山东省临沂市沂南县2017-2018学年高一上学期期末考试数学试题+答案
2017-2018学年山东省临沂市沂南县高一(上)期末数学试卷(解析版)

2017-2018学年山东省临沂市沂南县高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=()A. 2,3,4,B. 2,3,4,C. 2,D.2.若直线l∥平面α,直线a⊂α,则l与α的位置关系是()A. B. l与异面C. l与相交D. l与没有公共点3.已知直线在两个坐标轴上的截距之和等于10,则实数的值为()A. 2B. 3C. 4D. 54.圆心为(-2,3),且与y轴相切的圆的方程是()A. B.C. D.5.设函数,若f(f(0))=4a,则实数a等于()A. 1B. 2C. 3D. 46.已知△ABC的顶点A(0,1),B(4,3),C(1,-1),则AB边上的中线方程是()A. B. C. D.7.已知三条直线a,b,c及平面α,具备以下哪一条件时a∥b?()A. ,B. ,C. ,,D. ,8.已知函数,若函数y=f(x)-m有两个不同的零点,则m的取值范围为()A. B. C. D.9.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于()A. B. C. D.10.若f(ln x)=3x+4,则f(x)的表达式是()A. B. C. D.11.已知函数在R上单调递增,则实数a的取值范围为()A. B. C. D.12.在平面直角坐标系xOy中,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C:x2+y2-8x+15=0有公共点,则实数k的最大值为()A. 0B.C.D. 3二、填空题(本大题共4小题,共20.0分)13.(lg5)2+lg2×lg5+lg2=______.14.函数的定义域为______.15.直线l1:3x+4y-2=0与l2:6x+8y+1=0的距离是______.16.已知函数y=log a(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则f(log32)=______.三、解答题(本大题共6小题,共70.0分)17.已知集合,B={x|2m-1≤x≤m+3}.(1)当m=1时,求(∁R B)∩A;(2)若A⊆B,求实数m的范围.18.已知函数f(x)=x2+bx+c满足f(0)=f(2),方程f(x)+8=0有两个相等的实数根.(1)求b,c的值;(2)求函数f(x)在区间[-1,4]的最大值和最小值.19.在△ABC中,已知点B的坐标为(2,3),BC边上的高所在直线的方程为2x-y-1=0.(1)求边BC所在直线的方程并化为一般式;(2)若∠A的平分线所在直线的方程为x+y=2,求边AB的长度.20.某工厂某种产品的年固定成本为250万元,每生产x件,需另投入成本C(x),当年产量不足80件时,C(x)=+10x(万元),当年产量不少于80件时,C(x)=52x-1450(万元),每件商品售价50万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(件)的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?21.已知圆C的方程:x2+y2-2x-4y+m=0(1)求m的取值范围;(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=,求m的值.22.如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB B1C.(1)求证:平面ABB1A1平面BB1C1C;(2)若AB=2,求三棱锥B1-ABC的体积.答案和解析1.【答案】D【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},∴∁U Q={1,2,6},又P={1,2,3,4},∴P∩(C U Q)={1,2}故选:D.由题意,可先由已知条件求出C U Q,然后由交集的定义求出P∩(C U Q)即可得到正确选项.本题考查交、并、补的运算,解题的关键是熟练掌握交、并、补的运算规则,准确计算.2.【答案】D【解析】解:∵直线l∥平面α,∴若直线l与平面α无公共点又∵直线a⊂α∴直线l与直线a无公共点.故选:D.直线l∥平面α,则有若直线l与平面α无公共点,则有直线l与直线a无公共点.本题主要考查线与线的位置关系,在解题中灵活运用了公共点的个数求解.3.【答案】A【解析】【分析】本题考查直线x-3my-12=0在两个坐标轴上截距之和,考查学生的计算能力,比较基础.利用直线x-3my-12=0在两个坐标轴上的截距之和等于10,建立方程,即可求出实数m的值.【解答】解:令x=0,可得y=-,令y=0,可得x=12,∵直线x-3my-12=0在两个坐标轴上的截距之和等于10,∴12-=10,∴m=2,故选A.4.【答案】A【解析】解:根据圆心坐标(-2,3)到y轴的距离d=|-2|=2,则所求圆的半径r=d=2,所以圆的方程为:(x+2)2+(y-3)2=4,化为一般式方程得:x2+y2+4x-6y+9=0.故选:A.根据直线与圆相切时圆心到直线的距离等于圆的半径,由圆心的坐标求出圆心到y轴的距离即横坐标的绝对值为圆的半径,然后由圆心坐标和圆的半径写出圆的方程即可.此题考查学生掌握直线与圆相切时所满足的条件,会根据圆心与半径写出圆的方程,是一道基础题.5.【答案】B【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2,故选:B.由题意直接先求解f(0)然后将其代入,由此可以得到一个关于a的一元一次方程,解方程即可得到a值.本题考查函数值的求法,方程的零点的求解,是基本知识的考查.6.【答案】C【解析】解:线段AB的中点M(2,2),k CM==3,可得:AB边上的中线方程是y-2=3(x-2),化为:3x-y-4=0,故选:C.利用中点坐标公式、斜率计算公式及其点斜式即可得出.本题考查了中点坐标公式、斜率计算公式及其点斜式,考查了推理能力与计算能力,属于基础题.7.