离心泵特性曲线及其应用
泵离心泵的特性曲线1

1.1 15-80 1.5 2.0 1.8 20-110 2.5 3.3
0.3 0.42 0.55 0.5 0.69 0.91
8.5 8 7 16 15 13.5
26 34 34 25 34 35 2800 0.37 2.3 25 2800 0.18 2.3 17
1.8
20-160 2.5 3.3 25-110 2.8
头、轴功率与叶轮直径的关系可按切割定律进行
计算(叶轮直径变化<20%)(ns=80~300)
q' D' , q D H ' D' , H D
2
Pa' D' Pa D
3
0.5
0.69 0.91 0.78
32
32 30 16
19
25 23 34 2900 0.55 2.3 26 2900 0.75 2.3 29
离心泵转速的影响
当液体粘度不大且假设泵的效率不变,泵的转 速变化小于20%时,泵的流量、压头、轴功率与转 速的近似关系可按比例定律进行计算:
Q1 n1 , Q2 n2
q-η 、q- NPSH曲线。
IS100-80-125
泵特性曲线
离心泵特性曲线分析
低比转速 50~80
中比转速 80~150
高比转速 150~300
离心泵的各种形状
Ⅰ——驼峰曲线 Ⅱ——平坦特性曲线 Ⅲ——陡降特性曲线
离心泵性能表
流量 型号 扬程 (m) 效率 (%) 转速 (r/min) 电机功 率 (kw) 必需蚀余量 (NPSH)r 重量 (kg) (m3/h) (l/s)
化小于10%, 2、若用减速的方法来改变泵的性能,则转速变化不 超过20%
离心泵特性曲线

离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
它是离心泵的基本的性能曲线。
比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。
比转速在80~150之间的离心泵具有平坦的性能曲线。
比转数在150以上的离心泵具有陡降性能曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
上述曲线都是在一定的转速下,以试验的方法求得的。
不同的转速,可以通过公式进行换算。
在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。
通常,把这一组相对应的参数称为工作状况,简称工况或工况点。
对于离心泵最高效率点的工况称为最佳工况点。
泵在最高效率点工况下运行是最理想的。
但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。
要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。
为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。
我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。
我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。
为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。
各类型的泵均有各自的型谱,使用户选用水泵十分方便。
每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。
同一口径的泵扬程也按一定的间隔变化。
ISO 2858规定了标准的型谱。
离心泵的曲线

离心泵的曲线
离心泵的曲线是用来描述离心泵性能的一种图形表示。
它展示了离心泵在不同工况下的流量、扬程和效率之间的关系。
通常,离心泵的曲线包括以下几个主要参数:
1. 流量-Q:表示单位时间内通过泵的液体体积。
通常以立方米每小时(m³/h)或升每秒(L/s)来表示。
2. 扬程-H:表示泵能够提供的压力。
通常以米(m)为单位。
3. 效率-η:表示泵转化输入功率为输出功率的能力。
通常以百分比形式表示。
离心泵的曲线通常由以下几条线组成:
1. H-Q曲线(等速曲线):在恒定转速下,流量与扬程之间的关系曲线。
当流量增大时,扬程会逐渐降低。
2. η-Q曲线(效率曲线):在恒定转速下,效率与流量之间的关系曲线。
通常在设计流量附近效率较高,而在低流量和高流量处效率较低。
3. NPSHr曲线(净正吸入头曲线):表示给定流量下泵要求的最低净正吸入头。
当净正吸入头低于该值时,泵可能会产生气穴或性能下降。
4. NPSHa曲线(净正吸入头可利用余量曲线):表示给定流量下实际系统提供的净正吸入头与NPSHr之间的差值。
当可利用余量大于零时,系统运行正常。
不同型号和尺寸的离心泵有不同的曲线特征,根据具体工程要求选择合适的泵型和工作点是非常重要的。
离心泵的特性曲线与应用

1. 泵铭牌参数:效率最佳点下的性能参数,称为额定值。 转数n一定
2 .泵特性曲线标定条件:
思考:
20℃清水为工作介质, 大气压强为10mH2O。
离心泵启动,停泵时均关闭出口阀门,why? 3.因 qV 0 时 ,P ≠ 0(但最小),故启动泵时,应先关出口阀, 减小启动电流,保护电机。 4.停泵时也应先关出口阀,再关电机,为了防止高压液体倒流损 坏叶轮。
离心泵特性测定装置
特性曲线的试验求取:
2 2 P u P u zV V V H e zP P P h fV P g 2 g g 2 g
2 2 PP P u u V H e ( z P zV ) P V h fV P g 2g
与效率有关的各种能量损失
(1)容积损失:指泵的 液体泄露 所造成的损失。高压流体回流,
漏渗。内漏;
(2)水力损失:冲击、摩擦损失,环流损失; (3)机械损失:相对运动部件之间的摩擦损失。高速旋转的叶 轮表面与液体之间摩擦,泵轴与轴承、密封圈等机械部件之间 的摩擦。
二、离心泵的特性曲线与应用
泵的性能及相互之间的关系是正确选泵和进行流量调 节的依据。离心泵的主要性能参数有流量、压头、效 率、轴功率等。它们之间的关系常用特性曲线来表示。 特性曲线是在一定转速下,用20℃清水在常压下实验 测得的。 实验测定(a)由厂家提供 (b)曲线与叶轮转数有关,故图中应标明转数。
2、由于离心泵转速较高,所以流量较大。
4)额定流量: 离心泵铭牌上的流量是离心泵在最高效率下
的流量,
2、扬程H(离心泵的压头) 1)定义: 是指离心泵对单位重量(1N)液 体所提供的有效能量,表达式为: H = We /g。 2)单位:单位为J/N或m液柱。
水泵特性曲线

