:x =6. 故选C .8.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:①534x kx -=+, ①57x kx -=,即()57k x -=, 当50k -≠时, ①75x k=-, ①关于x 的方程534x kx -=+有整数解,k 为整数, ①51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =, ①()4621220++-+=,①满足条件的所有整数k 的和为20. 故选A .【点睛】本题考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解本题的关键. 9.B【分析】解不等式组,得到关于x 的解集,再找出符合x 取值范围的整数解即可. 【详解】解:解不等式3x −7≥2得:x ≥3, 解不等式3x −7<8得:x <5, 即不等式组的解集为:3≤x <5,符合3≤x <5的x 的整数解为:3,4共2个, 故选:B .【点睛】本题考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的方法. 10.D【分析】根据等式的基本性质进行分析判断即可.【详解】解:A 选项中,“如果a b =,那么23a b +=+”是不成立的,故不能选A ; B 选项中,“如果a b =,那么23a b -=-”是不成立的,故不能选B ;C选项中,“如果2a a=,那么1a=”不一定成立,因为a的值可能为0,故不能选C;D选项中,“如果a bc c=,那么a b=”成立,故选D.故选:D.【点睛】本题考查等式的基本性质,熟记“等式的基本性质:(1)等式的两边都加上或者减去同一个整式,所得结果仍是等式;(2)等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式”是解答本题的关键.11.B【分析】根据一元一次方程的定义逐项分析判断即可求解.【详解】解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、不是等式,即不是一元一次方程,故本选项错误;D、不是整式方程,即不是一元一次方程,故本选项错误.故选B.【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).12.C【详解】解:设甲每小时骑行x公里,根据题意得:30252=-x x.故选C.13.D【详解】试题分析:一月份获利10万元,二月份获利10(1+x)万元,三月份获利10万元,然后根据一季度的总获利得出方程.考点:一元二次方程的应用14.D【分析】根据等式的性质求解即可.【详解】解:由图可知,2个球体的质量=5个圆柱的质量,2个正方体的质量=3个圆柱的质量,①6个球体的质量=15个圆柱的质量,10个正方体的质量=15个圆柱的质量,①6个球体的质量=10个正方体的质量,①3个球体的质量=5个正方体的质量,故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 15.A【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解.【详解】解:由x +a =2,得:x =2-a ,①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5,故选A .【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键.16.D【分析】根据等式的性质逐个判断即可得到答案.【详解】解:由题意可得,若a b =,则111a b b +=+>-,故A 选项错误不符合题意;若32a b =,则23a b =,故B 选项错误不符合题意; 若2a b -=,则2a b =+,故C 选项错误不符合题意;若44b a -=-,则a b =,故D 选项正确符合题意;故选D .【点睛】本题考查等式的性质:等式两边同时加上或减去同一个数等式性质不变,等式两边同时乘以或除以同一个不为0的数等式性质不变.17.C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 18.A【分析】由①代入①、①消去x,解二元一次方程组得出y、z的数值,再进一步求得x的数值解决问题.【详解】10318x y zx yx y z++=⎧⎪+=⎨⎪=+⎩①②③,把①代入①得:y+z=5①,把①代入①得:4y+3z=18①,①×4–①得:z=2,把z=2代入①得:y=3,把y=3,z=2代入①得:x=5,则方程组的解为532xyz=⎧⎪=⎨⎪=⎩,故选A.【点睛】此题考查三元一次方程组的解法,注意逐步消元是解决问题的关键.19.C【详解】试题分析:因为15÷4=3余3空瓶,所以可换3瓶喝完,还剩3+3=6空瓶,拿出4空瓶换一瓶,还剩3个空瓶子,找人借一个瓶子凑齐四个喝完还剩一个再把这个瓶子还给那个人,故最多可以喝五瓶矿泉水.故选C.考点:命题.20.C【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【详解】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则5x x -解得x =20.经检验x =20是原方程的根,且符合题意.①x =20是所列方程的解.①x -5=15.①甲的工作效率是120,乙的工作效率是115, 则丙的工作效率是110. ①一轮的工作量为:1111320151060++=. ①4轮后剩余的工作量为:52216015-=. ①还需要甲、乙分别工作1小时后,丙需要的工作量为:211115201560--=. ①丙还需要工作16小时. 故一共需要的时间是:3×4+2+16=14 16小时. 故选:C . 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 21.2【分析】根据题意直接列一元一次不等式,并求解即可.【详解】解:设蛋白质的含量至少应为x 克,依题意得:0.4%500x ≥, 解得x ≥2,则蛋白质的含量至少应为2克.【点睛】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解题的关键. 22.7 【分析】先解方程23252x x -+=-,得97x =,因为这个解也是方程72x b -=的解,根据方程的解的定义,把x 代入方程72x b -=中求出b 的值. 【详解】解:由23252x x -+=-,得2420(515),x x -=-+7所以可得97277b =⨯-= 故答案为:7.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.23.364y - 【详解】方程4x −3y +6=0,解得:x =364y -, 故答案为364y -. 24.0##1【分析】分别求出两个不等式的解集,再求出两个解集的公共部分,即可得到答案.【详解】()212143x x x +>⎧⎪⎨-+>⎪⎩①② 解不等式①得:1x >-;解不等式①得:2x <;所以不等式组的解集为:12x -<<;则其整数解为0与1.故答案为:0(或1).【点睛】本题考查了求一元一次不等式组的整数解,正确并熟练地解一元一次不等式是解题的关键.25.m≤14【分析】一元二次方程有实数根,则①≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,①=1﹣4m≥0, ①m≤14, 故答案为m≤14. 【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,①≥0. 26.1k ≠【分析】根据一元二次方程的定义列式计算即可得解.【详解】①关于x 的方程()21410k x x ---=是一元二次方程,①10k -≠,①1k ≠,故答案为:1k ≠.【点睛】本题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.27.1【分析】根据题意列出方程即可求出答案. 【详解】解:由题意得:342a a +=--, 去分母得,()342a a +=-- ,解得,1a =,经检验1a =是分式方程的解,故答案为:1【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法.28.3<x <6【详解】试题分析:根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,可得13-7< 1+2x <20,解得3<x <6 .考点:三角形三边之间的关系点评:该题考查了三角形三边之间的关系,已知三角形的两边长,可以求第三边的范围,即两边之差<第三边长<两边之和.29.y=-2x+5【分析】把x 看做已知数求出y 即可.【详解】解:方程y+2x=5,解得:y=-2x+5.故答案为:y=-2x+5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .30.0,3,4,5【分析】先解方程组2630x myx y-=⎧⎨-=⎩,用m表示出方程组的解,根据方程组有正整数解得出m的值.【详解】解:2630x myx y-=⎧⎨-=⎩①②由①得:x=3y ①,把①代入①得:6y−my=6,①y=66-m,①x=186-m,①方程组2630x myx y-=⎧⎨-=⎩的解是正整数,①6−m>0,①m<6,并且66-m和186-m是正整数,m是整数,①m的值为:0,3,4,5.故答案是:0,3,4,5.【点睛】本题考查了二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.31.185【分析】设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣,即可得出答案.【详解】解:设每件服装标价为x元,根据题意得:0.5x+35=0.8x-55,解得:x=300.则每件服装标价为300元,成本价是:300×50%+35=185(元),故答案为:185.【点睛】此题主要考查了一元一次方程的应用,正确找出等量关系是解题的关键.32.10°或130°【分析】根据A ∠与B ∠两边分别平行,由A ∠比B ∠的3倍少20°列方程求解即可得到答案.【详解】①A ∠比B ∠的3倍少20°,①A ∠=3B ∠- 20°,①A ∠与B ∠两边分别平行,①①A 与①B 相等或互补,①当A ∠=B ∠时,得到①A =3①A - 20°,①①A =10°;①当①A +①B =180°时,得到①A =3(180°-①A )-20°,①①A =130°,故答案为:10°或130°.【点睛】此题考查平行线的性质,解一元一次方程,能正确理解两边分别平行的两个角的关系是解题的关键.33. 17 54± 【分析】(1)令224n x y m xy +==,,将原方程组可化为关于m 、n 的二元一次方程组,进行求解即可;(2)先根据完全平方公式求出25x y +=±,再将112x y+通分进行计算即可. 【详解】(1)令224n x y m xy +==,,原方程组可化为3247236m n m n -=⎧⎨+=⎩, 解得172m n =⎧⎨=⎩, 即221724x y xy +==,,故答案为:17;(2)222(2)4178254x y x y xy +=+=+=+,25x y ∴+=±1125224x y x y xy +±∴+==,故答案为:54±. 【点睛】本题考查了解二元一次方程组,完全平方公式的变形,异分母分式相加等,熟练掌握知识点并运用整体代入法是解题的关键.34.823m -<< 【分析】先解出方程组的解,再根据解的情况列出关于m 的不等式组,解不等式组即可求解.【详解】解:225234x y m x y m +=-⎧⎨-=-⎩①② ①+①得:x =-1-m ,将x =-1-m 代入①中,得:y =342m -, ①该方程组的解满足1x <,2y <, ①113422m m --<⎧⎪⎨-<⎪⎩, 解得:823m -<<. 故答案为:823m -<<. 【点睛】本题考查解二元一次方程组的应用、解一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法,正确解出x 、y 值是解答的关键.35.①①①【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式x ﹣1>0得,x >1;解不等式x ﹣a ≤0得,x ≤a ,故不等式组的解集为:1<x ≤a .①①它的解集是1<x ≤4,①a =4,故本小题正确;①①a =1,x >1,①不等式组无解,故本小题正确;①①它的整数解只有2,3,4,则4≤a <5,①4≤a <5,故本小题正确;①①它有解,①a >1,故本小题错误.故答案为:①①①.【点睛】本题主要考查了解一元一次不等式组,掌握解一元一次不等式组是解题的关键. 36.13k <<【分析】先求出方程组的解,根据题意得出关于k 的不等式组,再求出不等式组的解集即可.【详解】解:解方程组221x y x y k +=⎧⎨+=+⎩得:13x k y k=-⎧⎨=-⎩, 关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数, ∴1030k k ->⎧⎨->⎩, 解得:13k <<,故答案为:13k <<.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k 的不等式组是解此题的关键.37.22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式①得,x ≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).38.±2.【分析】根据根的判别式求出△=0,求出a 2+b 2=2,根据完全平方公式求出即可.【详解】解:①关于x 的方程x 2+2ax-b 2+2=0有两个相等的实数根,①①=(2a )2-4×1×(-b 2+2)=0,即a 2+b 2=2,①常数a 与b 互为倒数,①ab=1,①(a+b )2=a 2+b 2+2ab=2+2×1=4,①a+b=±2,故答案为±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a 2+b 2=2和ab=1是解此题的关键.39.5621624x y x y +=⎧⎨⨯=⎩【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=56人;①每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【详解】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y .列方程组为:5621624x y x y +=⎧⎨⨯=⎩故答案为5621624x y x y +=⎧⎨⨯=⎩【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.40.1-或2【分析】根据增根是化为整式方程后产生的不适合分式方程的根,先把分式方程去分母化为整式方程,再通过使最简公分母不为0确定增根的可能值,将其代入整式方程即可算出m 的值.【详解】解:①2211x m x x x x x+-=++, ①()2221x m x -=+,①221m x x =--. ①2211x m x x x x x+-=++有增根, ①0x =或=1x -.当0x =时,2211m x x =--=-;当=1x -时,2212m x x =--=.①m 的值为1-或2.故答案为:1-或2【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;①化分式方程为整式方程;①把增根代入整式方程即可求得相关字母的值. 41.(1)x =5;(2)x =4.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,然后移项,合并同类项,系数化成1即可.【详解】解:(1)移项合并得:5x =25,解得:x =5;(2)去分母得:2x +2﹣4=8+2﹣x ,移项合并得:3x =12,解得:x =4.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法是关键.42.13x = 【分析】观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:242111x x x ++=--- 整理,得:421(1)(1)1x x x x +-=-+-- 方程两边都乘以(x +1)(x ﹣1),得4﹣(x +1)(x +2)=﹣(x 2﹣1),整理,得,3x =1, 解得1x=3. 经检验,1x=3是原方程的根.①原方程的解是1x=3.