【答案】D【解析】解:在A中,∵a∥α,b∥α,∴a,b相交、平行或异面,故A错误;在B中,∵a c,b c,∴a,b相交、平行或异面,故B错误;在C中,∵a c,cα,b∥α,∴a,b相交、平行或异面,故C错误;在D中,∵aα,bα,∴由线面垂直的性质定理得a∥b,故D正确.故选:D.在A中,a,b相交、平行或异面;在B中,a,b相交、平行或异面;在C中,a,b 相交、平行或异面;在D中,由线面垂直的性质定理得a∥b.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.8.【答案】C【解析】解:函数的图象如下图所示,由图可得:当0<m<1时,函数的图象与直线y=m有两个交点,即函数y=f(x)-m有两个不同的零点,故选:C.画出函数的图象,据图象判断可得答案.本题考查了函数的图象性质,方程的根,与函数的零点,属于容易题9.【答案】B【解析】解:设圆柱的高为:h,轴截面为正方形的圆柱的底面直径为:h,因为圆柱的侧面积是4π,所以h2π=4π,∴h=2,所以圆柱的底面半径为:1,圆柱的体积:π×12×2=2π.故选:B.设出圆柱的高,通过侧面积,求出圆柱的高与底面直径,然后求出圆柱的体积.本题考查圆柱的侧面积与体积的计算,考查计算能力,基础题.10.【答案】A【解析】解:设lnx=t则x=e t∴f(t)=3e t+4∴f(x)=3e x+4故选:A.设lnx=t则x=e t,代入可得f(t)=3e t+4,从而可求本题主要考查了利用换元法求解函数的解析式,属于基础试题11.【答案】C【解析】解:函数在R上单调递增,可得a>1,a-3>0,且a-3-3≤log a1,即有a>3且a≤6,即为3<a≤6.故选:C.由题意可得a>1,a-3>0,且a-3-3≤log a1,解不等式即可得到所求范围.本题考查函数的单调性的运用,注意运用定义法和对数函数的单调性,考查运算能力,属于基础题.12.【答案】B【解析】解:化圆Cx2+y2-8x+15=0为(x-4)2+y2=1,则圆心C(4,0),半径为1.要使直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有交点,只要直线y=kx-2和圆C′:(x-4)2+y2=4 有公共点即可,由点C′到直线y=kx-2的距离为d=≤2,得3k2-4k≤0,解得:0≤k≤,故k的最大值为,故选:B.圆Cx2+y2-8x+15=0表示以C(4,0)为圆心,半径等于1的圆,把直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C:x2+y2-8x+15=0有公共点转化为直线y=kx-2和圆C′:(x-4)2+y2=4 有公共点,再由点C′到直线y=kx-2的距离小圆半径求得实数k的最大值.本题主要考查直线和圆的位置关系,点到直线的距离公式,体现了等价转化的数学思想,属于中档题.13.【答案】1【解析】解:原式=lg5(lg5+lg2)+lg2=lg5+lg2=lg10,故答案为:1根据对数的运算性质,即可求出.本题考查了对数的运算性质,考查了运算能力,属于基础题14.【答案】(-1,2)【解析】解:由,解得-1<x<2.∴函数的定义域为:(-1,2).故答案为:(-1,2).直接由分母中根式内部的代数式大于0,对数式的真数大于0,联立不等式组求解即可.本题考查函数的定义域及其求法,考查不等式的解法,是基础题.15.【答案】【解析】解:两条直线l1:3x+4y-2=0与l2:6x+8y+1=0,化为直线l1:6x+8y-4=0与l2:6x+8y+1=0,则l1与l2的距离是:=.故答案为:.直接利用平行线之间的距离公式化简求解即可.本题考查平行线之间距离的求法,是基础题.16.【答案】【解析】解:∵函数y=log a(x+3)-1(a>0,a≠1)的图象恒过定点A(-2,-1),将x=-2,y=-1代入y=3x+b得:3-2+b=-1,∴b=-,∴f(x)=3x-,则f(log32)=-=2-=,故答案为:.先利用函数y=log a(x+3)-1的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数函数f(x)=3x+b式中求出b,最后即可求出相应的函数值f(log32).本题考查对数函数、指数函数的图象的图象与性质,考查数形结合的数学思想,属于基础题.17.【答案】解:(1)∵集合={x|-1<x≤2},当m=1时,B={x|1≤x≤4},∴∁R B={x|x<1或x>4},∴(∁R B)∩A={x|-1<x<1}.(2)由(1)知A={x|-1<x≤2},∵A⊆B,B={x|2m-1≤x≤m+3},∴2m-1≤-1,且m+3≥2,∴-1≤m≤0,∴实数m的取值范围为[-1,0].【解析】(1)分虽滶出集合A,B,从而求出∁R B,由此能求出(∁R B)∩A.(2)由A={x|-1<x≤2},A⊆B,B={x|2m-1≤x≤m+3},能求出实数m的取值范围.本题考查补集、交集、实数的取值范围的求法,考查补集、交集、子集的定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.【答案】解:(1)根据题意,f(x)=x2+bx+c,若f(0)=f(2),则有-=1,解可得b=-2,又f(x)+8=0,即x2-2x+c+8=0有两个相等的实数根,则△=4-4(c+8)=0,得c=-7.(2)由(1)知f(x)=x2-2x-7=(x-1)2-8,当x=4时,函数取最小值1,当x=1时,函数取最小值-8.【解析】(1)根据题意,由二次函数的性质,分析可得-=1,解可得b的值,又由(x)+8=0,即x2-2x+c+8=0有两个相等的实数根,分析可得△=4-4(c+8)=0,解可得c的值,即可得答案;(2)将函数的解析式变形为f(x)=x2-2x-7=(x-1)2-8,结合二次函数的性质分析可得答案.本题考查二次函数的性质以及最值,关键是求出c的值,19.【答案】解:(1)∵BC与直线2x-y-1=0垂直,∴.∴直线BC的方程是,即x+2y-8=0.(2)∵点A为x+y=2与2x-y-1=0两直线的交点,∴点A的坐标为(1,1),∵点B的坐标为(2,3),∴.【解析】(1)根据直线垂直和斜率的关系,以及点斜式方程即可求出,(2)先求出交点,再根据两点间的距离公式即可求出.