九年级下 二次函数 全章教案
二次函数的全章教案

26.1二次函数(一)一、学习目标1.知识与技能目标:(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。
二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。
三、教学过程(一)创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,写出y 与x 的关系。
问题2: n 边形的对角线数d 与边数n 之间有怎样的关系?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有 的形式。
问题5:什么是二次函数?形如 。
问题6:函数y=ax²+bx+c ,当a 、b 、c 满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?(三)尝试应用:例1. 关于x 的函数 是二次函数, 求m 的值.mm 221)x (m y --=注意:二次函数的二次项系数必须是的数。
例2.已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。
求这个二次函数的解析式.(待定系数法)(四)巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y=x-2+x.2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
二次函数的图象和性质课教案

二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。
2. 引导学生通过实际问题情境,感受二次函数的应用。
教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。
2. 通过实际问题情境,让学生观察二次函数的图象和性质。
教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。
2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。
教学评价:1. 检查学生对二次函数概念的理解程度。
2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。
第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。
2. 培养学生通过图象分析二次函数性质的能力。
教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。
2. 引导学生通过图象分析二次函数的增减性和最值问题。
教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。
2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。
教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。
2. 评估学生在图象分析中解决问题的能力。
第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。
2. 培养学生通过二次函数性质解决实际问题的能力。
教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。
2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。
教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。
2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。
教学评价:1. 检查学生对二次函数顶点公式的掌握程度。
2. 评估学生在实际问题中应用二次函数性质解决问题的能力。
华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3一. 教材分析华师大版数学九年级下册《26.1 二次函数》是学生在初中阶段学习二次函数的起始章节,它是在学生已经掌握了函数概念、一次函数和二次方程的基础上进行的。
本节课的主要内容是介绍二次函数的定义、性质和图像,以及二次函数的顶点公式。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握二次函数的知识,为学生进一步学习高中数学打下坚实的基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数概念、一次函数和二次方程有一定的了解。
但二次函数相对于一次函数来说,其图像和性质更加复杂,需要学生通过实例和练习来进一步理解和掌握。
此外,学生的学习兴趣和动机对他们的学习效果有很大影响,因此教师需要设计有趣的教学活动来激发学生的学习兴趣。
三. 教学目标1.知识与技能:使学生理解和掌握二次函数的定义、性质和图像,能够运用二次函数的知识解决实际问题。
2.过程与方法:通过实例和练习,培养学生的观察能力、推理能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:二次函数的定义、性质和图像。
2.难点:理解二次函数的顶点公式,并能运用其解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考和探索;通过分析具体案例,使学生理解和掌握二次函数的知识;通过小组合作,培养学生的合作意识和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪和黑板。