【点睛】本题考查解分式方程,注意解分式方程,结果要检验.43.(1)32x y =⎧⎨=-⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求出解即可.(2)去分母后,加减法消元解方程.【详解】解:(1)32528x yx y+=⎧⎨-=⎩①②,①×2得,4x﹣2y=16①,①+①得,7x=21,解得x=3,把x=3代入①得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是32xy=⎧⎨=-⎩;(2)方程组可化为4324347x yx y+=⎧⎨-=-⎩①②,①×4得,16x+12y=96①,①×3得,9x﹣12y=﹣21①,①+①得,25x=75,解得x=3,把x=3代入①得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.44.在这两笔生意中,商场共盈利90260元.【分析】盈利=总售价-总进价,应求出某商品的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价-4.【详解】设商场第一次购进某商品x件,则第二次购进某商品2x件,根据题意得:8000017600042x x-=.160000=176000-8x解这个方程得:x=2000.经检验:x=2000是原方程的根.商场利润:(2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.45.(1)k=10;(2)k=1.【分析】(1)方程由两个相等的根,则△=0;(2)有一个根是0,则两根之积为0.【详解】解:(1)△=36﹣4(k-1)=40-4k,①两根相等,①①=0,即k=10;(2)①有一根为0,①0∆≥,即10k≤,由根与系数的关系可得,k﹣1=0,①k=1.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握是解题的关键.一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.46.(1)63xy=⎧⎨=-⎩;(2)13x-≤<【分析】(1)方程组利用代入消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,表示在数轴上即可.【详解】(1)解:20 346 x yx y+=⎧⎨+=⎩①②方程①可化为2x y=-①把①代入①,得解得y=-3把y=-3代入①,得x=()236-⨯-=所以原方程组的解为:63x y =⎧⎨=-⎩(2)53231204x x x +≥⎧⎪⎨--<⎪⎩①② 解不等式①得1x ≥-解不等式①得3x <所以不等式组的解集为13x -≤<将其在数轴上表示如下:【点睛】本题两个小题分别考查了解二元一次方程组和解一元一次不等式组,根据相关题目要求按步骤求解是解题的关键47.(1)3972不是“和对称数”,2451是“和对称数”,理由见解析,()F N 值为66(2)A 的值为3746,4756,6776,5766,7786,8796【分析】(1)根据“和对称数”的定义,即可求解;(2)根据题意分别表示出()(),F A F B ,再由()()32k F A F B =+,k 能被77整除,并结合a ,m 的取值范围进行分类讨论,即可求解.【详解】(1)解:3972不是“和对称数”,①3924+≠,①3972不是“和对称数”.2451是“和对称数”,①2451+=+,。
中考数学《方程与不等式》专题知识训练50题-含答案

中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A.10007505=-x xB.10007505=-x xC.10007505=+x xD.1000750+5=x x2.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.3.下列各式,是一元一次不等式的有()①4>1①232x-<4①12x<①4327x y-<-①16x+=A.4个B.3个C.2个D.1个4.小亮解方程组2212x yx y+=⎧⎨-=⎩▲,的解为5xy=⎧⎨=⎩☆,由于不小心滴上了两滴墨水,刚好遮住了两个数▲和①,则这两个数分别为()A.4和- 6B.- 6和4C.- 2和8D.8和– 2 5.方程2x2+6x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6.若关于x的一元二次方程220x x a+-=有两个相等的实数根,则a的取值为()A.1a=B.1a=-C.4a=D.4a=-7.3020xx+>⎧⎨-≥⎩不等式组的解集在数轴上表示为()A .B .C .D .8.甲、乙两人生产某种机器零件,甲每小时比乙多生产5个,甲生产120个所用的时间与乙生产90个所用的时间相等.设甲每小时生产x 个零件,根据题意,列出的方程是( ) A .120905x x =+ B .120905x x=- C .120905x x=+ D .120905x x =- 9.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=10.方程2320x x +-=的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定有没有实数根11.根据等式的性质,若等式m n =可以变形得到m a n b +=-,则a 、b 应满足的条件是( ) A .互为相反数B .互为倒数C .相等D .0a =,0b ≠12.若223894614M x xy y x y =+++-﹣(x ,y 是实数),则M 的值一定是( )A .0B .负数C .正数D .整数13.一元二次方程x 2﹣ax ﹣2=0,根的情况是( ) A .有两个不相等的实根 B .有两个相等的实数根 C .无法判断D .无实数根14.下列等式变形正确的是( ) A .如果0.58x -=,那么4x =- B .如果x y =,那么22x y -=- C .如果mx my =,那么x y =D .如果x y =,那么x y =15.若关于x 的一元二次方程2(3)410k x x -++=有两个不相等的实数根,则k 的取值范围是( ) A .7k <B .7k <,且3k ≠C .7k ≤,且3k ≠D .7k >16.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( )A .﹣5≤s≤﹣B .﹣6<s≤﹣C .﹣6≤s≤﹣D .﹣7<s≤﹣17.如图,在平面直角坐标系中,点A 的坐标为(4,3)M 1B ①x 轴于点B .点C 是线段OB 上的点,连接AC ,点P 在线段AC 上且AP =PC ,函数y =kx(x >0)的图象经过点P .当点C 在线段OB 上运动时上k 的取值范围是( )A .0<k ≤3B .3≤k ≤6C .0≤k ≤6D .6≤k ≤1218.已知两个多项式222A x x =++,222B x x =-+,以下结论中正确的个数有( )①若12A B +=,则2x =±;①若2A B ax bx ++-的值与x 的值无关,则2a b +=-; ①若|8||4|12A B A B --+-+=,则12x -≤≤;①若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有3个. A .1个B .2个C .3个D .4个19.下列解方程的过程中正确的是( ) A .将2﹣371745x x -+=去分母,得2﹣5(5x ﹣7)=﹣4(x+17)B .由0.150.710.30.02x x--=,得10157032x x --=100 C .40﹣5(3x ﹣7)=2(8x+2)去括号,得40﹣15x ﹣7=16x+4D .﹣25 x=5,得x=﹣252二、填空题20.“x 的4倍与2的和是非负数”用不等式表示为__________________. 21.二元一次方程310x y +=的正整数解共有_________个. 22.已知2x|m|﹣2+3=9是关于x 的一元二次方程,则m=_____.23.已知关于x 的一元二次方程3x 2+4x +m =0有实数根,则m 的取值范围是_______. 24.观察下列一组方程:①20x x -=;①2320x x -+=;①2560x x -+=;①27120x x -+=;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”,若2560x kx ++=也是“连根一元二次方程”,则k 的值为____________.25.对于实数a 、b ,定义运算“①”如下:a ①b =a 2﹣ab ,例如:5①3=52﹣5×3=10.若(x +2)①(x ﹣3)=25,则x 的值为 ___.26.已知不等式组232(1)1x x x x -<-⎧⎨->-⎩,x 是非负整数,则x 的值是________.27.已知关于x 的一元二次方程250x x m ++=的一个根是2,则m =___________. 28.已知方程2x ﹣a =8的解是x =2,则a =_____.29.高斯符号[]x 首次出现是在数学家高斯(C .F. Gauss )的数学著作《算术研究》一书中,对于任意有理数x ,通常用[]x 表示不超过x 的最大整数,如[]2.92=.给出如下结论:①[]33-=-;①[]2.92-=-;①[]0.90=;①[][]3.1 3.97+=.以上结论中,你认为正确的是_________(填序号). 30.分式方程1233xx x-=---解得______. 31.已知关于x 的方程2x a +=23x a++1的解与方程4x ﹣5=3(x ﹣1)的解相同,则a 的值_____.32.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为__.33.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为________元.34.某商品标价28元,按九折出售,仍可获利20%,则该商品的进价为________元. 35.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x 米,根据题意可得方程_________________.36.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为_____元.37.有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.38.已知方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,则ab =_____.39.已知关于x 的方程242x mx +=-的解是正数,则m 的取值范围为______.三、解答题 40.解方程:14211x x x++=-- 41.解下列一元二次方程: (1)22(1)18x -=; (2)22330x x ; (3)2230x x --=; (4)22340x x +-=. 42.解不等式:2123x x -≤-,把解集在数轴上表示出来. 43.(1)解方程组2=57320x y x y -⎧⎨-=⎩;(2)解不等式组21241x xx x >-⎧⎨+<-⎩.44.解方程组:45.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元. (1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品. 46.某学习网站针对疫情停课不停学推出了套餐优惠服务:已知购买2个学习账号和1个错题伴印设备需要2700元,购买3个学习账号和2个错题伴印设备需要4800元.(1)求1个学习账号和1个错题伴印设备的单价各是多少元?(2)若某学习小组准备购买账号和错题伴印设备共45个,且要求伴印设备不低于账号数量的23,请问如何购买才能使得总费用最低,最低费用为多少? 47.计算题(1)解不等式组31122(3)5x x x x -⎧+⎪⎨⎪--≥⎩(2)分式化简:2321(2)22a a a a a -++-÷++ 48.已知,关于的方程组3{25x y a x y a-=++= 的解满足.(1)求的取值范围.(2)化简.49.山地自行车越来越受中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车今年每辆销售价比去年降低400元,则今年销售5辆车与去年销售4辆车的销售金额相同.(1)求该车行今年和去年A型车每辆销售价各多少元?(2)该车行今年计划进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.若今年A型车进货价每辆1100元,B型车进货价每辆1600元、销售价每辆2200元.设进A型车a辆,这批车卖完后获得利润W元?应如何进货才能使这批车获得利润最多?参考答案:1.A【分析】设甲类玩具的进价为x元/个,根据用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同这个等量关系列出方程即可.【详解】解:设甲类玩具的进价为x元/个,则乙类玩具的进价为(x−5)元/个,由题意得,10007505=-x x,故选A.【点睛】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.2.B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:215840xx-≤⎧⎨-<⎩①②,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.3.D【分析】根据一元一次不等式的定义,未知数的次数是1,对各选项分析判断后利用排除法求解.【详解】解:①没有未知数,不是一元一次不等式;①是一元一次不等式;①未知数在分母上,不是一元一次不等式;①含有两个未知数,不是一元一次不等式;①是一元一次方程,不是一元一次不等式.故选D.【点睛】本题主要是对一元一次不等式定义的考查.4.D【分析】根据方程的解的定义,把x=5代入2x−y=12,求得y的值,进而求出▲的值,即可得到答案.【详解】解:①方程组2212x yx y+=⎧⎨-=⎩▲的解为5xy=⎧⎨=⎩☆,①把x=5代入2x−y=12,得:2×5−y=12,解得:y=-2,把x=5,y=-2代入2x+y=▲,得:2×5+(−2)=▲,即:▲=8,①这两个数分别为:8和﹣2.故选D.【点睛】本题主要考查二元一次方程组的解的定义,掌握二元一次方程组的解满足各个方程,是解题的关键.5.C【详解】解:①在方程2x2+6x+5=0中,①=62﹣4×2×5=﹣4<0,①方程2x2+6x+5=0没有实数根,故选C.6.B【分析】根据方程有两个相等的实数根,可推出根的判别式240b ac-=,代入相应的系数即可解得a的取值.【详解】220x x a+-=有两个相等的实数根∴()22410a-⨯⨯-=解得:1a=-故选:B.【点睛】本题主要考查一元二次方程根的判别式,能根据方程有两个相等的实数根推出根的判别式等于零是解题的关键.7.C【分析】解出不等式组,根据解集即可选出正确的数轴.【详解】30 20 xx+>⎧⎨-≥⎩①②解:由①得:x >-3, 由①得:x ≤2故原不等式组得解集为:-3<x ≤2 故选:C【点睛】本题主要考查了一元一次不等式组以及用数轴表示解集,熟练地掌握不等式的性质,正确地解出不等式组,能够正确地在数轴上表示不等式组的解集是解题的关键.注意:“≥、≤”在数轴上表示为实心圆点,“>、<”在数轴上表示为空心圆圈. 8.D【分析】设甲每小时生产x 个零件,根据题意列出分式方程式即可. 【详解】解:设甲每小时生产x 个零件,根据甲生产120个所用的时间与乙生产90个所用的时间相等, 可列方程120905x x =-, 故选D .【点睛】本题考查了分式方程的实际应用,正确列出方程式是本题关键. 9.A【分析】第一天为2亿元,根据增长率为x 得出第二天为2(1+x )亿元,第三天为2(1+x )2亿元,根据“第三天票房收入约达到4亿元”,即可得出关于x 的一元二次方程. 【详解】设平均每天票房的增长率为x , 根据题意得:22(1)4x +=. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10.A【分析】利用一元二次方程根的判别式进行判断. 【详解】解:方程2320x x +-=中,a=1,b=3,c=-2 ①22=4341(2)170b ac -=-⨯⨯-=> ①方程有两个不相等的实数根. 故选:A .【点睛】本题考查一元二次方程根的判别式,掌握2=40b ac ->方程有两个不相等的实数根,2=4=0b ac -方程有两个相等的实数根,2=4<0b ac -方程无实数根是解题关键. 