本题考查了两条直线的交点、相互垂直的直线斜率之间的关系,属于中档题.20.【答案】解:(1)依题意,当0<x<80时,,当x≥80时,L(x)=50x-(52x-1450)-250=1200-2x,∴,<<,(2)当0<x<80时,,∴当x=60时,L(x)max=L(60)=950;当x≥80时,L(x)=1200-2x≤1200-2×80=1040;当x=80时,L(x)max=1040>950,∴当产量为80件时,利润最大为1040万元.【解析】(1)利用已知条件求出分段函数推出年利润L(x)(万元)关于年产量x(件)的函数解析式;(2)利用二次函数的性质,转化求解年该厂在这一商品的生产中所获利润最大.本题考查函数的实际应用,考查转化思想以及计算能力.21.【答案】解:(1)方程x2+y2-2x-4y+m=0,可化为(x-1)2+(y-2)2=5-m,∵此方程表示圆,∴5-m>0,即m<5.(2)圆的方程化为(x-1)2+(y-2)2=5-m,圆心C(1,2),半径,则圆心C(1,2)到直线l:x+2y-4=0的距离为第11页,共12页由于,则,有,∴,得m=4.【解析】(1)方程x2+y2-2x-4y+m=0,可化为(x-1)2+(y-2)2=5-m,利用方程表示圆,即可求m的取值范围;(2)求出圆心C(1,2)到直线l:x+2y-4=0的距离,利用|MN|=,求m的值.本题考查圆的方程,考查直线与圆的位置关系,考查点到直线的距离公式,属于中档题.22.【答案】(1)证明:由侧面ABB1A1为正方形,知AB BB1,又AB B1C,BB1∩B1C=B1,所以AB平面BB1C1C,又AB⊂平面ABB1A1,所以平面ABB1A1平面BB1C1C.(2)解:∵侧面ABB1A1为正方形,AB=2,∴BB1=AB=2,∵侧面BB1C1C为菱形,∠CBB1=60°,∴△BB1C为等边三角形,∴△ ,由由(1)知AB平面BB1C1C,且AB=2,∴△ .【解析】(1)证明AB BB1,结合AB B1C,推出AB平面BB1C1C,然后证明平面ABB1A1平面BB1C1C.(2)利用等体积法.转化求解即可.本题考查直线与平面垂直以及平面与平面垂直的判断定理的应用,二面角的平面角的求法,考查计算能力.第12页,共12页。
山东省泰安市2017_2018学年高一数学上学期期末考试试卷(含解析)

2017-2018学年山东省泰安市高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.设全集,集合,,则()A. B. C. D.【答案】B【解析】由题,则.故选B2.若直线l与直线x+y+1=0垂直,则l的倾斜角为()A. B. C. D.【答案】A【解析】【分析】求出直线x+y+1=0的斜率,利用两条直线的垂直关系,求出直线l的倾斜角α的值.【详解】直线x+y+1=0的斜率为,因为直线l与直线x+y+1=0垂直,所以直线l的斜率为,设l的倾斜角为为α,则tanα=,所以α=30°故选:A.【点睛】本题考查两条直线垂直与倾斜角、斜率的关系,考查计算能力,是基础题.3.圆O1:(x-2)2+(y+3)2=4与圆O2:(x+1)2+(y-1)2=9的公切线有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】先求出两圆的圆心距为5,再分别求出两圆的半径,可知两圆外切,即可求出公切线的条数。
【详解】两圆O1:(x-2)2+(y+3)2=4与圆O2:(x+1)2+(y-1)2=9的圆心距为:两个圆的半径和为:5,∴两个圆外切.公切线有3条.故选:B.【点睛】本题考查圆的公切线的条数,判断两个圆的位置关系是解题的关键。
4.在x轴、y轴上的截距分别是2,-3的直线方程为()A. B. C. D.【答案】B【解析】在轴、轴上的截距分别是2、的直线方程为即故选:B5.下列函数中,既是偶函数,又在上单调递增的是()A. B. C. D.【答案】D【解析】对A:定义域为,函数为非奇非偶函数,排除A;对B:为奇函数, 排除B;对C:在上单调递减, 排除C;故选D6.函数的零点所在的一个区间是()A. B. C. D.【答案】D【解析】试题分析:因为,,,,,故有,所以函数的零点所在的一个区间是.故选D.考点:零点存在性定理(函数零点的判定).7.若两平行直线与之间的距离是,则A. 0B. 1C.D.【答案】C【解析】【分析】由题意首先求得m,n的值,然后求解m+n的值即可.【详解】两直线平行则:,解得:,则两直线方程为:,,由平行线之间距离公式有:,解得:或(不合题意,舍去)据此可知:.本题选择C选项.【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.8.若,,,则a,b,c大小关系为()A. B. C. D.【答案】D【解析】【分析】利用指数函数的单调性可知,又由对数的性质可知,从而得到答案。
2017-2018学年山东省临沂市高一(下)期末数学试卷 Word版含解析

2017-2018学年山东省临沂市高一(下)期末数学试卷一、选择题(本题共10小题,每小题5分,共50分)1.sin600°的值是()A.B.C.D.2.已知cosα=,则sin2α+cos2α的值为()A.B.C.D.3.已知一扇形的圆心角的弧度数为2,其弧长也是2,则该扇形的面积为()A.1 B.2 C.sin1 D.2sin14.若向量,满足||=||=1,且•(﹣)=,则向量与的夹角为()A.B.C.D.5.如图,在△ABC中,D为边BC的中点,则下列结论正确的是()A.+=B.﹣=C.+=D.﹣=6.在一次数学竞赛中,高一•1班30名学生的成绩茎叶图如图所示:若将学生按成绩由低到高编为1﹣30号,再用系统抽样的方法从中抽取6人,则其中成绩在区间[73,90]上的学生人数为()A.3 B.4 C.5 D.67.根据如下样本数据:x 3 4 5 6 7 8y 10 9 7 6 4 3得到的回归方程为=x+,则()A.>0,>0 B.>0,<0 C.<0,>0 D.<0,<08.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是()A.至少有一个白球;都是白球B.两个白球;至少有一个红球C.红球、白球各一个;都是白球D.红球、白球各一个;至少有一个白球9.