每 或1者k扬说g程水,(通当过H水A水泵)泵的表后流示其量:能为当量Q水的A时泵增,流值水量为泵为H能QA,时够, 供给每1kg水的能量为HA。
功率(NA)表示:当水泵的流量为QA 时,泵轴上所消耗的功率(kW)。
效率(ηA)表示:当水泵的流量为QA 时,水泵的有效功率占其轴功率的百分数 (%)。
所以: HT =
u2 g
(u2 -
QT F2
ctgβ2 )
式中β2 、F2 均为常数。当水泵转速一定时, u2也
为常数。
故:
HT = A – B QT
是一个直线方程。其斜率是用β2来反映的
β2> 90º时,HT = A + B QT
后弯式,上倾直线,扬程随流量的增加而减小。
β2= 90º时,径向式,是一条水平直线,扬程不
5、被输送液体的重力密度和粘度等对特性曲线的影 响。所输送的液体粘度愈大,泵内的能量损失愈 大,水泵的扬程和流量都要减小,效率要下降, 而轴功率增大。因此,如果被输送液体的粘度与 试验条件不符时, 则Q-H,Q-N,Q- η , Q-Hs要进行换算后才能使用,不能直接套用。
综上所述,从能量的传递角度来看,对 于水泵特性曲线
N随着Q的增大而增大,
闭闸启动:水泵启动前,压水管路闸阀是 全闭的,待电动机运转正常后,压力表读 数达到预定数值时,再逐步打开闸阀,使 水泵工作正常运行。
Q—N曲线,指的是水或某种特定液体时 的轴功率与流量之间的关系,抽升的液
体容重不同时,要换算
4、Q—Hs曲线 该曲线上各点的纵坐标,表示水泵在相应流量 下工作时,水泵做允许的最大限度的吸上真空高 度值。不表示水泵在某点(Q,H)点工作的实际 吸水真空值。实际的Hs必须小于Q—Hs曲线上的 相应值。
泵—离心泵的性能曲线

NPSHr-Q曲线是检查泵工作时是否发生汽蚀的依据,应全面考虑泵的安装高度、
入口阻力损失等,防止泵发生汽蚀现象。
例2-2:用清水测定一台离心泵的主要性能参数。实验中测得流量为10m3/h,泵出口 处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为 1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为 0.2m。试计算此在实验点下的扬程和效率。
见图2-35所示,M、D、C点都是离心泵的工作点。
图2-35 泵的工作点
二、工作点的类型
离心泵的性能曲线有平坦、陡降和驼峰三种,显然, 对于平坦和陡降性质的性能曲线,交点只有一个,该点 称为稳定工作点(M)。
对于驼峰性质的性能曲线,交点有两个(D、C), 但只有一个是稳定工作点(C),另一个工作点称为不稳 定工作点(D),泵只能在稳定工作点下工作。
图2-38 改变转速的调节
2. 特点
① 用这种方法调节流量,没有附加能量损失,所以是一种最经济的调节方法。
3. 驼峰H-Q曲线
具有这种性能的泵在运行中容易出现不稳定工况, 一般应在下降曲线部分操作。
图2-26 三种形状的H-Q曲线
四、离心泵性能曲线的应用
到目前为止,离心泵的性能曲线,还不能用理论计算方法精确确定,只能通过实验 获得。 离心泵的性能曲线,一般由泵的制造厂家提供,供使用部门选泵和操作时参考。
管路性能曲线
在石油化工生产中,泵和管路一起组成了一个输送系统。 能否保证泵在管路系统装置中处于最高效率点下运转,不仅取决于离心泵的性能特 性曲线,还与离心泵所在的管路特性曲线有关。
一、 管路性能曲线
所谓管路性能曲线是指使一定液体流过管路时,需 要从外界给予单位重量液体的能头HC(m)与管路液体 流量Q(m3/h)之间的关系曲线。
解析离心泵的特性曲线(图文)

图文解析离心泵的特性曲线一、离心泵的特性曲线定义当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η= φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。
离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。
严格意义上讲,每一台水泵都有特定的特性曲线。
在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。
在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。
在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。
二、影响离心泵特性曲线的因素离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。
1、叶轮出口直径对性能曲线的影响在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。
根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。
例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。
2、转速与性能曲线的关系同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:Q1/Q2 = n1/n2H1/H2 = (n1/n2)2Nl/N2 = (n1/n2)2三、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析由HT =中,将C2u = u2 - C2rctgβ2 代入,可得:HT =(u2 - C2rctgβ2)叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。
离心泵特性曲线