11.A【分析】根据等式的基本性质得到a b =-,再根据相反数的定义解决此题.【详解】①m n =,①0-=m n ,且m a n b +=-,①a b =-,即0a b +=,①a 与b 互为相反数,故选:A【点睛】本题主要考查等式的基本性质、相反数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.12.C【分析】先将整式M 进行变形为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,然后根据二次方的非负性,即可得出答案.【详解】解:M =3x 2﹣8xy +9y 2﹣4x +6y +14=(x 2﹣4x +4)+(y 2+6y +9)+2(x 2﹣4xy +4y 2)+1=(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1①()220x -≥,()230y +≥,()220x y -≥,①(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1>0,故C 正确.故选:C .【点睛】本题主要考查了配方法的应用和非负数的性质,将整式M 变为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,是解题的关键.13.A【详解】:①=(-a )2-4×1×(-2)=a 2+8>0,①方程有两个不相等的实数根.故选A .14.B【分析】分别利用等式的基本性质判断得出即可.【详解】解:A、如果-0.5x=8,那么x=-16,错误;B、如果x=y,那么x-2=y-2,正确;C、如果mx=my,当m=0时,x不一定等于y,错误;D、如果|x|=|y|,那么x=y或x=-y,错误;故选:B.【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.15.B【分析】利用一元二次方程的定义和判别式的意义得到k-3≠0且Δ=42-4(k-3)×1>0,然后解不等式组即可.【详解】解:根据题意得k-3≠0且Δ=42-4(k-3)×1>0,解得k<7且k≠3.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.16.B【详解】试题分析:由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.考点:一次函数图象与系数的关系.17.B【分析】设C(c,0)(0≤c≤4),过P作PD①x轴于点D,由①PCD①①ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【详解】解:①点A的坐标为(4,3),AB①x轴于点B,①OB=4,AB=3,设C(c,0)(0≤c≤4),过P作PD①x轴于点D,则BC=4-c,PD AB,OC=c,①①PCD①①ACB,①PD CD CPAB CB CA==①AP PC=,①1 342 PD CDc==-①PD=32,122CD c=-①OD=OC+CD=2+12c,①P(2+12c,32),把P(2+12c,32)代入函数kyx=(x>0)中,得k=3+34c,①0≤c≤4,①3≤k≤6,故选:B.【点睛】本题主要考查了反比例函数的图象与性质,相似三角形的性质与判定,不等式的性质,解题关键是求出k关于c的解析式.18.C【分析】代入多项式列方程求解即可判断①;先代入多项式化简,再利用结果与x的值无关得到a、b的值,即可判断①;代入多项式列绝对值方程求解即可判断①;代入多项式,得到41ym=-,根据题意得到符合条件的非负整数m值,即可判断①.【详解】解:222A x x=++,222B x x=-+,①12A B+=,()22222212x x x x∴+++-+=,240x ∴-=,2x ∴=±,①正确;①()()()22222222224A B ax bx x x x x ax bx a x bx ++-=+++-++-=+-+,2A B ax bx ++-的值与x 的值无关,()224a x bx ∴+-+的值与x 的值无关,20a ∴+=,0b -=,2a ∴=-,0b =,2a b ∴+=-,①正确; ① ()2282222848A B x x x x x --=++--+-=-,()2242222444A B x x x x x -+=++--++=+,当1x <-时,()8444128x x x -+-=-,当12x -≤≤时,844412x x -++=,当2x >时,484484x x x -++=-,若|8||4|12A B A B --+-+=,即484412x x -++=,∴当12x -≤≤时,满足条件,①正确;①2(1)2m y A B x -=+-,()14m y ∴-=,41y m ∴=-, ∴若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有0、2、3、5,共4个,①错误,故结论中正确的是①①①,故选C .【点睛】本题考查了整式的加减运算,解一元一次方程,解绝对值方程,非负整数的概念,熟练掌握解方程的步骤与方法是解题关键,注意0是非负整数.19.D【详解】试题解析:A. 方程两边同乘以20得,40-5(3x -7)=4(x +17),所以本选项错误;B. 从左边看,方程应用的是分式的性质;从右边看,方程应用的是等式的性质2;故所得方程与原方程不是同解方程, 所以本选项错误;C. 去括号时漏乘常数项,且去括号未变号;所以本选项错误;D.计算正确.故选D.20.4x+2≥0【详解】由题意得,4x+2≥0.故答案为4x+2≥0.21.3【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是正整数,那么把最小的正整数y=1代入,算出对应的x的值,再把y=2代入,再算出对应的x的值,依此可以求出结果.【详解】解:①x+3y=10,①x=10-3y,①x、y都是正整数,①y=1时,x=7;y=2时,x=4;y=3时,x=1.①二元一次方程x+3y=10的正整数解共有3对.故答案为:3.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.22.±4【分析】根据一元二次方程的定义解答即可.【详解】①2x|m|﹣2+3=9是关于x的一元二次方程,①|m|﹣2=2,解得m=±4.故答案为±4.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义是解决问题的关键.23.43m ≤ 【分析】一元二次方程有实数根,则2=40b ac ∆-≥,建立关于m 的不等式,求出m 的取值范围.【详解】解:①关于x 的一元二次方程3x 2+4x +m =0有实数根,22=44430b ac m ∆-=-⨯≥ ①43m ≤, 故答案为:43m ≤. 【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,2=40b ac ∆-≥.24.15-【分析】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得()11156x x +=,可得方程的两根,继而根据一元二次方程根与系数关系即可得出k 的值;【详解】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得:()11156x x +=,解得:17x =,118x +=,①11115x x k ++==-,①15k =-,故答案为:15-【点睛】本题考查解一元二次方程,解题的关键是熟练解一元二次方程的方法以及一元二次方程根与系数关系.25.3【分析】根据新定义运算列出方程,故可求解.【详解】①a ①b =a 2﹣ab ,(x +2)①(x ﹣3)=25,①(x +2)2-(x +2)(x ﹣3)=25,x 2+4x +4-(x 2-x -6)=25x 2+4x +4- x 2+x +6=255x =15x=3故答案为:3.【点睛】此题主要考查新定义运算与解方程,解题的关键是熟知整式的乘法运算与方程的求解.26.2【分析】求出不等式组的解集,确定出非负整数解即可.【详解】解:不等式组整理得:521xx⎧<⎪⎨⎪>⎩,解得:512x<<,由x为非负整数,得到2x=,则x的值为2.故答案为:2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.27.14-【分析】先将x=2代入250x x m++=,然后求解关于m的方程即可.【详解】把2x=代入250x x m++=,得:22100m++=,①14m=-.故答案为:-14.【点睛】本题主要考查了方程的解以及解一元一次方程的解,理解方程的解成为解答本题的关键.28.-4【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】通过阅读知道[x]有两层意义,一是其值小于x ,二是其值为整数,根据这两点可以得到解答.【详解】解:由题意得:[-3]3≤-,且为整数,所以[-3]= -3,①正确;[-2.9] 2.9≤-,且为整数,所以[-2.9]= -3,①错误;[0.9]0.9≤ ,且为整数,所以[0.9]= 0,①正确;[3.1] 3.1≤ ,且为整数,所以[3.1]= 3;[3.9] 3.9≤ ,且为整数,所以[3.9]= 3,所以[3.1]+[3.9]=6,①错误.故答案为:①①.【点睛】本题考查阅读理解应用能力,在对材料内容进行归纳提取的基础上应用其方法解答是解题关键.30.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 31.8【分析】先求出第二个方程的解,把x =2代入第一个方程,求出方程的解即可.【详解】解方程4x ﹣5=3(x ﹣1)得:x =2,把x =2代入方程2x a +=23x a ++1中,可得:22a +=43a ++1, 解得:a =8.故答案为8【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键.【详解】解:①小正方形与大正方形的面积之比为1:13,①设大正方形的面积是13,①c2=13,①a2+b2=c2=13,①直角三角形的面积是1314-=3,又①直角三角形的面积是12ab=3,①ab=6,①(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,①a+b=5.则a、b是方程x2﹣5x+6=0的两个根,故b=3,a=2,①23ab=.故答案是:2:3.考点:勾股定理证明的应用33.160【详解】一套运动装标价200元,按标价的八折(即原价的80%)销售,则这套运动装的实际售价为200×80%=160元,故答案为:160.34.21【分析】根据题意得到方程28×0.9=(1+20%)x,求解即可.【详解】解:设该商品的进价为x元,依题意得,28×0.9=(1+20%)x解得:x=21故答案是21.【点睛】本题考查了一次方程的实际应用,属于简单题,找到等量关系,建立一元一次方程是解题关键.35.8004600800102x x-+=【详解】本题的等量关系是:加固800米用的时间+加固(4600-800)米用的时间=10. 所以可列方程为:8004600800102x x-+= 36.4050【分析】根据题意可知第一次降价为5000(1-10%)=4500,第二次降价为4500(1-10%)=4050.【详解】解:依题意得:5000(1-10%)2=4050.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉降价率的计算方法是解题关键.37.24【分析】设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.【详解】解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ①x 为正整数,①x =2,①10x +x +2=24,则这个两位数是24.故答案为:24.【点睛】本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键.38.-1 【分析】根据方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,所以把2x y +=和27x y --=组成方程组求出 x 、y 的值,再把 x 、y 的值代入其他两个方程 4ax y +=和8x by +=即可求出a 、 b 的值,即可得答案.【详解】解:①方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,①方程组227x y x y +⎧⎨--⎩=①=②的解也是它们的解, ①× 2+①,得:2x +x = 4-7,解得:x =-1,把x = -1代入①,得:-1+y =2,解得:y =3,把x =-1, y =3代入4ax y +=得:-a +3= 4解得:a = -1,把x =-1, y =3代入8x by +=得:-1+3b =8,解得:b =3,①ab =(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.39.8m >-且4m ≠-【分析】先解分式方程用含有m 的代数式表示x ,再根据x >0,且x -2≠0,求出答案即可. 【详解】242x m x +=- 82m x +=因为方程的解是正数,且x -2≠0, 所以802m +>,且8202m +-≠,解得m >-8,且m ≠-4.故答案为:m >-8,且m ≠-4.【点睛】本题主要考查了分式方程的解,注意:解分式方程时要保证分母不能是0. 40.x =-1【分析】去分母解整式方程,再代入最简公分母检验即可.【详解】解:去分母,得x +1-4=2(x -1)去括号,得x -3=2x -2解得x =-1,检验:当x =-1时x -10≠,①原分式方程的解为x =-1.【点睛】此题考查了解分式方程,正确掌握解分式方程的解法是解题的关键.41.(1)14x =,22x =-;(2)方程没有实数解;(3)13x =,21x =-;(4)134x -+=,2x = 【分析】(1)先变形为2(1)9x -=,然后利用直接开平方法解方程;(2)利用判别式的意义判断方程没有实数解;(3)利用因式分解法解方程;(4)利用求根公式法解方程.【详解】解:(1)22(1)18x -=可化为:2(1)9x -=,①13x -=±,①14x =,22x =-;(2)①2(3)423150,所以方程没有实数解;(3)2230x x --=可化为:(3)(1)0x x -+=,①30x -=或10x +=,①13x =,21x =-;(4)①2342(4)41, ①24341222b b ac x a①1x =2x = 【点睛】本题考查了解一元二次方程,熟悉相关解法是解题的关键.42.x≤2【分析】先将不等式左右两边同时扩大6倍,去掉分母;然后在按照解一元一次不等式的步骤进行求解【详解】左右两边同时扩大6倍得:3x≤6-2(x -2)去括号得:3x≤6-2x+4移项得:5x≤10解得:x≤2数轴上表示如下:【点睛】本题考查了解不等式,需要注意,不等式两边同乘除负数时,不等号要变号43.(1)55xy=⎧⎨=⎩;(2)x>1.【分析】(1)利用加减消元法解二元一次方程组即可;(2)先求出每一个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)25 7320x yx y-=⎧⎨-=⎩①②,由①得:y=2x﹣5①,把①代入①得:7x﹣3(2x﹣5)=20,解得:x=5,把x=5代入①得:y=5,方程组的解为55xy=⎧⎨=⎩;(2)21241x xx x>-⎧⎨+<-⎩①②,解不等式①,得:x13 >,解不等式①,得:x>1,不等式组的解集为:x>1.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.44.【详解】试题分析:用加减法解方程组,①×2+①求出x=2,代入①可求出y=3,.试题解析:解方程组:解:①×2得:③①+③得:把代入①得: 原方程组的解为考点:解二元一次方程组.45.(1)甲种奖品的单价为15元,乙种奖品的单价为10元(2)学校在商场最多能购买30个甲种奖品【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据“购买3个甲种奖品和2个乙种奖品共需65元;购买4个甲种奖品和3个乙种奖品共需90元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,根据总价=单价×数量,结合此次购买奖品的费用不超过600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,依题意得:32654390x y x y ⎧⎨⎩+=+=,解得:1510x y =⎧⎨=⎩, 答:甲种奖品的单价为15元,乙种奖品的单价为10元;(2)解:设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,依题意得:15×0.8m +10×0.8(60−m )≤600,解得:m ≤30,答:学校在商场最多能购买30个甲种奖品.