在区间[0,π]上随机取一个x,sin(x+)≥的概率为()A.B.C.D.10.已知函数f(x)=sinx+λcosx的图象的一个对称中心是点(,0),则函数g(x)=λsinxcosx+sin2x的图象的一条对称轴是直线()A.x=B.x=C.x=D.x=﹣二、填空题(本题共5小题,每小题5分,共25分)11.某校有行政人员、教学人员和教辅人员共200人,其中教学人员与教辅人员的比为10:1,行政人员有24人,现采取分层抽样容量为50的样本,那么教学人员应抽取的人数.12.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,75)的人数是.13.执行如图所示的程序框图,则输出S的值为.14.i、j是两个不共线的向量,已知=i+2j,=i+λj,=﹣2i+j,若A,B,D三点共线,则实数λ的值为.15.关于函数f(x)=sin(2x+)+sin(2x﹣),则①y=f(x)的最大值为;②y=f(x)在区间[﹣,]上是增函数;③当x1﹣x2=π时,f(x1)=f(x2);④函数f(x)的图象关于点(,0)对称;⑤将函数y=cos2x的图象向右平移个单位后与函数f(x)的图象重合.其中正确结论的序号是.(填上所有正确结论的序号)三、解答题(本题共6小题,共75分)16.在平面直角坐标系xOy中,点A(﹣1,﹣2),B(2,3),C(﹣2,﹣1).(Ⅰ)求•;(Ⅱ)若实数t满足(﹣t)•=0,求t的值.17.某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下:甲10 30 47 28 46 14 26 11 43 46乙37 21 31 29 19 32 23 25 20 33 (Ⅰ)求甲10场比赛得分的中位数;(Ⅱ)求乙10场比赛得分的方差.18.已知α,β为锐角,sinα=,cos(α+β)=.(Ⅰ)求sin(α+)的值;(Ⅱ)求cosβ的值.19.某品牌乒乓球按质量标准分为1,2,3,4四个等级,现从某工厂生产的一批乒乓球中随机抽取20个,对其等级进行统计分析,得到的频率分布表如下:等级 1 2 3 4频率m n 0.5 0.2(Ⅰ)在抽取的20个乒乓球中,等级为1的恰有2个,求m,n的值;(Ⅱ)在(Ⅰ)的条件下,从等级为1和2的乒乓球中任意抽取2个,求抽取的2个乒乓球等级相同的概率.20.已知向量=(cosθ﹣2sinθ,2),=(sinθ,1).(Ⅰ)若∥,求tan2θ的值;(Ⅱ)f(θ)=(+)•,θ∈[0,],求f(θ)的值域.21.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,图象关于直线x=对称.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)在给定的坐标系中画出函数y=f(x)在区间[0,π]上的图象.2017-2018学年山东省临沂市高一(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题5分,共50分)1.sin600°的值是()A.B.C.D.考点:运用诱导公式化简求值.专题:计算题.分析:把原式的角度600°变形为2×360°﹣120°,然后利用诱导公式化简,再把120°变为180°﹣60°,利用诱导公式及特殊角的三角函数值即可求出值.解答:解:sin600°=sin(2×360°﹣120°)=﹣sin120°=﹣sin(180°﹣60°)=﹣sin60°=﹣.故选D点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,同时注意角度的灵活变换.2.已知cosα=,则sin2α+cos2α的值为()A.B.C.D.考点:二倍角的余弦.专题:三角函数的求值.分析:由cosα的值,利用同角三角函数间的基本关系求出sin2α的值,原式变形后代入计算即可求出值.解答:解:∵cosα=,∴sin2α=1﹣cos2α=,则原式=sin2α+1﹣2sin2α=1﹣sin2α=,故选:A.点评:此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.3.已知一扇形的圆心角的弧度数为2,其弧长也是2,则该扇形的面积为()A.1 B.2 C.sin1 D.2sin1考点:扇形面积公式.专题:三角函数的求值.分析:利用扇形的面积计算公式、弧长公式即可得出.解答:解:由弧长公式可得2=2r,解得r=1.∴扇形的面积S=.故选:A点评:本题考查了扇形的面积计算公式、弧长公式,属于基础题.4.若向量,满足||=||=1,且•(﹣)=,则向量与的夹角为()A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:首先由已知等式求出向量与的数量积,利用平面向量的数量积公式可得.解答:解:由已知||=||=1,且•(﹣)=,则,所以=,所以向量与的夹角的余弦值为,所以向量与的夹角为.故选B.点评:本题考查了屏幕录像的数量积公式的运用;属于基础题.5.如图,在△ABC中,D为边BC的中点,则下列结论正确的是()A.+=B.﹣=C.+=D.﹣=考点:向量的三角形法则.专题:平面向量及应用.分析:利用平面向量的三角形法则对选项分别分析选择.解答:解:由已知及图形得到,故A错误;;故B错误;;故C 正确;故D 错误;故选C.点评:本题考查了平面向量的三角形法则的运用;注意向量的起点与终点位置;属于基础题.6.在一次数学竞赛中,高一•1班30名学生的成绩茎叶图如图所示:若将学生按成绩由低到高编为1﹣30号,再用系统抽样的方法从中抽取6人,则其中成绩在区间[73,90]上的学生人数为()A.3 B.4 C.5 D.6考点:茎叶图.专题:概率与统计.分析:根据茎叶图中的数据,结合系统抽样方法的特征,求出所要抽取的人数.解答:解:根据茎叶图得,成绩在区间[73,90]上的数据有15个,所以,用系统抽样的方法从所有的30人中抽取6人,成绩在区间[73,90]上的学生人数为6×=3.故选:A.点评:本题考查了系统抽样方法的应用问题,也考查了茎叶图的应用问题,是基础题目.7.根据如下样本数据:x 3 4 5 6 7 8y 10 9 7 6 4 3得到的回归方程为=x+,则()A.>0,>0 B.>0,<0 C.<0,>0 D.<0,<0考点:线性回归方程.