3.准备教案和教学笔记。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索二次函数的概念。
例如:“什么是二次函数?它与一次函数有什么区别?”2.呈现(10分钟)通过分析具体案例,使学生理解和掌握二次函数的定义、性质和图像。
例如,展示一个二次函数的图像,引导学生观察其特点。
二次函数整章教案

二次函数整章教案一、教学目标1. 理解二次函数的定义及其一般形式;2. 掌握二次函数的性质,包括开口方向、对称轴、顶点坐标等;3. 学会使用配方法、公式法求解二次方程;4. 能够运用二次函数解决实际问题,提高解决问题的能力。
二、教学内容1. 二次函数的定义与一般形式1.1 二次函数的定义1.2 二次函数的一般形式2. 二次函数的性质2.1 开口方向2.2 对称轴2.3 顶点坐标3. 求解二次方程3.1 配方法3.2 公式法4. 二次函数的实际应用4.1 线性增长与减少4.2 抛物线与坐标系三、教学重点与难点1. 重点:二次函数的定义、性质及实际应用;2. 难点:二次方程的求解方法,特别是配方法的应用。
四、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像与性质;3. 运用实例分析法,培养学生解决实际问题的能力。
五、教学步骤1. 引入二次函数的概念,引导学生了解二次函数的一般形式;2. 探究二次函数的性质,如开口方向、对称轴、顶点坐标等;3. 讲解配方法求解二次方程,引导学生掌握求解二次方程的方法;4. 介绍公式法求解二次方程,让学生理解公式法的基本原理;5. 运用实例分析,让学生学会将二次函数应用于实际问题中。
本教案为二次函数整章教案的第一个部分,后续章节将依次介绍二次函数的图像、二次函数的变换、二次函数与几何图形的关系、二次函数在实际问题中的应用等内容。
六、教学评价1. 通过课堂提问、作业批改等方式,了解学生对二次函数定义、性质的掌握情况;2. 结合课后练习,评估学生运用配方法、公式法求解二次方程的能力;3. 鼓励学生参与实例分析,评价其在实际问题中运用二次函数解决问题的能力;4. 综合评价学生对本章内容的掌握程度,为后续教学提供参考。
七、教学拓展1. 介绍二次函数在数学领域的其他应用,如最小二乘法、插值法等;2. 引导学生探究二次函数与其他数学概念的联系,如导数、积分等;3. 组织学生进行二次函数相关的课题研究,提高学生的探究能力。
人教版九年级数学22章二次函数全章教案

第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
(二)本章课时安排本章教学时间约需15课时 ,具体安排如下:22.1节 二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动 小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。
苏科版九年级下第五章二次函数全章教案

教学目标:1.了解二次函数的定义和基本性质。
2.掌握二次函数的图像、顶点坐标和轴对称性。
3.能够利用二次函数的性质解决实际问题。
教学重点:1.掌握二次函数的图像和平移、伸缩与翻折变换。
2.理解二次函数顶点的坐标和轴对称性。
教学难点:1.能够利用二次函数的性质解决实际问题。
教学准备:1.教师准备PPT、教辅材料和实例题。
教学过程:Step 1:引入知识(接近教材内容,激发学生学习兴趣)(10分钟)教师出示一张瓶盖的图片,问学生如何用函数的形式描述这张瓶盖的形状。
引导学生思考并提出可能答案。
Step 2:二次函数的定义(15分钟)1.教师给出二次函数的定义,并进行解释。
2.教师通过实例图形展示不同二次函数的图像变化情况,引导学生感受二次函数图像的特点。
Step 3:二次函数的图像及性质(30分钟)1.教师通过PPT展示二次函数图像的基本形状,并结合实例讲解二次函数图像的平移、伸缩和翻折变换。
2.提醒学生注意区分顶点坐标、轴对称性和对称轴等概念,并通过题目演示讲解。
Step 4:练习与巩固(25分钟)1.教师出示一些练习题,让学生进行思考并解答。
2.学生完成课堂练习册上的相应习题,教师巡视并指导解题思路。
3.整理解题方法,强调要注意题目中给出的信息和要求。
4.针对一些较难的题目,教师进行讲解,并展示详细解题过程。
Step 5:运用二次函数解决实际问题(20分钟)1.教师出示几个实际问题,要求学生利用二次函数的性质进行解答。
2.学生个别或小组合作进行探究,然后进行展示和讨论,教师对不同答案进行引导和总结。
Step 6:拓展应用(15分钟)教师提供一些拓展应用题,让学生进行思考和解答,并进行讲解和总结。
Step 7:归纳和小结(10分钟)1.教师巩固学生对二次函数的基本概念和性质的理解,合理安排回顾本节课的重点内容。
2.学生复述、总结本节课所学重点内容,并和教师一起检查答案。
教学反思:通过本节课的教学,我发现学生对二次函数的定义和图像变化有了一定的理解。
二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
二次函数整章教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校二次函数教学目标1、经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2、会用二次函数的定义解决简单的问题。