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.46.(1)1个学习账号和1个错题半印设备的单价各是600元和1500元;(2)购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元【分析】(1)本题有两个相等关系:购买2个学习账号的费用+1个错题伴印设备的费用=2700元,购买3个学习账号的费用+2个错题伴印设备的费用=4800元,据此设未知数列方程组解答即可;(2)设购买学习账号m 个,总费用为W 元,先根据题意列出W 与m 的一次函数关系式,然后由伴印设备不低于账号数量的23可得关于m 的不等式,解不等式即可求出m 的取值范围,再根据一次函数的性质解答即可.【详解】解:(1)设1个学习账号和1个错题伴印设备的单价各是x 元和y 元,依据题意得: 22700324800x y x y +=⎧⎨+=⎩,解得:6001500x y =⎧⎨=⎩, 答:1个学习账号和1个错题伴印设备的单价各是600元和1500元.(2)设购买学习账号m 个,则购买伴印设备()45m -个,总费用为W 元,依据题意得:()60015004590067500W m m m =+-=-+, 由2453m m -≥,解得:27m ≤, 9000-<,∴W 随m 的增大而减小,①当m 取最大值27时,函数值W 最小,最小值为675002430043200-=,答:购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元.【点睛】本题考查了二元一次方程组、一元一次不等式和一次函数的应用,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.47.(1)2≤x <3;(2)11a a +-. 【分析】(1)分别解得各不等式的解集,再求出两个不等式的公共解集即可.(2)根据分式的混合运算法则进行化简即可.【详解】(1)31122(3)5x x x x -⎧+>⎪⎨⎪--≥⎩由3112x x -+> 得:x <3 由2(3)5x x --≥ 得:x≥2①不等式组的解集为:2≤x <3(2)原式=23(2)(2)2·22(1)a a a a a a -++⎡⎤+⎢⎥++-⎣⎦ =22122(1)a a a a -++- =a+1a-1【点睛】本题考查解不等式,分式的混合运算,熟练掌握不等式的解法及分式的运算法则是解题关键.48.(1)a >2 (2)2【详解】试题分析:(1)解不等式得出用a 表示的x 与y ,然后根据x >y >0得到不等式组,求得不等式组的解集可求得a 的范围;(2)根据绝对值的意义直接由(1)的结论可求得结果.试题解析:解:(1)3{25x y a x y a -=++=①②由①+①得3x=6a+3解得x=2a+1,把x=2a+1代入①可得y=a-2由x >y >0可得2a+1>a-2>0解不等式可得a >-3且a >2所以a 的取值范围为a >2(2)由a >2可知=a-(a-2)=a-a+2=2.考点:二元一次方程组,不等式组,绝对值49.该车行今年A 型车每辆销售价1600元,去年每辆销售价2000元;(2)当进A 型车20辆,B 型车40辆时,这批车获利最大.【详解】试题分析:(1)设今年A 型车每辆售价x 元,则去年售价每辆为y 元,根据题意建立方程组求出其解即可;(2)设今年新进A 型车a 辆,则B 型车(60-a )辆,获利W 元,由条件表示出W 与a 之间的关系式,由a 的取值范围就可以求出W 的最大值.。
2020年九年级中考数学 专题复习 分式方程及应用(含答案)

2020中考数学专题复习分式方程及其应用(含答案)一、选择题(本大题共5道小题)1. 小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本.设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=2. 分式方程=1的解是()A.x=1B.x=-1C.x=2D.x=-23. 解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x-2=3C.x-2=3(2x-1)D.x+2=3(2x-1)4. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=5. 已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2二、填空题(本大题共5道小题)6. 方程12x=2x-3的解是________.7. 方程+=1的解是.8. 一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km所用时间,与以最大航速逆流航行60 km所用时间相同,则江水的流速为km/h.9. 若关于x的分式方程+=2m有增根,则m的值为.10. 若关于x的分式方程+=2a无解,则a的值为.三、解答题(本大题共5道小题)11. 解方程:=1.12. 解分式方程:(1)=;(2)-1=.13. (1)解方程:x2-2x-1=0.(2)解方程组:(3)解分式方程:-1=.(4)解不等式组:并把解集在数轴上表示出来.14. 如图是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.15. 为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度. 2020中考数学专题复习分式方程及其应用-答案一、选择题(本大题共5道小题)1. 【答案】A[解析]本题考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.直接利用“小明和小丽买到相同数量的笔记本”,得=,故选A.2. 【答案】B[解析]去分母得,1=x+2,移项,合并同类项,得:x=-1,经检验,x=-1是原分式方程的解,∴x=-1,故选B.3. 【答案】C[解析]两边同时乘以(2x-1),得x-2=3(2x-1).故选C.4. 【答案】D5. 【答案】D[解析]解分式方程得x=m-3,∵方程的解是负数,∴m-3<0,∴m<3,∵当x+1=0,即x=-1时方程有增根,∴m-3≠-1,即m≠2.∴m<3且m≠2.故选D.二、填空题(本大题共5道小题)6. 【答案】x=-1【解析】化简12x=2x-3得x-3=4x,则-3x=3,所以x=-1,经检验x=-1是原方程的根.7. 【答案】x=-2[解析]原方程可化为=1,去分母,得(2x-1)(x+1)-2=(x+1)(x-1),解得x1=1,x2=-2,经检验x1=1是增根,x2=-2是原方程的解,∴原方程的解为x=-2.故答案为x=-2.8. 【答案】10[解析]设江水的流速为x km/h,根据题意可得:=,解得:x=10,经检验,x=10是原方程的根,且符合题意,所以江水的流速为10 km/h.9. 【答案】1[解析]分式方程去分母,得:x-2m=2m·(x-2),若原分式方程有增根,则x=2,得2-2m=2m(2-2),解得m=1.10. 【答案】或1[解析]去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,得a=;当1-2a≠0,x==3时,分式方程无解,得a=1,故关于x的分式方程=2a无解,则a的值为:1或.三、解答题(本大题共5道小题)11. 【答案】解:方程两边同时乘x(x-1)得,x2-2(x-1)=x(x-1),解得x=2.检验:当x=2时,x(x-1)≠0,∴x=2是原分式方程的解.∴原分式方程的解为x=2.12. 【答案】解:(1)去分母,得x+1=4(x-2),解得x=3,经检验x=3是原分式方程的解.所以方程的解为x=3.(2)方程两边同时乘(x-2)2得:x(x-2)-(x-2)2=4,解得x=4,检验:当x=4时,(x-2)2≠0.所以原方程的解为x=4.13. 【答案】解:(1)配方法:移项,得x2-2x=1,配方,得x2-2x+1=1+1,即(x-1)2=2,开方,得x-1=±,即x1=1+,x2=1-.公式法:a=1,b=-2,c=-1,Δ=b2-4ac=4+4=8>0,故方程有两个不相等的实数根,∴x===1±,即x1=1+,x2=1-.(2)②-①,得:3x=9,解得:x=3.把x=3代入①,得:3+y=1,解得:y=-2.∴原方程组的解为(3)方程左右两边同乘以3(x-1),得3x-3(x-1)=2x,3x-3x+3=2x,2x=3,x=1.5.检验:当x=1.5时,3(x-1)≠0,∴原分式方程的解为x=1.5.(4)解不等式①,得:x>-4;解不等式②,得:x≤0,∴不等式组的解集为-4<x≤0.将这个不等式组的解集表示在数轴上如图:14. 【答案】解:(1)∵冰冰是根据时间相等列出的分式方程,∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,∴y表示甲队修路400米(乙队修路600米)所需的时间.故答案为:甲队每天修路的长度甲队修路400米(乙队修路600米)所需的时间(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间; 庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20米.(选择一个即可)(3)选冰冰所列的方程:=,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,检验:当x=40时,x,x+20均不为零,∴x=40是分式方程的根.答:甲队每天修路的长度为40米.选庆庆所列的方程:=20,去分母,得:600-400=20y,将y的系数化为1,得:y=10,检验:当y=10时,分母y不为0,∴y=10是分式方程的根,∴=40.答:甲队每天修路的长度为40米.15. 【答案】解:设其他班的平均速度为x米/分,则九(1)班的平均速度为1.25x米/分,依题意得:=10,解得:x=80.经检验:x=80是所列方程的解.此时,1.25x=1.25×80=100.答:九(1)班的平均速度为100米/分,其他班的平均速度为80米/分.。
2020年中考数学二轮专题——分式方程的解法及应用(名校资料——含详解答案)

2020年中考数学二轮专题——分式方程的解法及应用(名校资料——含详解答案)2020年中考数学二轮专题——分式方程的解法及应用基础过关1. (2019淄博)解分式方程1-x x -2=12-x-2时,去分母变形正确的是( ) A. -1+x =-1-2(x -2)B. 1-x =1-2(x -2)C. -1+x =1+2(2-x )D. 1-x =-1-2(x -2)2. (2019哈尔滨)方程23x -1=3x的解为( ) A. x =311 B. x =113 C. x =37 D. x =733. (2019高新区二诊)关于x 的分式方程2x +3x -a=0的解为x =4,则常数a 的值为( ) A. a =1 B. a =2 C. a =4D. a =104. (2019新都区5月监测)若关于x 的方程x +2x +3=m x +3无解,则m 的值为( ) A. m =1B. m =-1C. m =2D. m =-25. (2019遂宁)关于x 的方程k 2x -4-1=x x -2的解为正数,则k 的取值范围是( ) A. k >-4 B. k <4C. k >-4且k ≠4D. k <4且k ≠-4 6. (2019苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽的买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( )A.15x =24x +3 B. 15x =24x -3 C. 15x +3=24x D. 15x -3=24x7. (2019十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成,现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务,设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B. 6000x +20-6000x =15C.6000x -6000x -15=20 D. 6000x -15-6000x =20 8. (2019荆州)已知关于x 的分式方程x x -1-2=k 1-x的解为正数,则k 的取值范围为( ) A. -2<0<="" p="">B. k >-2且k ≠-1C. k >-2D. k <2且k ≠19. (2019天水)分式方程1x -1-2x=0的解是____. 10. (2019齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为________. 11. (2019绵阳)一艘轮船在静水中的最大航速为30 km /h ,它以最大航速沿江顺流航行120 km 所用时间与以最大航速逆流航行60 km 所用时间相同,则江水的流速为________km /h .12. (2019安顺)某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均每亩产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为________.13. (2019随州)解关于x 的分式方程:93+x =63-x.14. (2019泰州)解方程:2x -5x -2+3=3x -3x -2.15. (2019自贡)解方程:x x -1-2x=1.16. (2019南京)解方程:x x -1-1=3x 2-1.17. 已知关于x 的分式方程m x -1+31-x=2. (1)若方程的解为-2,求m 的值;(2)若方程的解为正数,求出m 的取值范围.18. (2019常州)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?19. (2019云南)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.满分冲关1. (2019烟台)若关于x 的分式方程3x x -2-1=m +3x -2有增根,则m 的值为________.2. 若分式方程x +a x -1=a 无解,则a 的值为________.3. (2018成都黑白卷)若整数a 使得关于x 的不等式组a +x ≤2-3x 2x +13<2x +3恰好有3个整数解,且使关于x 的分式方程a x -1-2=x +31-x有正整数解,则符合条件的所有整数a 有________个.参考答案基础过关1. D 【解析】分式方程1-x x -2=12-x-2去分母,两边同乘以(x -2),得1-x =-1-2(x -2). 2. C 【解析】23x -1=3x , 2x x (3x -1)=3(3x -1)x (3x -1),∴2x =9x -3,∴x =37.经检验x =37是方程的解,∴方程的解为x =37. 3. D 【解析】∵分式方程2x +3x -a =0的解为x =4,∴把x =4代入到分式方程中得24+34-a=0,解得a =10,检验:当a =10时,4-a =-6≠0,∴a =10是24+34-a=0的解,∴常数a 的值为10. 4. B 【解析】方程去分母得,x +2=m ,则x =m -2,当分母x +3=0即x =-3时,方程无解,此时m -2=-3即m =-1时方程无解.5. C 【解析】方程两边同时乘2x -4可得,k -(2x -4)=2x ,整理可得x =k +44,∴k +44>0k +44≠2,解得k >-4且k ≠4.6. A 【解析】每本软面笔记本售价x 元,则每本硬面笔记本的售价为(x +3)元,∵小明用15元买软面笔记本和小丽用24元买硬面笔记本的数量相同,且两人的钱恰好全部用完,∴可列方程为15x =24x +3. 7. A8. B 【解析】∵x x -1-k 1-x =2,∴x +k x -1=2,∴x =2+k ,∵该分式方程有解,∴2+k ≠1,∴k ≠-1,∵x >0,∴2+k >0,∴k >-2,∴k >-2且k ≠-1.9. x =2 【解析】去分母得x -2(x -1)=0,去括号得x -2x +2=0,移项、合并同类项得-x =-2,系数化为1得x =2.10. a ≤4且a ≠3 【解析】方程左右两边同乘x -1,可得到2x -a +1=3x -3,化简4-a =x ,∵x 为非负数,∴4-a ≥0,即a ≤4.