专题:概率与统计.分析:已知中的数据,可得变量x与变量y之间存在负相关关系,且x=0时,>10>0,进而得到答案.解答:解:由已知中的数据,可得变量x与变量y之间存在负相关关系,故<0,当x=0时,>10>0,故>0,故选:B点评:本题考查的知识点是线性回归方程,正确理解回归系数的几何意义是解答的关键.8.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是()A.至少有一个白球;都是白球B.两个白球;至少有一个红球C.红球、白球各一个;都是白球D.红球、白球各一个;至少有一个白球考点:互斥事件与对立事件.专题:概率与统计.分析:从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论.解答:解:从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,对于A,至少有1个白球;都是白球,不是互斥事件.故不符合.对于B两个白球;至少有一个红球,是互斥事件,但不是对立事件不是互斥事件,故符合.对于C红球、白球各一个;都是白球是互斥事件,但也是对立事件,故不符合.对于D红球、白球各一个;至少有一个白,不是互斥事件.故不符合.故选:B.点评:本题主要考查互斥事件与对立事件的定义,属于基础题.9.在区间[0,π]上随机取一个x,sin(x+)≥的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:由题意,本题是几何概型,而事件的集合是区间长度,利用几何概型公式求之.解答:解:区间[0,π]上随机取一个x,对应事件的集合为区间长度π,而在此条件下满足sin(x+)≥的范围是≤x+≤,即x∈[0,],区间长度为,由几何概型的公式得到在区间[0,π]上随机取一个x,sin(x+)≥的概率为:;故选D.点评:本题考查了几何概型的概率求法;关键是明确概率模型,利用区间长度为测度求概率.10.已知函数f(x)=sinx+λcosx的图象的一个对称中心是点(,0),则函数g(x)=λsinxcosx+sin2x的图象的一条对称轴是直线()A.x=B.x=C.x=D.x=﹣考点:两角和与差的正弦函数;正弦函数的对称性.专题:三角函数的求值.分析:由对称中心可得λ=﹣,代入g(x)由三角函数公式化简可得g(x)=﹣sin(2x+),令2x+=kπ+解x可得对称轴,对照选项可得.解答:解:∵f(x)=sinx+λcosx的图象的一个对称中心是点(,0),∴f()=sin+λcos=+λ=0,解得λ=﹣,∴g(x)=﹣sinxcosx+sin2x=sin2x+=﹣sin(2x+),令2x+=kπ+可得x=+,k∈Z,∴函数的对称轴为x=+,k∈Z,结合四个选项可知,当k=﹣1时x=﹣符合题意,故选:D点评:本题考查两角和与差的三角函数,涉及三角函数对称性,属中档题.二、填空题(本题共5小题,每小题5分,共25分)11.某校有行政人员、教学人员和教辅人员共200人,其中教学人员与教辅人员的比为10:1,行政人员有24人,现采取分层抽样容量为50的样本,那么教学人员应抽取的人数40.考点:分层抽样方法.专题:计算题.分析:先求出每个个体被抽到的概率,再求出其中教学人员的数量,乘以每个个体被抽到的概率,即得教学人员应抽取的人数.解答:解:每个个体被抽到的概率等于样本容量除以个体的总数,即=,教学人员与教辅人员的和为200﹣24=176,除行政人员外,教学人员所占的比列等于,故其中教学人员的数量为176×=160,160×=40.故答案为40.点评:本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,求出教学人员的数量是解题的关键,属于基础题.12.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,75)的人数是13.考点:频率分布直方图.专题:计算题.分析:根据直方图分析可知该产品数量在[55,75)的频率,又由频率与频数的关系计算可得生产该产品数量在[55,75)的人数.解答:解:由直方图可知:生产该产品数量在[55,75)的频率=0.065×10,∴生产该产品数量在[55,75)的人数=20×(0.065×10)=13,故答案为13.点评:本题是对频率、频数简单运用的考查,频率、频数的关系:频率=.13.执行如图所示的程序框图,则输出S的值为26.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的n,S的值,当n=31时不满足条件n<20,退出循环,输出S的值为26.解答:解:模拟执行程序框图,可得n=1,S=0满足条件n<20,S=1,n=3,满足条件n<20,S=4,n=7,满足条件n<20,S=11,n=15,满足条件n<20,S=26,n=31,不满足条件n<20,退出循环,输出S的值为26.故答案为:26.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的n,S的值是解题的关键,属于基础题.14.i、j是两个不共线的向量,已知=i+2j,=i+λj,=﹣2i+j,若A,B,D三点共线,则实数λ的值为7.考点:平行向量与共线向量.专题:平面向量及应用.分析:求出,利用A、B、D三点共线,列出方程组,求出实数λ的值即可.解答:解:=﹣=(﹣2i+j)﹣(i+λj)=﹣3i+(1﹣λ)j∵A、B、D三点共线,∴向量与共线,因此存在实数μ,使得=μ,即i+2j=μ[﹣3i+(1﹣λ)j]=﹣3μi+μ(1﹣λ)j∵i与j是两不共线向量,由基本定理得:,解得λ=7,故答案为:7.点评:本题重点考查了平面向量的共线条件的应用,属于基础题.15.关于函数f(x)=sin(2x+)+sin(2x﹣),则①y=f(x)的最大值为;②y=f(x)在区间[﹣,]上是增函数;③当x1﹣x2=π时,f(x1)=f(x2);④函数f(x)的图象关于点(,0)对称;⑤将函数y=cos2x的图象向右平移个单位后与函数f(x)的图象重合.其中正确结论的序号是①③④.(填上所有正确结论的序号)考点:三角函数中的恒等变换应用.专题:计算题;三角函数的图像与性质.分析:利用三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣).利用正弦函数的图象和性质可判断①正确;由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得函数f(x)的单调递增区间,易证②错误;当x1﹣x2=π时,可求f(x1)=f(x2+π)=f(x2).可判断③正确;由2x﹣=kπ,k∈Z可解得函数对称点可判断④正确;根据三角函数图象的平移变换规律即可判断⑤错误.解答:解:f(x)=sin(2x+)+sin(2x﹣)=cos(2x﹣)+sin(2x﹣)=sin(2x﹣+)=sin(2x﹣).y=f(x)的最大值为,①正确;由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得函数f(x)的单调递增区间为:[kπ﹣,kπ+],k∈Z,易证②错误;当x1﹣x2=π时,f(x1)=f(x2+π)=sin[2(x2+π)﹣]=sin(2x2+2π﹣)=sin(2x2﹣)=f(x2).故③正确;由2x﹣=kπ,k∈Z可解得函数对称点为:(,0),k∈Z,当k=0时,④正确;将函数y=cos2x的图象向右平移个单位后得到函数解析式:y=cos[2(x﹣)]=cos(2x﹣)=sin(2x+),故⑤错误.故答案为:①③④.点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.三、解答题(本题共6小题,共75分)16.在平面直角坐标系xOy中,点A(﹣1,﹣2),B(2,3),C(﹣2,﹣1).(Ⅰ)求•;(Ⅱ)若实数t满足(﹣t)•=0,求t的值.考点:平面向量数量积的运算;平面向量的坐标运算.专题:平面向量及应用.分析:(I)利用点的坐标得出=(3,5),=(﹣1,1),根据向量的数量积运算公式求解即可.(Ⅱ)利用向量数乘、数量积的坐标表示,列出关于t的方程求即可.解答:解:(Ⅰ)∵点A(﹣1,﹣2),B(2,3),C(﹣2,﹣1).∴由题设知=(3,5),=(﹣1,1),∴=3×(﹣1)+5×1=2,(II)∵=(3,5),=(﹣2,﹣1),=(2,3),∴﹣t=(3+2t,5+t)∵实数t满足(﹣t)•=0,∴2×(3+2t)+3×(5+t)=0,∴t=﹣3点评:本题考查向量的坐标表示,向量数乘、数量积的坐标表示,属于基础题17.某赛季,甲、乙两名篮球运动员都参加了10场比赛,比赛得分情况记录如下:甲10 30 47 28 46 14 26 11 43 46乙37 21 31 29 19 32 23 25 20 33 (Ⅰ)求甲10场比赛得分的中位数;(Ⅱ)求乙10场比赛得分的方差.考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:(I)将甲10场比赛得分从小到大排列,中间两个的平均数求解即可.(II)乙10场比赛得分的平均数,运用方差的公式求解即可.解答:解:(I)将甲10场比赛得分从小到大排列:10,11,14,26,28,30,43,46,47故甲10场比赛得分的中位数:=29(II)乙10场比赛得分的平均数=(37+21+31+29+19+32+23+25+20+33)=27,故乙10场比赛得分的方差:S2=×[(37﹣27)2+(21﹣27)2+…+(33﹣27)2]=35点评:本题考察了统计数据的分析,中位数,方差平均数的求解,数字特征的判断分析,属于容易题.18.已知α,β为锐角,sinα=,cos(α+β)=.(Ⅰ)求sin(α+)的值;(Ⅱ)求cosβ的值.考点:两角和与差的正弦函数.专题:三角函数的求值.分析:(Ⅰ)由α的范围和平方关系求出sinα,再由两角和的正弦函数求出sin(α+)的值;(Ⅱ)由α,β为锐角得α+β∈(0,π),由平方关系求出sin(α+β),再由两角差的余弦函数求出cosβ=cos[(α+β)﹣α]的值.解答:解:(Ⅰ)∵α为锐角,sinα=,∴cosα==,∴sin(α+)=sinαcos+cosαsin)==;(Ⅱ)∵α,β为锐角,∴α+β∈(0,π),由cos(α+β)=得,sin(α+β)==,∴cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα==.点评:本题考查由两角和与差的正弦、余弦函数,以及平方关系的应用,注意角的范围和角之间的关系,属于中档题.19.某品牌乒乓球按质量标准分为1,2,3,4四个等级,现从某工厂生产的一批乒乓球中随机抽取20个,对其等级进行统计分析,得到的频率分布表如下:等级 1 2 3 4频率m n 0.5 0.2(Ⅰ)在抽取的20个乒乓球中,等级为1的恰有2个,求m,n的值;(Ⅱ)在(Ⅰ)的条件下,从等级为1和2的乒乓球中任意抽取2个,求抽取的2个乒乓球等级相同的概率.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)通过频率分布表得推出m+n=0.3.利用等级系数为1的恰有2件,求出m,然后求出n.(Ⅱ)根据条件列出满足条件所有的基本事件总数,“从x1,x2,y1,y2,y3,y4这6件日用品中任取两件,等级系数相等”的事件数,求解即可.解答:解:(Ⅰ)由频率分布表得m+n+0.5+0.2=1,即m+n=0.3.…(2分)由抽取的20个零件中,等级为1的恰有2个,得m==0.1.…(4分)所以n=0.3﹣0.1=0.2.…(5分)(Ⅱ):由(Ⅰ)得,等级为1的零件有2个,记作x1,x2,等级为2的零件有4个,记作y1,y2,y3,y4,从x1,x2,x3,y1,y2,y3,y4中任意抽取2个零件,所有可能的结果为:(x1,x2),(x1,y1),(x1,y2),(x1,y3),(x1,y4),(x2,y1),(x2,y2),(x2,y3),(x2,y4),(y1,y2),(y1,y3),(y1,y4),(y2,y3),(y2,y4),(y3,y4),共计15种.…(9分)记事件A为“从零件x1,x2,y1,y2,y3,y4中任取2件,其等级相等”.则A包含的基本事件为(x1,x2),(y1,y2),(y1,y3),(y1,y4),(y2,y3),(y2,y4),(y3,y4)共7个.…(11分)故所求概率为P(A)=.…(12分)点评:本题考查概率、统计等基本知识,考查数据处理能力、运算能力、应用意识.20.