教学难点会用二次函数的定义解决简单的问题 教学过程(一)情境导入y=-5x ²+100x+60000,y=100x ²+200x+100 . s= -a²+30a . 定义:一般地,形如y=ax ²+bx+c 的函数叫做x 的二次函数. (二)实践与探索11.下列函数中,哪些是二次函数?(1)y=3(x-1)²+1 (3) s=3-2t ²(5)y=(x+3)²-x ² (6)v=10πr ² (7) y=x ²+x ³+25 (8)y=2²+2x2、圆的半径是1cm,假设半径增加xcm 时,圆的面积增加ycm ². (1)写出y 与x 之间的函数关系表达式;(2)当圆的半径分别增加1cm, 2cm 时,圆的面积增加多少?3、已知二次函数 ,当x=1时,y=0,当x=4时,y=-21,求b,c 的值。
(三)实践与探索2、已知函数k kx x k y -+-=2)2((1) k 为何值时,y 是x 的一次函数? (2)k 为何值时,y 是x 的二次函数?2、用总长为60m 的篱笆围成矩形场地,场地面积S(m ²)与矩形一边长a(m)之间的关系是什么?3、设人民币一年教育储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税). (四)小结与作业1.定义:一般地,形如y=ax ²+bx+c(a,b,c 是常数,a ≠0)的函数叫做x 的二次函数. y=ax ²+bx+c(a,b,c 是常数,a ≠0)的几种不同表示形式: (1)y=ax ²(a ≠0,b=0,c=0,). (2)y=ax ²+c(a ≠0,b=0,c ≠0). (3)y=ax ²+bx(a ≠0,b ≠0,c=0).2.定义的实质是:ax ²+bx+c 是整式,自变量x 的最高次数是二次,自变量x 的取值范围是全体实数..1).2(x x y +=.1).4(2x x y -=c bx x y ++-=2二次函数的图像和性质(1)教学目标1、会用列表描点法画二次函数2ax y =的图像;2、理解与二次函数的有关概念(抛物线、对称轴、顶点等 ),体会研究问题的数学途径和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 二次函数所描述的关系一、由实际问题探索二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?其中哪些是自变量?哪些因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+z)(600—5x)=-5x2+100x+60000.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?我们可以列表表示橙子的总产量随橙子树的增加而变化情况.你能根据表格中的数据作出猜测吗?自己试一试.三.做一做银行的储蓄利率是随时间的变化而变化的。
也就是说,利率是一个变量.在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).四、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数(quadratic function)注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为零。
例如,y=一5x 2+100x+60000和y=100x 2+200x+100都是二次函数.我们以前学过的正方形面积A 与边长a 的关系A=a 2,圆面积s 与半径r 的关系s=Try 2等也都是二次函数的例子. 随堂练习1.下列函数中(x,t 是自变量),哪些是二次函数? y=-21+3x ².y=21x ²-x ³+25,y=2²+2x,s=1+t+5t ² 2.圆的半径是l ㎝,假设半径增加x ㎝时,圆的面积增加y ㎝². (1)写出y 与x 之间的关系表达式;(2)当圆的半径分别增加lcm 、2㎝、2㎝时,圆的面积增加多少?五、课时小结1.经历探索和表示二次函数关系的过程,猜想并归纳二次函数的定义 及一般形式。
2.用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多。
六、活动与探究若mmx m m y -+=2)(2是二次函数,求m 的值.七、作业 习题2.11.物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t², 填 表表示物体在前5s 下落的高度:⒉某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m 。
(1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示? (2)如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y 的表达式是什么?§2.1 二次函数所描述的关系一、教学目标(一)知识与能力:1.探索并归纳二次函数的定义;2.能够表示简单变量之间的二次函数关系.(二)过程与方法:1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的关系;2.能够利用尝试求值的方法解决实际问题.(三)情感态度与价值观:把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.(四)教学重点:经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验;能够表示简单变量之间的二次函数关系.(五)教学难点:用二次函数表示变量之间关系.二、教学设计(一)复习引入回忆学过的函数类型-一次函数(正比例函数)、反比例函数、三角函数;函数定义-在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.本节课我们将开始学习初中阶段的最后一个函数二次函数.(二)新课1、由实际问题探索二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?其中哪些是自变量?哪些因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+x)(600—5x)=-5x2+100x+60000.提出问题:判断上式中的y是否是x的函数?若是,与我们前面所学的函数相同吗?(根据函数的定义,y是x的函数,从形式上看不同于我们所学函数,猜测是二次函数)2、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?我们可以列表表示橙子的总产量随橙子树的增加而变化情况.你能根据表格中的数据作出3、做一做银行的储蓄利率是随时间的变化而变化的。