∵x ≠1,∴4-a ≠1,∴a ≤4且a ≠3.11. 10 【解析】设江水的流速为x km /h ,根据题意可得12030+x =6030-x,解得x =10,经检验得x =10是原分式方程的解,∴江水的流速为10 km /h .12. 36x -451.5x =20 【解析】原种植亩数为36x,改良后总产量为36+9=45,改良后亩产为1.5x ,改良后种植亩数为451.5x ,由题意可得方程36x -451.5x=20.13. 解:去分母得27-9x =18+6x ,移项合并同类项得15x =9,解得x =35,经检验x =35是原分式方程的解. 14. 解:去分母,得2x -5+3x -6=3x -3,解得x =4,检验:当x =4时,x -2=2≠0,∴x =4是原分式方程的解.15. 解:方程两边同乘以x (x -1)去分母得x 2-2(x -1)=x (x -1),去括号得x 2-2x +2=x 2-x ,解得x =2,检验:将x =2代入x (x -1)得2×(2-1)=2≠0,∴原分式方程的解是x =2.16. 解:方程两边同时乘(x -1)(x +1),得x (x +1)-(x -1)(x +1)=3.解得x =2.检验:当x =2时,(x -1)(x +1)≠0.∴原分式方程的解为x =2.17. 解:(1)原方程去分母得,m -3=2(x -1),把x =-2代入得m -3=2×(-2-1),解得m =-3;(2)把m -3=2(x -1)整理得,x =12(m -1),∵12(m -1)>0,∴m >1,又∵x -1≠0,即x ≠1,∴12(m -1)≠1,解得m ≠3,∴m 的取值范围为m >1且m ≠3.18. 解:设甲每小时做零件x 个,那么乙每小时做零件(30-x )个,根据题意可得,180x =12030-x,解得x =18,检验:当x =18时,x (30-x )≠0,∴x =18是原分式方程的解,且符合实际意义.∴30-x =12.答:甲每小时做18个零件,乙每小时做12个零件.19. 解:设甲校师生所乘大巴车的平均速度为x km/h ,则乙校师生所乘大巴车的平均速度为1.5 x km/h.根据题意得240x -2701.5x=1. 解得x =60,经检验,x =60是原分式方程的解,且符合题意.∴x =60,1.5x =90.答:甲、乙两所学校师生所乘大巴车的平均速度分别为60 km/h 和90 km/h.满分冲关1. 3 【解析】去分母,得3x -(x -2)=m +3,去括号,得3x -x +2=m +3,合并同类项,得2x =m +1,∴m =2x -1.∵原分式方程有增根,∴x -2=0.∴x =2.∴m =2x -1=2×2-1=3.2. ±1 【解析】两边同乘以x -1,得x +a =ax -a ,移项及合并同类项,得x (1-a )=-2a ,系数化为1,得x =-2a 1-a ,∵分式方程x +a x -1=a 无解,∴x -1=0或1-a =0,即x =1或a =1,∴1=-2a 1-a,得a =-1,∴a =±1.3. 2 【解析】解不等式组可得-2<x ≤2-a 4,∵恰好有3个整数解,∴1≤2-a 4<2,解得-6<a ≤-2,∴a 的值可为-5,-4,-3,-2;解分式方程得x =5+a ,∵分式方程有意义且有正整数解,∴5+a ≠1且5+a >0,即a ≠-4且a >-5,故符合条件的所有整数a 为-3或-2,共有2个.。
湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用(含解析)

湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用一.选择题(共19小题) 1.(2020•张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232x x -+=C .9232x x +-=D .2932x x -=+2.(2019•怀化)一元一次方程20x -=的解是( ) A .2x = B .2x =- C .0x = D .1x = 3.(2020•益阳)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( ) A .45x y =⎧⎨=-⎩ B .45x y =-⎧⎨=⎩ C .23x y =-⎧⎨=⎩ D .36x y =⎧⎨=-⎩4.(2019•邵阳)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .(72)161328x y x y +-=⎧⎨+=⎩C .716(132)28x y x y +=⎧⎨+-=⎩D .(72)16(132)28x y x y +-=⎧⎨+-=⎩5.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩6.(2020•邵阳)设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( )A .3B .32-C .32D .2-7.(2020•张家界)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2 B .4 C .8 D .2或4 8.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .2352035202600x x x ⨯--+=B .352035220600x x ⨯--⨯=C .(352)(20)600x x --=D .(35)(202)600x x --=9.(2020•怀化)已知一元二次方程240x kx -+=有两个相等的实数根,则k 的值为( ) A .4k = B .4k =- C .4k =± D .2k =± 10.(2019•湘潭)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = )A .4B .2C .1D .4- 11.(2019•湘西州)一元二次方程2230x x -+=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断 12.(2019•郴州)一元二次方程22350x x +-=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根13.(2019•淄博)若123x x +=,22125x x +=,则以1x ,2x 为根的一元二次方程是( ) A .2320x x -+= B .2320x x +-= C .2320x x ++=D .2320x x --=14.(2019•怀化)一元二次方程2210x x ++=的解是( )A .11x =,21x =-B .121x x ==C .121x x ==-D .11x =-,22x = 15.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(12)1x -=B .29(1)1x -=C .9(12)1x +=D .29(1)1x += 16.(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( )A .40050030x x =-B .40050030x x =+C .40050030x x =-D .40050030x x=+ 17.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .1209020x x =-B .1209020x x =+C .1209020x x =-D .1209020x x =+ 18.(2019•益阳)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( )A .23x +=B .23x -=C .23(21)x x -=-D .23(21)x x +=-19.(2019•株洲)关于x 的分式方程2503x x -=-的解为( )A .3-B .2-C .2D .3 二.填空题(共13小题) 20.(2020•株洲)关于x 的方程38x x -=的解为x = . 21.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 名. 22.(2019•湘西州)若关于x 的方程320x kx -+=的解为2,则k 的值为 . 23.(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 . 24.(2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 次.25.(2020•永州)方程组422x y x y +=⎧⎨-=⎩的解是 .26.(2020•邵阳)中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为 . 27.(2020•娄底)一元二次方程220x x c -+=有两个相等的实数根,则c = . 28.(2020•郴州)已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = . 29.(2020•永州)若关于x 的一元二次方程240x x m --=有两个不相等的实数根,则实数m 的取值范围是 .30.(2019•娄底)已知方程230x bx ++=,则方程的另一根为 . 31.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 步. 32.(2019•邵阳)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 . 三.解答题(共8小题)(2)该商场售完这500箱矿泉水,可获利多少元?34.(2019•怀化)解二元一次方程组:37,31x y x y +=⎧⎨-=⎩35.(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少? 36.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率. 37.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务? 38.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和95N 口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,95N 口罩花费9600元.已知购进一次性医用外科口罩的单价比95N 口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和95N 口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?39.(2020•郴州)解方程:24111x x x =+--.40.(2020•张家界)今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用一.选择题(共19小题) 1.(2020•张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232x x -+=C .9232x x +-=D .2932x x -=+【解答】解:依题意,得:9232x x -+=.故选:B . 2.(2019•怀化)一元一次方程20x -=的解是( ) A .2x = B .2x =- C .0x = D .1x = 【解答】解:20x -=, 解得:2x =. 故选:A . 3.(2020•益阳)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( ) A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩【解答】解:由题意得:9431x y x y -=⎧⎨+=⎩①②,由①得,9x y =+③,把③代入②得,4(9)31y y ++=,解得,5y =-,代入③得,954x =-=,∴方程组的解为45x y =⎧⎨=-⎩,故选:A . 4.(2019•邵阳)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .(72)161328x y x y +-=⎧⎨+=⎩C .716(132)28x y x y +=⎧⎨+-=⎩D .(72)16(132)28x y x y +-=⎧⎨+-=⎩【解答】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为(72)16(132)28x y x y +-=⎧⎨+-=⎩,故选:D . 5.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩【解答】解:由题意可得, 4.50.51y x y x =+⎧⎨=-⎩, 故选:A . 6.(2020•邵阳)设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( )A .3B .32-C .32D .2-【解答】解:由2320x x -+=可知,其二次项系数1a =,一次项系数3b =-,由根与系数的关系:12331b x x a -+=-=-=.故选:A . 7.(2020•张家界)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2 B .4 C .8 D .2或4 【解答】解:2680x x -+= (4)(2)0x x --=解得:4x =或2x =,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,此时三角形的底边长为2,故选:A . 8.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .2352035202600x x x ⨯--+=B .352035220600x x ⨯--⨯=C .(352)(20)600x x --=D .(35)(202)600x x --= 【解答】解:依题意,得:(352)(20)600x x --=. 故选:C . 9.(2020•怀化)已知一元二次方程240x kx -+=有两个相等的实数根,则k 的值为( ) A .4k = B .4k =- C .4k =± D .2k =±【解答】解:一元二次方程240x kx -+=有两个相等的实数根, ∴△2()4140k =--⨯⨯=, 解得:4k =±. 故选:C . 10.(2019•湘潭)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = ) A .4 B .2 C .1 D .4- 【解答】解:方程240x x c -+=有两个相等的实数根, ∴△2(4)411640c c =--⨯⨯=-=, 解得:4c =. 故选:A . 11.(2019•湘西州)一元二次方程2230x x -+=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法判断 【解答】解:1a =,2b =-,3c =, 244441380b ac ∴-==-⨯⨯=-<, ∴此方程没有实数根. 故选:C . 12.(2019•郴州)一元二次方程22350x x +-=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根 【解答】解:一元二次方程22350x x --=中, △23429(5)0=-⨯⨯->, ∴有两个不相等的实数根. 故选:B .13.(2019•淄博)若123x x +=,22125x x +=,则以1x ,2x 为根的一元二次方程是( ) A .2320x x -+= B .2320x x +-=C .2320x x ++=D .2320x x --=【解答】解:22125x x +=, 21212()25x x x x ∴+-=, 而123x x +=, 12925x x ∴-=, 122x x ∴=,∴以1x ,2x 为根的一元二次方程为2320x x -+=.故选:A .14.(2019•怀化)一元二次方程2210x x ++=的解是( ) A .11x =,21x =- B .121x x ==C .121x x ==-D .11x =-,22x =【解答】解:2210x x ++=, 2(1)0x ∴+=, 则10x +=,解得121x x ==-, 故选:C . 15.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(12)1x -=B .29(1)1x -=C .9(12)1x +=D .29(1)1x += 【解答】解:设这两年该地区贫困人口的年平均下降率为x ,根据题意得: 29(1)1x -=, 故选:B . 