已知向量=(cosθ﹣2sinθ,2),=(sinθ,1).(Ⅰ)若∥,求tan2θ的值;(Ⅱ)f(θ)=(+)•,θ∈[0,],求f(θ)的值域.考点:平面向量数量积的运算;平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:(Ⅰ)根据平行向量的坐标关系便可得到cosθ=4sinθ,从而tanθ=,根据正切的二倍角公式即可求出tan2θ=;(Ⅱ)先求出的坐标,再由两角和的正弦公式即可得到f(θ)=,而由θ的范围即可求出2θ的范围,从而结合正弦函数的图象即可得出sin(2θ+)的范围,从而得到f(θ)的值域.解答:解:(Ⅰ)∵∥;∴cosθ﹣2sinθ﹣2sinθ=0;∴cosθ=4sinθ;∴;∴;(Ⅱ);∴f(θ)===;∵;∴;∴;∴2≤f(θ)≤;∴f(θ)的值域为[2,].点评:考查平行向量的坐标的关系,切化弦公式,二倍角的正余弦、正切公式,向量加法的坐标运算,向量数量积的坐标运算,两角和的正弦公式,并熟悉正弦函数的图象.21.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,图象关于直线x=对称.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)在给定的坐标系中画出函数y=f(x)在区间[0,π]上的图象.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.分析:(Ⅰ)由函数的周期求出ω的值,可得函数的解析式.(Ⅱ)由条件利用正弦函数的增区间求得函数f(x)的单调增区间.(Ⅲ)用五点法作出函数y=f(x)在区间[0,π]上的图象.解答:解:(Ⅰ)∵函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为=π,∴ω=2.再根据函数的图象关于直线x=对称,可得2×+φ=kπ+,k∈z,即φ=kπ﹣,∴φ=﹣,故f(x)=sin(2x﹣).(Ⅱ)令2kπ﹣≤2x﹣≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈z.(Ⅲ)用五点法作函数y=f(x)在区间[0,π]上的图象:列表:2x﹣﹣0 πx 0 πy ﹣0 1 0 ﹣1 ﹣作图:点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的周期性、单调性,用五点法作出正弦函数在一个周期上的简图,属于中档题.。
2017-2018学年高一下学期期末考试数学试题(A卷)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 以下程序中,输出时的值是输入时的值的()A. 1倍B. 2倍C. 3倍D. 4倍【答案】D【解析】令初始值A=a,则A=2(a+a)=4a.故选D.2. 已知数列是等比数列,,且,,成等差数列,则()A. 7B. 12C. 14D. 64【答案】C【解析】分析:先根据条件解出公比,再根据等比数列通项公式求结果.详解:因为,,成等差数列,所以所以,选C.点睛:本题考查等比数列与等差数列基本量,考查基本求解能力.3. 将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A. 0795B. 0780C. 0810D. 0815【答案】A【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.4. 已知动点满足,则的最大值是()A. 50B. 60C. 70D. 90【答案】D【解析】分析:先作可行域,根据图像确定目标函数所代表直线取最大值时得最优解.详解:作可行域,根据图像知直线过点A(10,20)时取最大值90,选D,点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5. 若干个人站成一排,其中为互斥事件的是()A. “甲站排头”与“乙站排头”B. “甲站排头”与“乙不站排头”C. “甲站排头”与“乙站排尾”D. “甲不站排头”与“乙不站排尾”【答案】A【解析】试题分析:事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。
山东省日照市2017-2018学年高一上学期期末考试数学试题参考答案

山东省日照市2017-2018学年高一上学期期末考试数学试题参考答案1 2 3 4 5 6B DC CD B7 8 9 10 11 12C A B C A D13.14.(-6,-3)15.(1,)16.1-17.解集合, (1)当时,由,得,,,那么?(?(2),,,,故:实数m的取值范围是18. (Ⅰ)证明:点O为矩形的对角线交点,,又,,又平面,平面.平面(Ⅱ).解:,,点D是AB的中点..三棱锥的体积.;19. 解:(1)由题意,纳税额与稿费函数关系为.(2)由于此人纳税420元,令,解得元令,得,(舍)故可得这个人应得稿费(扣税前)为3800元.20.(1)∵AB=AC, D是BC的中点,∴AD⊥BC. ∵底面ABC⊥平面BB1C1C,∴AD⊥侧面BB1C1C.∴AD⊥CC1.(2)延长B1A1与BM交于N, 连结C1N.∵AM=MA1,∴NA1=A1B1.∵A1B1=A1C1,∴A1C1= A1N=A1B1.∴C1N⊥C1B1.∵截面N B1C1⊥侧面BB1C1C,∴C1N⊥侧面BB1C1C.∴截面C1N B⊥侧面BB1C1C.∴截面MBC1⊥侧面BB1C1C.(3)结论是肯定的, 充分性已由(2)证明,下面证必要性: 过M作ME⊥B C1于E,∵截面MBC1⊥侧面BB1C1C,∴ME⊥侧面BB1C1C.又∵AD⊥侧面BB1C1C,∴ME∥AD.∴M, E, A, D共线.∵A M∥侧面BB1C1C,∴AM∥DE.。
高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。
2017-2018学年高中数学专题03破译三角函数图像变换问题特色专题训练新人教A版必修4