也就是说,利率是一个变量.在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税):22100(1)100200100y x x x =+=++.如果考虑利息税,那么22100(180%)64160100y x x x =+=++.4、二次函数的定义一般地,形如y =ax 2+bx+c(a ,b ,c 是常数,a ≠0)的函数叫做x 的二次函数. 注意:定义中只要求二次项系数a 不为零(必须存在二次项),一次项系数b 、常数项c 可以为零。
最简单形式的二次函数-2(0)y ax a =≠例如,y =-5x 2+100x+60000和y =100x 2+200x+100都是二次函数.我们以前学过的正方形面积A 与边长a 的关系2A a =,圆面积s 与半径r 的关系2s r π=等也都是二次函数的例子.(三)随堂练习 P36 1、2 (四)小结1.二次函数的一般形式:2(0)y ax bx c a =++≠; 2.用尝试求值的方法探索函数的最大值. (五)作业 习题2.1 (六)教学反思.2.2 结识抛物线一、函数y=x 2的图象.在二次函数y=x 2中,y 随x 的变化而变化的规律是什么?你想直观地了解它的性质吗? 先作二次函数y=x 2的图象.(1)观察y= x 2的表达式,选择适当的x 值,并计算相应的y 值,完成下表:(2)在直角坐标系中描点.(3)用光滑的曲线连接各点,便得到函数y=x2的图象.二、议一议对于二次函数y=x2的图象,(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?(3)当x<0时,随着x值的增大,y的值如何变化?当x>0时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流.三、二次函数y=x²的图象的性质(1)抛物线的开口向上;(2)它的图象有最低点,最低点的坐标是(0,0);(3)它是轴对称图形,对称轴是y轴。
在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大。
(4)图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0);(5)因为图像有最低点,所以函数有最小值,当x=0时,四.做一做二次函数的图象y=-x²是什么形状?先想一想,然后作出它的图象.它与二次函数y=x²的图象有什么关系?与同伴交流。
五.课时小结1.作二次函数y=x2的图象2.作二次函数y=-x2的图象3.函数y=x²与y=-x²的图象的比较六.作业1.说说自己生活中遇到的哪些动物和植物身体的部分轮廓线呈抛物线形状。
2.设正方形的边长为a,面积为s,试作出S随a的变化而变化的图象。
结识抛物线教学设计河北省鹿泉市上庄镇中学刘敬川义务教育课程标准试验教科书九年级下册 P38----P41教材与学生现实分析:1、本节课要使学生明了y=ax2的图象是抛物线,这是研究一般二次函数图象的基础,通过列表及画图,使学生理解y=ax2的性质。
2、本节课一开始直接给学生出示y=x2,并作图及观察性质,这样,让学生能通过运用过去的知识经验去发现新知识,解决新知识,从而实现由掌握到迁移运用的过程。
3、通过本节课的议一议,做一做,练一练等知识的加深,真正让学生自己通过探究,有所收获,并进一步提高学生的观察、交流、概括、总结及表达的能力,而且更进一步让学生体会到数、形的转化。
一、教学目标1、经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。
2、能够利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质。
3、能够作出二次函数y=-x2的图象,并能够比较与y=x2的图象的异同,初步建立二次函数表达式与图象之间的联系。
二、教学重点会画y=ax2的图象,理解其性质。
三、教学难点描点法画y=ax2的图象,体会数与形的相互联系。
四、教学过程(一)创设情景在研究一种函数时,它的图象和性质对我们来说非常重要。
今天我们就来结识二次函数的图象。
请同学们自己先试着画出二次函数y=x2的图象。
(设计说明:学生们过去已熟知了画函数图象的方法:①列表、②描点、③连线。
因此在这一问题上教师不作过多提示,完全把这跳一跳,摸得着的问题完全交给学生。
)让学生板书:出现的问题让学生去找出,纠正;教师用“z+z”加以验证,并帮助学生给二次函数图象命名,“二次函数的图象称为抛物线。
”(二)议一议:请同学们观察y=x2的图象的性质,然后分组探讨。
(设计说明:在此问题上,教师没有按课本上的问题一一叠列给学生,而是尽量充分发挥学生的观察能力;再者学生已研究过正比例函数、一次函数、反比例函数,已经积累了一定的研究函数图象的方法和能力,积累了研究函数图象要“研究什么”的经验,有了一定“模式”,即:①图象形状:抛物线(由教师给出)②与x、y轴交点;③ y随x的增减性;④图象的对称性。
及系数与图象的关系。
请每组的学生代表一一发表自己的观察结果,(在此过程中,教师不能作裁判,把评判权交给学生,注意培养学生语言的规范化、条理化。