16.(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( )A .40050030x x =-B .40050030x x =+C .40050030x x =-D .40050030x x=+ 【解答】解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(30)x +万件产品,依题意,得:40050030x x =+. 故选:B . 17.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .1209020x x =-B .1209020x x =+C .1209020x x =-D .1209020x x =+ 【解答】解:由题意可得, 1209020x x =+, 故选:B .18.(2019•益阳)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( )A .23x +=B .23x -=C .23(21)x x -=-D .23(21)x x +=- 【解答】解:方程两边都乘以(21)x -,得 23(21)x x -=-, 故选:C .19.(2019•株洲)关于x 的分式方程2503x x -=-的解为( )A .3-B .2-C .2D .3 【解答】解:去分母得:2650x x --=, 解得:2x =-,经检验2x =-是分式方程的解, 故选:B .二.填空题(共13小题) 20.(2020•株洲)关于x 的方程38x x -=的解为x = 4 . 【解答】解:方程38x x -=, 移项,得38x x -=, 合并同类项,得28x =. 解得4x =. 故答案为:4. 21.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 23 名. 【解答】解:设女生有x 名,则男生人数有(217)x -名,依题意有 21752x x -+=, 解得23x =. 故女生有23名. 故答案为:23. 22.(2019•湘西州)若关于x 的方程320x kx -+=的解为2,则k 的值为 4 . 【解答】解:关于x 的方程320x kx -+=的解为2, 32220k ∴⨯-+=, 解得:4k =. 故答案为:4. 23.(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 2501030x y x y +=⎧⎨+=⎩ .【解答】解:依题意,得:2501030x y x y +=⎧⎨+=⎩.故答案为:2501030x y x y +=⎧⎨+=⎩.24.(2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次. 【解答】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: 1015110535x y y +=⎧⎨-⨯+=⎩, 整理得:10530x y y +=⎧⎨=⎩,解得:46x y =⎧⎨=⎩.故答案为:4.25.(2020•永州)方程组422x y x y +=⎧⎨-=⎩的解是 22x y =⎧⎨=⎩.【解答】解:422x y x y +=⎧⎨-=⎩①②,①+②得:36x =,即2x =, 把2x =代入①得:2y =, 则方程组的解为22x y =⎧⎨=⎩,故答案为:22x y =⎧⎨=⎩26.(2020•邵阳)中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为 (12)864x x += . 【解答】解:矩形的宽为x (步),且宽比长少12(步), ∴矩形的长为(12)x +(步). 依题意,得:(12)864x x +=. 故答案为:(12)864x x +=.27.(2020•娄底)一元二次方程220x x c -+=有两个相等的实数根,则c = 1 . 【解答】解:一元二次方程220x x c -+=有两个相等的实数根, ∴△224(2)40b ac c =-=--=, 解得1c =. 故答案为1.28.(2020•郴州)已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c =258. 【解答】解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.故答案为:258.29.(2020•永州)若关于x 的一元二次方程240x x m --=有两个不相等的实数根,则实数m 的取值范围是 4m >- .【解答】解:由已知得:△224(4)41()1640b ac m m =-=--⨯⨯-=+>, 解得:4m >-. 故答案为:4m >-.30.(2019•娄底)已知方程230x bx ++=【解答】解:设方程的另一个根为c , (52)3c +=,c ∴. 31.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 12 步. 【解答】解:设长为x 步,宽为(60)x -步, (60)864x x -=,解得,136x =,224x =(舍去), ∴当36x =时,6024x -=,∴长比宽多:362412-=(步), 故答案为:12. 32.(2019•邵阳)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 0 . 【解答】解:一元二次方程220x x m --=有两个不相等的实数根, ∴△440m =+>, 1m ∴>-; 故答案为0;三.解答题(共8小题)(2)该商场售完这500箱矿泉水,可获利多少元? 【解答】解:(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱, 依题意,得:500253514500x y x y +=⎧⎨+=⎩,解得:300200x y =⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(3525)300(4835)2005600-⨯+-⨯=(元). 答:该商场售完这500箱矿泉水,可获利5600元.34.(2019•怀化)解二元一次方程组:37,31x y x y +=⎧⎨-=⎩【解答】解:3731x y x y +=⎧⎨-=⎩①②,①+②得: 28x =,解得:4x =, 则431y -=, 解得:1y =,故方程组的解为:41x y =⎧⎨=⎩.35.(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少? 【解答】解:(1)设口罩日产量的月平均增长率为x ,根据题意,得 220000(1)24200x +=解得1 2.1x =-(舍去),20.110%x ==, 答:口罩日产量的月平均增长率为10%. (2)24200(10.1)26620+=(个).答:预计4月份平均日产量为26620个. 36.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【解答】解:设平均增长率为x ,根据题意列方程得 230(1)36.3x +=解得10.1x =,2 2.1x =-(舍)答:我国外贸进出口总值的年平均增长率为10%. 37.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务? 【解答】解:(1)设原来生产防护服的工人有x 人,由题意得,800650810(7)x x =-, 解得:20x =.经检验,20x =是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y 天才能完成任务. 8005820=⨯(套), 即每人每小时生产5套防护服.由题意得,106502051014500y ⨯+⨯⨯, 解得8y .答:至少还需要生产8天才能完成任务. 38.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和95N 口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,95N 口罩花费9600元.已知购进一次性医用外科口罩的单价比95N 口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和95N 口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?word 可编辑文档11 【解答】解:(1)设一次性医用外科口罩的单价是x 元,则95N 口罩的单价是(10)x +元,依题意有 1600960010x x =+, 解得2x =,经检验,2x =是原方程的解,1021012x +=+=.故一次性医用外科口罩的单价是2元,95N 口罩的单价是12元;(2)设购进一次性医用外科口罩y 只,依题意有212(2000)10000y y +-,解得1400y .故至少购进一次性医用外科口罩1400只.39.(2020•郴州)解方程:24111x x x =+--. 【解答】解:24111x x x =+--, 方程两边都乘(1)(1)x x -+,得(1)4(1)(1)x x x x +=+-+,解得3x =,检验:当3x =时,(1)(1)80x x -+=≠.故3x =是原方程的解.40.(2020•张家界)今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.【解答】解:设第一批购进的消毒液的单价为x 元,则第二批购进的消毒液的单价为(2)x -元, 依题意,得:200016002x x =-, 解得:10x =,经检验,10x =是原方程的解,且符合题意.答:第一批购进的消毒液的单价为10元.。
辽宁省2019年、2020年中考数学试题分类汇编(4)——方程的解法与应用(含答案)
2019年、2020年 辽宁省数学中考试题分类(4)——方程的解法与应用一.一元一次方程的应用(共1小题)1.(2019•阜新)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元B .180元C .200元D .220元二.二元一次方程组的解(共2小题)2.(2019•朝阳)关于x ,y 的二元一次方程组{mx +y =n x −ny =2m 的解是{x =0y =2,则m +n 的值为( )A .4B .2C .1D .03.(2020•朝阳)已知关于x 、y 的方程{2x +y =2a +1x +2y =5−5a 的解满足x +y =﹣3,则a 的值为 .三.解二元一次方程组(共3小题)4.(2020•沈阳)二元一次方程组{x +y =52x −y =1的解是 .5.(2019•铁岭)若x ,y 满足方程组{3x +y =17x −y =3,则x +y = .6.(2019•沈阳)二元一次方程组{3x −2y =3x +2y =5的解是 .四.由实际问题抽象出二元一次方程组(共3小题)7.(2020•锦州)某校计划购买篮球和排球共100个,其中篮球每个110元,排球每个80元.若购买篮球和排球共花费9200元,该校购买篮球和排球各多少个?设购买篮球x 个,购买排球y 个,根据题意列出方程组正确的是( ) A .{x +y =9200x80+y 110=100B .{x +y =9200x 110+y 80=100C .{x +y =10080x +110y =9200D .{x +y =100110x +80y =92008.(2020•葫芦岛)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( ) A .{x =y −22x +3y =400B .{x =y −22x +3(x +y)=400−50C .{x =y +22x +3y =400−50D .{x =y +22x +3(x +y)=400−509.(2019•大连)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 五.二元一次方程组的应用(共2小题)10.(2020•阜新)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元. (1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?11.(2020•大连)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?六.解一元二次方程-因式分解法(共1小题)12.(2020•营口)一元二次方程x 2﹣5x +6=0的解为( ) A .x 1=2,x 2=﹣3 B .x 1=﹣2,x 2=3 C .x 1=﹣2,x 2=﹣3 D .x 1=2,x 2=3七.根的判别式(共14小题)13.(2020•沈阳)一元二次方程x 2﹣2x +1=0的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C.没有实数根D.无法确定14.(2019•营口)若关于x的方程kx2﹣x−34=0有实数根,则实数k的取值范围是()A.k=0B.k≥−13且k≠0C.k≥−13D.k>−1315.(2019•朝阳)一元二次方程x2﹣x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断16.(2019•丹东)等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8B.9C.8或9D.12 17.(2020•锦州)若关于x的一元二次方程x2+kx+1=0有两个相等的实数根,则k的值为.18.(2020•鞍山)如果关于x的一元二次方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.19.(2020•辽阳)若关于x的一元二次方程x2+2x﹣k=0无实数根,则k的取值范围是.20.(2020•丹东)关于x的方程(m+1)x2+3x﹣1=0有两个实数根,则m的取值范围是.21.(2020•盘锦)若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是.22.(2020•葫芦岛)关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则k的取值范围是.23.(2019•铁岭)若关于x的一元二次方程ax2﹣8x+4=0有两个不相等的实数根,则a的取值范围是.24.(2019•抚顺)若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是.25.(2019•鞍山)关于x的方程x2+3x+k﹣1=0有两个相等的实数根,则k的值为.26.(2019•葫芦岛)若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a 的值是.八.由实际问题抽象出一元二次方程(共1小题)27.(2020•大连)我国南宋数学家杨辉所著《田亩比类乘除捷法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为 .九.由实际问题抽象出分式方程(共7小题)28.(2020•阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m 的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm 管道,根据题意,所列方程正确的是( ) A .3000x−3000(1+25%)x=30B .3000(1+25%)x−3000x=30C .3000(1−25%)x−3000x =30D .3000x−3000(1+25%)x=3029.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .50×80x =72x+5×40 B .40×80x =72x+5×50 C .40×72x−5=80x ×50D .50×72x−5=80x ×4030.(2020•鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( ) A .240x =300x−6B .240x =300x+6 C .240x−6=300xD .240x+6=300x31.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000x =4200x−80B .3000x +80=4200xC .4200x=3000x−80D .3000x=4200x+8032.