离心泵的特性曲线如下水泵的性能参数之间有一定的关系,例如流量,Q扬程,h轴功率,n速度,n效率。
它们之间的关系由一条曲线表示,该曲线称为泵的性能曲线。
水泵性能参数之间的相互变化关系和相互制约:首先,水泵的最高转速是前提。
泵性能曲线主要有3条曲线:流量扬程曲线,流量功率曲线和流量效率曲线。
这是离心泵的基本性能曲线。
比转速小于80的离心泵具有上升和下降的特性,称为驼峰性能曲线。
转速在80到150之间的离心泵具有平坦的性能曲线。
比转速大于150的离心泵具有陡峭的下降性能曲线。
一般来说,当流量较小时,扬程较高,并且随着流量的增加,扬程逐渐减小。
扩展数据工作原则离心泵的工作原理是:由于离心力的作用,离心泵可以将水送出。
在泵工作之前,泵体和进水管必须充满水以形成真空状态。
当叶轮快速旋转时,叶片推动水快速旋转。
旋转的水在离心力的作用下飞离叶轮。
泵中的水排出后,叶轮的中心部分形成真空区域。
在大气压(或水压)的作用下,水源水通过管网被压入进水管。
这样,可以实现连续泵送。
这里值得一提:启动离心泵之前,必须在泵壳内注满水,否则泵体会被加热,振动,出水量减少,泵损坏(简称为“气蚀”)并导致设备事故!离心泵的性能曲线包括流量扬程(Q-H)曲线,流量功率曲线(q-n),流量效率曲线(Q-H)和流量NPSHr(q-npshr)。
以上曲线是在一定速度下通过实验获得的。
可以通过公式转换不同的速度。
在性能曲线上,对于任何流量点,都可以找到一组相应的扬程,功率,效率和NPSH值。
通常,这组相应的参数称为工作条件,或简称为工作条件点。
离心泵的最高效率点的工作状态称为最佳工作状态点。
泵在最高效率点的运行是最理想的。
但是,用户所需的性能差异很大,这不一定与最高效率点下的性能一致。
为了使每个用户所需的泵在泵的最高效率点工作,它需要太多的泵规格。
因此,将范围(通常效率降低5%〜8%)定义为泵的工作范围。
我们可以使用叶轮切割或变频技术来扩大泵的工作范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离心泵特性曲线及其应用离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。
此图由泵的制造厂家提供,供使用部门选泵和操作时参考。
不同型号泵的特性曲线不同,但均有以下三条曲线:
(1)H-Q线表示压头和流量的关系;
(2)N-Q线表示泵轴功率和流量的关系;
(3)η-Q线表示泵的效率和流量的关系;
(4)泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n 值。
离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。
离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。
离心泵的性能曲线可作为选择泵的依据。
确定泵的类型后,再依流量和压头选泵。
例2-2用清水测定一台离心泵的主要性能参数。
实验中测得流量为10m3/h,泵出口处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为0.2m。
试计算此在实验点下的扬程和效率。
解泵的主要性能参数包括转速n、流量Q、扬程H、轴功率N和效率。
直接测出的参数为
转速n=2900r/min
流量Q=10m3/h=0.00278m3/s
轴功率N=1.07KW
需要进行计算的有扬程H和效率。
用式
计算扬程H,即
已知:
于是
二、影响离心泵性能的主要因素
1液体物理性质对特性曲线的影响
生产厂所提供的特性曲线是以清水作为工作介质测定的,当输送其它液体时,要考虑液体密度和粘度的影响。
(1)粘度当输送液体的粘度大于实验条件下水的粘度时,泵体内的能量损失增大,泵的流量、压头减小,效率下降,轴功率增大。
(2)密度离心泵的体积流量及压头与液体密度无关,功率则随密度增大而增加。
2离心泵的转速对特性曲线的影响
当液体粘度不大,泵的效率不变时,泵的流量、压头、轴功率与转速可近似用比例定律计算,即
式中:Q1、H1、N1离心泵转速为n1时的流量、扬程和功率。
Q2、H2、N2离心泵转速为n2时的流量、扬程和功率。
上面的一组公式称为比例定律。
当转速变化小于20%时,可认为效率不变,用上工进行计算误差不大。
若在转速为n1的特性曲线上多选几个点,利用比例定律算出转速为n2时相应的数据,并将结果标绘在坐标纸上,就可以得到转速为n2时的特性曲线。
3叶轮直径对特性曲线的影响
当泵的转速一定时,其扬程、流量与叶轮直径有关。
下面为切割定律。
式中:Q1、H1、N1离心泵转速为在D1时的流量、扬程和功率。
Q2、H2、N2离心泵转速为D2时的流量、扬程和功率。
本文来自:泵业公司网。