12专题03破译三角函数图像变换问题、单选题1.【湖北省咸宁市2018届高三重点高中11月联考】若函数f x =cos2x , g x ]=sin j 2x -石【答案】【解析】/(+COS 2JC :+sin I 2x —— =cos2x4JT曲线 严 列乂)向左平移壬个单位长度后的解折式为:6本题选择E 选项.2•【山西省芮城中学 2018届高三期中】函数 f (x ) = Asin (G0x + W )(其中A A O ,申 <:丄)的图象过点2,0 ,—, -1,如图所示,为了得到 g x ;=cos2x 的图象,则只要将 f x 的图象()312曲线B .曲线y 二g x 向左平移 C .曲线 y = f x 向右平移 D .曲线 丄个单位长度后得到曲线6■JT个单位长度后得到曲线6—个单位长度后得到曲线12—个单位长度后得到曲线126丿即/(x )+^(x) =A. 向右平移二个单位长度6B. 向右平移个单位长度1233【答案】D+ 卩= --- 2A H (A:E Z) — +2lac(k e Z) 23It和八、 .K-(P — — > J (x) = SID I 2x4-—C.向左平移'个单位长度 6D.向左平移个单位长度12【解析】12 3TSJD3it71 1C — cos2x — sin 2无+—2 3二肚2 "12点睛:已知函数 y=Asi nicx 」‘LB (A -0,八>0)的图象求解析式 (1)y max — y min y max yminA, B =一 2由函数的周期T 求co ,T = 利用“五点法”中相对应的特殊点求:.【广东省执信中学 2017-2018学年高二上学期期中】将函数 y=Sin j 2x ' 的图象向右平移 一个单位2长度,所得图象对应的函数■: 7 二■: 7 二A 在区间[,]上单调递减B 在区间[,]上单调递增12 12 12 12J [ JEJ [ J [C.在区间^-,-]上单调递减D在区间[wy 上单调递增【答案】B兀【解析】将函数向右平移个单位长度得:((y =sin 2 x 一一J T(二 sin I 2x- 3 ,所以当7 2 二二二时,2x ,—12 3IL 2 24 •【陕西省西安市长安区2018届高三上学期质量检测】把函数.的图象上个点的横坐标缩短到原61 TI来的(纵坐标不变),再将图象向右平移个单位,那么所得图象的一个对称中心为23A B.c D (%)4【答案】D【解析】根据题意函数尸血时勺)的图象上个点的横坐标缩短到原来的k纵坐标不知,可得厂血伍昇6 2I创再将團象向右平移*单位,可得:V J sin|2 (x)+ -] = sin —)- ~cos2x^3 3 6 22K ■- + kn*2可得:x«- + -kn, kE疋"4 2当k・0时,可得对称中点为(:0).4故选ZZf x二cosi2x • 的图象,只需将函数I 6丿g x 二sin2x 的图象()A向左平移一个单位6C. 向左平移二个单位3【答案】A B向右平移一个单位6D向右平移少个单位3,所以函数单调递增,故选 B.125.【山东省莱芜市2018届高三上学期期中】要得到函数f x i = sin 「x ■ ' (其中)的图象如图2所示,为了得到 y 二cos 「x 的图象,只需把 y 二f x 的图象上所有点()【解析】g x 二 sin2x =cos所以向左平移n 二26 个单位,选A2 66 •【辽宁省沈阳市交联体2018届高三上学期期中】函数C.向左平移二个单位长度6【答案】AT 7 7T更jr 【解析】根据函数的^m-=—4 122九"所以:T^JL9<D=——=2>当沪彳时,函数fyr jr即:/ ( —) =sin (2x — +<p) =0.解得所以:f (x) =sin( 2x+ —).要得到y=cos2x的图象只需将函数 f (x) =sin(2x< )向左平移.个单位长度,3 12n 兀即y=sin (2x+ + ) =cos2x.6 3故选:A.点睛:已知函数y=Asi n[cx」‘LB(A 0^ 0)的图象求解析式(1 )2■:人=涯沁,ymin.(2)由函数的周期T求,T =2 2 ⑷利用“五点法”中相对应的特殊点求:.【豫西南部分示范性高中2017-2018年高三年级第一学期联考】已知函数f X =sin 2x,为得到B.向右平移.个单位长度12D.向右平移二个单位长度6A向左平移.个单位长度123A 向左平移二个单位长度 B.向左平移.个单位长度612C.向右平移二个单位长度D.向右平移二个单位长度612【答案】A【解析】函数 g x 二 cosi2x sin ;2xsin 12x —• I 6丿 126丿 J 3丿函数f (x )=s in ”2x +工1= sin |2 " x +丄1+》=sin " 2x +2兀】=g ( x ),是向左平移了工个单位长 2 V 3丿 [16丿3 一 V 3丿“丿 6度。
【最新文档】2017年山东省临沂市高一上学期期末数学试卷

为
.
14.( 5.00 分)已知 f(x)为偶函数, g(x)=f( x)+x3,且 g 分)已知直线 l⊥平面 α,直线 m? 平面 β,则下列四个命题:
① α∥ β? l⊥m;
② α⊥ β? l∥m;
③ l∥m? α⊥ β;
④ l⊥m? α∥ β
)
A.x+2y+3=0 B.2x﹣y+1=0 C. x+y+1=0 D. x+1=0
7.(5.00 分)正方体的内切球和外接球的表面积之比为(
)
A.1:2 B.1:3 C.1:4 D.2:3
8.( 5.00 分)某地区植被破坏,土地沙化越来越重,最近三年测得沙漠增加的面
积分别为 198.5 公顷、 399.6 公顷和 793.7 公顷,则沙漠增加面积 y(公顷)关于
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四
个选项中,只有一项是符合题目要求的)
1.(5.00 分)已知集合 A={ x| 1<x<3} , B={ x| x> 2} ,则 A∪?RB=( )
A.{ x| x≤2} B.{ x| 2<x<3} C. { x| x<3} 【解答】 解:∵ B={ x| x> 2} ,
此时答案 D 满足要求, 当 a>1 时,函数 f(x)=xa(x≥0),g(x)=logax 的图象为:
第 7 页(共 19 页)
无满足要求的答案, 综上:故选 D, 故选: D.
10.( 5.00 分)已知实数 a,b,c 满足
b,c 的大小关系为(
)
A.a<b<c B.a<c<b C.b<c<a D.b<a<c
D. ,则实数 a,