(2019•辽阳)某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x 公里,根据题意列出的方程正确的是( ) A .60×(1+25%)x−60x=60 B .60x −60×(1+25%)x =60C .60(1+25%)x−60x=60 D .60x−60(1+25%)x=6033.(2019•本溪)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x 万元,根据题意,所列方程正确的是( ) A .360x =480140−x B .360140−x=480xC .360x+480x=140 D .360x−140=480x34.(2019•鞍山)为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知A 种树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用450元购买B 种树苗的棵数相同.若设A 种树苗的单价为x 元,则可列出关于x 的方程为 .一十.分式方程的应用(共9小题)35.(2019•盘锦)某班学生从学校出发前往科技馆参观,学校距离科技馆15km ,一部分学生骑自行车先走,过了15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是 km /h . 36.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?37.(2020•葫芦岛)某中学为了创设“书香校园”,准备购买A ,B 两种书架,用于放置图书.在购买时发现,A 种书架的单价比B 种书架的单价多20元,用600元购买A 种书架的个数与用480元购买B 种书架的个数相同. (1)求A ,B 两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?38.(2020•沈阳)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?39.(2020•丹东)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍.求八年级捐书人数是多少?40.(2019•阜新)节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?41.(2019•朝阳)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?42.(2019•丹东)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.43.(2019•沈阳)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?2019年、2020年 辽宁省数学中考试题分类(4)——方程的解法与应用参考答案与试题解析一.一元一次方程的应用(共1小题) 1.【解答】解:设这种衬衫的原价是x 元, 依题意,得:0.6x +40=0.9x ﹣20, 解得:x =200. 故选:C .二.二元一次方程组的解(共2小题) 2.【解答】解:把{x =0y =2代入得:{n =2−2n =2m ,解得:{m =−2n =2,则m +n =0, 故选:D .3.【解答】解:{2x +y =2a +1①x +2y =5−5a②,①+②,得 3x +3y =6﹣3a , ∴x +y =2﹣a , ∵x +y =﹣3, ∴2﹣a =﹣3, ∴a =5. 故答案为:5.三.解二元一次方程组(共3小题) 4.【解答】解:{x +y =5①2x −y =1②,①+②得:3x =6, 解得:x =2,把x =2代入①得:y =3, 则方程组的解为{x =2y =3.故答案为:{x =2y =3.5.【解答】解:{3x +y =17①x −y =3②,①+②得:4x =20, 解得:x =5,把x =5代入②得:y =2, 则x +y =2+5=7, 故答案为:76.【解答】解:{3x −2y =3①x +2y =5②,①+②得:4x =8, 解得x =2,把x =2代入②中得:2+2y =5, 解得y =1.5,所以原方程组的解为{x =2y =1.5.故答案为{x =2y =1.5.四.由实际问题抽象出二元一次方程组(共3小题) 7.【解答】解:由题意得:{x +y =100110x +80y =9200.故选:D .8.【解答】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .9.【解答】解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛, 根据题意得:{5x +y =3x +5y =2,故答案为{5x +y =3x +5y =2.五.二元一次方程组的应用(共2小题)10.【解答】(1)解:设购买酒精x 瓶,消毒液y 瓶, 根据题意列方程组,得{10x +5y =35010(1−30%)x +5(1−20%)y =260. 解得,{x =20y =30.答:每次购买的酒精和消毒液分别是20瓶,30瓶;(2)解:设能购买消毒液m 瓶,则能购买酒精2m 瓶, 根据题意,得 10×(1﹣30%)•2m +5(1﹣20%)•m ≤200, 解得:m ≤1009=1119.∵m 为正整数, ∴m =11.所以,最多能购买消毒液11瓶.11.【解答】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥, 依题意,得:{6x +15y =3608x +10y =440,解得:{x =50y =4.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥. 六.解一元二次方程-因式分解法(共1小题)12.【解答】解:(x ﹣2)(x ﹣3)=0, x ﹣2=0或x ﹣3=0, 所以x 1=2,x 2=3. 故选:D .七.根的判别式(共14小题)13.【解答】解:由题意可知:△=(﹣2)2﹣4×1×1=0, 故选:B .14.【解答】解:当k ≠0时,△=1+4k ×34=1+3k ≥0, ∴k ≥−13, ∴k ≥−13且k ≠0, 当k =0时,此时方程为﹣x −34=0,满足题意, 故选:C .15.【解答】解:∵△=(﹣1)2﹣4×(﹣1)=5>0, ∴方程有两个不相等的实数根. 故选:A .16.【解答】解:当等腰三角形的底边为2时,此时关于x 的一元二次方程x 2﹣6x +k =0的有两个相等实数根, ∴△=36﹣4k =0, ∴k =9, 此时两腰长为3, ∵2+3>3, ∴k =9满足题意,当等腰三角形的腰长为2时,此时x =2是方程x 2﹣6x +k =0的其中一根, ∴4﹣12+k =0, ∴k =8,此时另外一根为:x =4, ∵2+2=4, ∴不能组成三角形, 综上所述,k =9, 故选:B .17.【解答】解:∵关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根, ∴△=k 2﹣4=0, 解得:k =±2. 故答案为:±2.18.【解答】解:根据题意得△=(﹣3)2﹣4k =0, 解得k =94. 故答案为94.19.【解答】解:由题意可知:△=4+4k <0,∴k <﹣1,故答案为:k <﹣120.【解答】解:∵关于x 的方程(m +1)x 2+3x ﹣1=0有两个实数根,∴△=9+4(m +1)≥0,且m +1≠0,解得:m ≥−134且m ≠﹣1. 故答案为:m ≥−134且m ≠﹣1.21.【解答】解:根据题意得△=22﹣4m >0,解得m <1.故答案为m <1.22.【解答】解:∵关于x 的一元二次方程x 2﹣2x ﹣k =0有两个不相等的实数根, ∴△=(﹣2)2+4k >0,解得k >﹣1.故答案为:k >﹣1.23.【解答】解:由题意可知:△=64﹣16a >0,∴a <4,∵a ≠0,∴a <4且a ≠0,故答案为:a <4且a ≠024.【解答】解:由题意可知:△=4﹣4k ≥0,∴k ≤1,∵k ≠0,∴k ≠0且k ≤1,故答案为:k ≠0且k ≤1;25.【解答】解:根据题意得△=32﹣4×1×(k ﹣1)=0,解得k =134故答案为134.26.【解答】解:∵关于x 的一元二次方程x 2+(2+a )x =0有两个相等的实数根, ∴△=(2+a )2﹣4×1×0=0,解得:a =﹣2,故答案为:﹣2.八.由实际问题抽象出一元二次方程(共1小题)27.【解答】解:∵矩形的宽为x 步,且宽比长少12步,∴矩形的长为(x +12)步.依题意,得:x (x +12)=864.故答案为:x (x +12)=864.九.由实际问题抽象出分式方程(共7小题)28.【解答】解:设实际每天铺xm 管道,则原计划每天铺x 1+25%m 管道, 根据题意,得3000(1+25%)x −3000x =30, 故选:B .29.【解答】解:设班级共有x 名学生,依据题意列方程得,40×80x =72x+5×50. 故选:B .30.【解答】解:设甲每小时加工x 个零件,根据题意可得:240x =300x+6.故选:B .31.【解答】解:设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,依题意,得:3000x =4200x+80. 故选:D .32.【解答】解:设原计划每天修路x 公里,则实际每天的工作效率为(1+25%)x 公里, 依题意得:60x −60(1+25%)x =60. 故选:D .33.【解答】解:设甲型机器人每台x 万元,根据题意,可得:360x =480140−x , 故选:A .34.【解答】解:设A 种树苗的单价为x 元,则B 种树苗的单价为(x ﹣10)元,所以用600元购买A 种树苗的棵数是600x ,用450元购买B 种树苗的棵数是450x−10.由题意,得600x =450x−10. 故答案是:600x =450x−10.一十.分式方程的应用(共9小题)35.【解答】解:设骑车学生每小时走x 千米,据题意得:15x −151.5x =1560,解得:x =20,经检验x =20是原方程的解,答:骑车学生每小时行20千米.故答案是:20.36.【解答】解:设计划每天生产x 顶帐篷,则实际每天生产帐篷(1+25%)x 顶, 依题意得:10000x −10=10000(1+25%)x. 解得x =200.经检验x =200是所列方程的解,且符合题意.答:计划每天生产200顶帐篷.37.【解答】解:(1)设B 种书架的单价为x 元,根据题意,得600x+20=480x . 解得x =80.经检验:x =80是原分式方程的解.∴x +20=100.答:购买A 种书架需要100元,B 种书架需要80元.(2)设准备购买m 个A 种书架,根据题意,得100m +80(15﹣m )≤1400.解得m ≤10.答:最多可购买10个A 种书架.38.【解答】解:设原计划每天修建盲道xm ,则3000x −3000(1+25%)x =2,解得x =300,经检验,x =300是所列方程的解,答:原计划每天修建盲道300米.39.【解答】解:设八年级捐书人数是x 人,则七年级捐书人数是(x ﹣150)人,依题意有 1800x ×1.5=1800x−150, 解得x =450,经检验,x =450是原方程的解.故八年级捐书人数是450人.40.【解答】解:(1)设汽车行驶中每千米用电费用是x 元,则每千米用油费用为(x +0.5)元,可得:80x+0.5=30x ,解得:x =0.3,经检验x =0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm ,可得:0.3y +0.8(100﹣y )≤50,解得:y ≥60,所以至少需要用电行驶60千米.41.【解答】解:设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个, 依题意,得:810x+20=600x (1﹣10%),解得:x =40,经检验,x =40是所列分式方程的解,且符合题意,∴x +20=60.答:文具店购进A 种款式的笔袋60个,B 种款式的笔袋40个.42.【解答】解:(1)设甲步行的速度为x 米/分,则乙骑自行车的速度为4x 米/分,公交车的速度是8x 米/分钟,根据题意得40004x +2.5=800x +4000−8008x, 解得x =80.经检验,x =80是原分式方程的解.所以2.5×8×80=1600(m )答:乙到达科技馆时,甲离科技馆还有1600m .43.【解答】解:(1)设甲种树苗每棵x 元,根据题意得: 800x =680x−6,解得:x =40,经检验:x =40是原方程的解,答:甲种树苗每棵40元;(2)设购买乙种树苗y 棵,根据题意得:40(100﹣y )+34y ≤3800,解得:y ≥3313, ∵y 是正整数,∴y 最小取34,答:至少要购买乙种树苗34棵.。
2020年全国各地数学中考模拟试题精选50题(6)——方程的解法及应用
2020年全国各地数学中考模拟试题精选50题(6)——方程的解法及应用一、单选题1.(2020·温州模拟)《九章算术》有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其 23 的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲持钱为x 钱,乙持钱为y 钱,可列方程组( )A. {x +y =50x −12y =50B. {x +y =50x −23y =50C. {x −12y =50x −23y =50D. {x +12y =50y +23x =50 2.(2020·营口模拟)新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( ) A. 2×1000(26﹣x )=800x B. 1000(13﹣x )=800x C. 1000(26﹣x )=2×800x D. 1000(26﹣x )=800x 3.(2020·广西模拟)我图古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问人与车各几何?”意思是说“每三人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘.问人和车的数量各是多少?”若设有 x 个人,则可列方程是( )A. 3(x +2)=2x −9B. 3(x +2)=2x +9C. x 3+2=x−92D. x 3−2=x−92 4.(2020·顺义模拟)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为 x ,买鸡的钱数为 y ,可列方程组为( )A. {9x +11=y 6x +16=yB. {9x −11=y 6x −16=yC. {9x +11=y 6x −16=yD. {9x −11=y 6x +16=y5.(2020·朝阳模拟)方程组 {x −y =1,2x +y =5的解为( ) A. {x =2y =1 B. {x =1y =−2 C. {x =−1y =2 D. {x =−2y =16.(2020·白云模拟)用一条7米长的铝材(厚度忽略不计)制成一个面积为3平方米的矩形窗框,设窗框一边长为 x 米, 下列方程正确的是 ( )A. x(7−x)=3B. x(7−2x)=3C. x(3.5+x)=3D. x(3.5−x)=3 7.(2020·新疆模拟)如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪,要使草坪的面积为2400平方米,设道路的宽为X 米.则可列方程为( )A. (62−x)(42−x)=2400B. (62−x)(42−x)+x 2=2400C. 62×42−62x −42x =2400D. 62x +42x =2400 8.(2020·昌吉模拟)若关于x 的一元二次方程 (k −1)x 2+x +1=0 有两个实数根,则k 的取值范围是( )A. k ≤54B. k >54C. k <54且k ≠1D. k ≤54且k ≠19.(2020·黄冈模拟)已知 x 1 , x 2 是一元二次方程 x 2−mx +12m −4=0 的两个实数根且 1x 1+1x 2=0 ,则 m 的值为( ).A. 0或1B. 0C. 1D. -110.(2020·铁西模拟)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设现有x人,这个物品的价格是y元,则x、y满足的方程(组)是()A. 8x+3=7x﹣4B. y−38=y+47C. y+38=y−47D. {8y−3=x7y+4=x11.(2020·红花岗模拟)已知x1、x2是关于x的方程x2+mx﹣1=0的两根,下列结论一定正确的是()A. x1≠x2B. x1+x2<0C. x1•x2>0D. x1>0,x2<012.(2020·武威模拟)为了美化环境,某市加大对绿化的投资.2016年用于绿化投资20万元,2018年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意所列方程为()A. 20x2=25B. 20(1+x)=25C. 20(1+x)2=25D. 20(1+x)+20(1+x)2=2513.(2020·浙江模拟)学校有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小阳同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )A. (30-x)(20-x)=34×20×30 B. (30-2x)(20-x)=14×20×30C. 30x+2×20x=14×20×30 D. (30-2x)(20-x)=34×20×3014.(2020·杭州模拟)某商品原来每个售价400元,经过连续两次降价后,现在每个售价为256元,设平均每次下降的百分比为x,则()A. 400(1-2x)=256B. 400(1-x)2=256C. 400×2(1-x)=256D. 400(1+x)2=25615.(2020·杭州模拟)已知a+2=b-1,以下等式错误的是()A. 2a+2=a+b-1B. a-3=b-6C. -a+2=-b+1D. a+22= b−1216.(2020·梧州模拟)关于x的一元二次方程x2+2(k-1)x+k2-1=0有实数根,k的取值范围是()A. k≥1B. k>1C. k<1D. k≤117.(2020·梧州模拟)某景点的参观人数逐年增加,据统计,2017年为a万人次,2019年为b万人次,设参观人次的年平均增长率为x,则()A. a(1+x)=bB. a(1-x)=bC. a(1+x)2=bD. a[(1+x)+(1+x)2]=b18.(2020·台州模拟)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A. x+2x+4x=34685B. x+2x+3x=34685C. x+2x+2x=34685D. x+ 12x+ 14x=3468519.(2020·沙湾模拟)某服装店一月份营业额为10万元,一季度的营业额共48万元,若平均每月营业额的增长率为x,则根据题意可列方程为()A. 10(1+x)2=48B. 10(1+2x)=48C. 10(1+3x)=48D. 10[1+(1+x)+(1+x)2]= 4820.(2020·峨眉山模拟)我国南宋数学家杨辉曾提出这样一个问题:"直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步."如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是( )A. x(x+12)=864B. x(x-12)=864C. x2+12x=864D. x2+12x-864=0的一个解x的范围是( )A. 1.1<x<1.2B. 1.2<x<1.3C. 1.3<x<1.4D. 无法判定22.(2020·韶关期末)若关于x的一元二次方程x2-2x+m=0有实数根,则实数m的取值范围是()A. m<1B. m≤1C. m>1D. m≥l23.(2020·广东模拟)受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x ,则可列方程( )A. 300(1-x)2=260B. 300(1-x 2)=260C. 300(1-2x)=260D. 300(1+x)2=26024.某公司出售A ,B ,C 三种商品,前一阶段结帐时,商品C 的售出金额高达总金额的60%,预计目前阶段A ,B 两种商品售出金额要比前一阶段减少5%,因而商品C 更是推销重点,要想使现阶段售出的总金额比前一阶段增长10%,必须努力使商品C 的售出金额比前阶段增加百分之( ) A. 20 B. 25 C. 30 D. 3525.(2020·嘉兴模拟)已知 {x =2y =1 是方程组 {ax +by =1bx +ay =−4的解,则a+b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 5 26.(2020·嘉兴模拟)用配方法解方程x 2﹣6x ﹣4=0,下列配方正确的是( ) A. (x ﹣3)2=13 B. (x+3)2=13 C. (x ﹣6)2=4 D. (x ﹣3)2=5 27.(2020·扬州模拟)城市书房是扬州市从2015起打造的新生事物,至2019年底已建成36家城市书房.据调查:目前平均每月有10万人次走进城市书房阅读,扬州市民的综合阅读率位列全省第三.已知2017年底扬州城区共有18家城市书房,若2018、2019这两年城市书房数量平均每年增长的百分率相同,设平均每年增长的百分率为x ,则根据题意列出方程( )A. 36(1−x)2=18B. 18(1+x)2=36C. 10(1+x)2=18D. 2017(1−x)2=2019 28.(2020·宝安模拟)小天使童装店一件童装标价80元,在促销活动中,该件童装按标价的6折销售,仍可获利20%,则这种童装每件的进价为( )元。
中考数学《方程与不等式》专题训练50题(含参考答案)
中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。
(全国120套)2020年中考数学试卷分类汇编 列方程解应用题(一元二次方程)
(全国120套)2020年中考数学试卷分类汇编列方程解应用题(一元二次方程)1、〔2019•昆明〕如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,那么道路的宽应为多少米?设道路的宽为x米,那么可列方程为〔〕4、〔2019山西,9,2分〕王先生到银行存了一笔三年期的定期存款,年利率是4.25%,假设到期后取出得到本息和〔本金+利息〕33852元。
设王先生存入的本金为x 元,那么下面所列方程正确的选项是〔 〕A 、x+3×4.25%x=33825B 、x+4.25%x=33825C 、3×4.25%x=33825D 、3(x+4.25%x)=33825【答案】A【解析】一年后产生的利息为4.25%x ,三年后产生的利息为:3×4.25%x ,再加上本金,得到33852元,所以,A 是正确的。
5、〔2019•黔西南州〕某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该6、〔4-4一元二次方程·2019东营中考〕要组织一次篮球联赛,赛制为单循环形式〔每两队之间都赛一场〕,计划安排21场比赛,那么参赛球队的个数是〔 〕A. 5个B. 6个C. 7个D. 8个11.C.解析:设参赛球队有x 个,由题意得x(x-1)=21,解得,127,6x x ==-〔不合题意舍去〕,故共有7个参赛球队.7、(2019年广东湛江)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次下降%a 售价下调到每斤是5元,以下所列方程中正确的选项是〔 〕.A ()2121%5a += .B ()2121%5a -=.C ()1212%5a -= .D ()2121%5a +=解析:考查一元二次方程的实际应用,由原来每斤12元,第一次下降%a售价为:()121%a -,再下降%a 售价为:()()121%1%a a --, ()2121%5a ∴+=,∴选B8、〔2019甘肃兰州4分、10〕据调查,2018年5月兰州市的房价均价为7600/m 2,2019年同期将达到8200/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为〔 〕A 、7600〔1+x%〕2=8200B 、7600〔1﹣x%〕2=8200C 、7600〔1+x 〕2=8200D 、7600〔1﹣x 〕2=8200考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:2019年的房价8200=2018年的房价7600×〔1+年平均增长率〕2,把相关数值代入即可.解答:解:2019年同期的房价为7600×〔1+x 〕,2019年的房价为7600〔1+x 〕〔1+x 〕=7600〔1+x 〕2,即所列的方程为7600〔1+x 〕2=8200,应选C 、点评:考查列一元二次方程;得到2019年房价的等量关系是解决此题的关键.9、〔13年安徽省4分、7〕目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国数学中考试题精选50题(4)——方程的解法和应用一、单选题1.(2020·朝阳)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于,则这种品牌衬衫最多可以打几折?()A. 8B. 6C. 7D. 92.(2020·雅安)如果关于x的一元二次方程有两个实数根,那么的取值范围是()A. B. 且 C. 且 D.3.(2020·绵阳)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A. 160钱B. 155钱C. 150钱D. 145钱4.(2020·东营)中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A. 96里B. 48里C. 24里D. 12里5.(2020·滨州)对于任意实数k,关于x的方程的根的情况为()A. 有两个相等的实数根B. 没有实数根C. 有两个不相等的实数根D. 无法判定6.(2020·南县)同时满足二元一次方程和的x,y的值为()A. B. C. D.7.(2020·内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则正确的方程是()A. B. C. D.8.(2020·呼和浩特)中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A. 102里B. 126里C. 192里D. 198里9.(2020·呼和浩特)已知二次函数,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程的两根之积为()A. 0B.C.D.10.(2020·包头)下列命题正确的是()A. 若分式的值为0,则x的值为±2.B. 一个正数的算术平方根一定比这个数小.C. 若,则.D. 若,则一元二次方程有实数根.二、填空题11.(2020·丹东)关于的方程有两个实数根,则的取值范围是________.12.(2020·朝阳)已知关于x、y的方程的解满足,则a的值为________.13.(2020·泰州)方程的两根为、则的值为________.14.(2020·雅安)若,则________.15.(2020·眉山)设,是方程的两个实数根,则的值为________.16.(2020·淄博)已知关于x的一元二次方程x2﹣x+2m=0有两个不相等的实数根,则实数m的取值范围是________.17.(2020·威海)一元二次方程的解为________.18.(2020·东营)如果关于的一元二次方程有实数根,那么m的取值范围是________.19.(2020·呼伦贝尔)已知关于的一元二次方程有实数根,则m的取值范围是________.20.(2020·吉林)我国古代数学著作《算学启蒙》中有这样一个学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为________.21.(2020·永州)方程组的解是________.22.(2020·长春)如图,在平面直角坐标系中,点A的坐标为,点B的坐标为.若抛物线(h、k为常数)与线段交于C、D两点,且,则k的值为________.23.(2020·南通)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为________.24.(2020·南通)若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于________.25.(2020·宜宾)一元二次方程的两根为,则________26.(2020·内江)已知关于x的一元二次方程有一实数根为,则该方程的另一个实数根为________27.(2020·上海)如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是________.28.(2020·山西)如图是一张长,宽的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是的有盖的长方体铁盒.则剪去的正方形的边长为________ .29.(2020·通辽)有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了________个人.30.(2020·邵阳)中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为________.三、计算题31.(2020·凉山州)解方程:32.(2020·淄博)解方程组:33.(2020·丹东)某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量(件)与每件的售价(元)满足一次函数关系,部分数据如下表:售价(元/件) 60 65 70销售量(件)1400 1300 1200(1)求出与之间的函数表达式;(不需要求自变量的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为(元),那么售价定为多少元可获得最大利润?最大利润是多少?34.(2020·镇江)(1)(算一算)如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为________,AC长等于________;(2)(找一找)如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点________是这个数轴的原点;(3)(画一画)如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);(4)(用一用)学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;②写出a、m的数量关系.35.(2020·眉山)“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共棵,且柏树的棵数不少于杉树的2倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?36.(2020·凉山州)如图,已知直线(1)当反比例函数的图象与直线在第一象限内至少有一个交点时,求k的取值范围(2)若反比例函数的图象与直线在第一象限内相交于点、,当时,求k的值并根据图象写出此时关的不等式的解集37.(2020·东营)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种万只,且所有口罩当月全部售出,其中成本、售价如下表:型号甲乙价格(元/只)项目成本12 4售价18 6300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.38.(2020·滨州)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?39.(2020·鄂尔多斯)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元) 3x2﹣64x+400x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?40.(2020·赤峰)阅读理解:材料一:若三个非零实数x ,y ,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x ,y ,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.问题解决:(1)请你写出三个能构成“和谐三数组”的实数________;(2)若,是关于x的方程ax2+bx +c= 0 (a ,b ,c均不为0)的两根,是关于x的方程bx+c=0(b ,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m ,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.41.(2020·南县)“你怎么样,中国便是怎么样:你若光明,中国便不黑暗”。