2010年内蒙古鄂尔多斯中考数学试卷(word版及答案)

合集下载

内蒙古鄂尔多斯市中考数学试卷

内蒙古鄂尔多斯市中考数学试卷

内蒙古鄂尔多斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·翁牛特旗月考) 计算|-1|+(-1)2的结果是()A . -2B . -1C . 0D . 22. (2分)下列计算中正确的是()A .B .C .D .3. (2分)要使二次根式有意义,字母x必须满足的条件是()A . x≥1B . x>-1C . x≥-1D . x>14. (2分) (2020八上·黄陂开学考) 下图描述了某车间工人日加工零件数的情况,这些工人日加工零件数的中位数为().A . 4B . 5C . 6D . 75. (2分) (2020七上·海曙期末) 宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚。

全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座。

其中9.2亿用科学计数法表示正确的是()A . 9.2×108B . 92×107C . 0.92×109D . 9.2×1076. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论正确的是()A . abc>0B . 方程ax2+bx+c=0有两个实数根分别为-2和6C . a-b+c<0D . 当y=4时,x的取值只能为07. (2分)(2017·天桥模拟) 如图,⊙O是△ABC的外接圆,连接OB、OC,若OB=BC,则∠BAC等于()A . 60°B . 45°C . 30°D . 20°8. (2分)如图,直线l1:x=1,l2:x=2,l3:x=3,l4:x=4,…,与函数y=(x>0)的图象分别交于点A1、A2、A3、A4、…;与函数y=(x>0)的图象分别交于点B1、B2、B3、B4、….如果四边形A1A2B2B1的面积记为S1 ,四边形A2A3B3B2的面积记为S2 ,四边形A3A4B4B3的面积记为S3 ,…,以此类推.则S10的值是()A .B .C .D .9. (2分)小马虎在下面的计算中只作对了一道题,他做对的题目是()A .B .C .D .10. (2分)在平面直角坐标系中,已知A(2,-2),点P是y轴上一点,则使AOP为等腰三角形的点P有()个。

2010年中考数学试题分类汇编(150套)专题二 实数的运算

2010年中考数学试题分类汇编(150套)专题二 实数的运算

1.(2010某某某某)20100的值是 A .2010 B .0 C .1 D .-1【答案】C2.(2010某某威海)计算()201020092211-⨯⎪⎭⎫ ⎝⎛-的结果是 A .-2 B .-1 C .2D .3【答案】B3.(2010某某)计算 | -1-(-35) |-| -611-67| 之值为何? (A) -37 (B) -31 (C) 34 (D)311。

【答案】A4.(2010某某)计算106⨯(102)3÷104之值为何?(A) 108 (B) 109 (C) 1010 (D) 1012。

【答案】A5.(2010某某)下列四个选项中的数列,哪一个不是等差数列? (A) 5,5,5,5,5 (B) 1,4,9,16,25(C)5,25,35,45,55 (D) 1,22,33,44,55。

【答案】D6.(2010某某)图(五)数在线的A 、B 、C 三点所表示的数分别为 a 、b 、c 。

根据图中各点位置,判断下列各式何者 正确? (A) (a -1)(b -1)>0 (B) (b -1)(c -1)>0 (C) (a +1)(b +1)<0 (D) (b +1)(c +1)<0 。

【答案】D7.(2010某某某某)计算 (– 1)2 + (– 1)3 =A.– 2B. – 1C. 0D. 2 【答案】C8.(2010 某某义乌)28 cm 接近于( ▲ )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一X 纸的厚度A B CO a bc 0 -11图(五)9.(2010 某某德化)2-的3倍是() A 、6- B 、1 C 、6 D 、5- 【答案】A10.(2010 某某某某)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( )A .-10℃B .-6℃C .6℃D .10℃ 【答案】D11.(2010 东某某)下列各式中,运算正确的是()A =B .=C .632a a a ÷=D .325()a a =【答案】A12.(2010某某某某)计算()21-的值等于 (A )-1 (B )1 (C )-2 (D )2 【答案】B13.(2010 某某)计算3×(-2) 的结果是A .5B .-5C .6D .-6【答案】D14.(2010 某某)下列计算中,正确的是A .020=B .2a a a =+C 3±D .623)(a a =【答案】D15.(2010 某某省某某)下列计算正确的是(A)020=(B)331-=-3==【答案】C16.(2010某某宿迁)3)2(-等于A .-6B .6C .-8D .8 【答案】C17.(2010 某某莱芜)如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D18.(2010某某) 计算 -2- 6的结果是( )A .-8B . 8C . -4D . 4 【答案】A19.(2010年某某某某)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为() A .8人 B .9人 C .10人 D .11人【答案】B.20.(2010某某某某)()()2012321-+-+⎪⎭⎫ ⎝⎛--π的值为( )A .-1B .-3C . 1D . 0【答案】C21.(2010 某某某某)3x 表示( )(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x + 【答案】C22.(2010某某荆州)温度从-2°C 上升3°C 后是A .1°CB . -1°C C .3°CD .5°C 【答案】A1 0 -1 a b B A (第5题图)23.(2010某某荆州)下面计算中正确的是 A .532=+ B .()111=--C . ()2010201055=- D . x 32x •=x 6【答案】C24.(2010某某荆州)在电子显微镜下测得一个圆球体细胞的直径是5×105-cm.,3102⨯个这样的细胞排成的细胞链的长是A .cm 210- B .cm 110- C .cm 310- D .cm 410- 【答案】B25.(2010某某省某某)下列运算正确的是 A .263-=- B .24±=C .532a a a =⋅D .3252a a a+= 【答案】C26.(2010某某某某)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C27.(2010某某某某)下列运算结果等于1的是() A .)3()3(-+-B .)3()3(---C .)3(3-⨯-D .)3()3(-÷-【答案】D28.(2010某某某某)如图,数轴上A 、B 两点对应的实数分别为,a b ,则下列结论不正确的是()A 、0a b +>B 、0ab <C 、0a b -<D 、0a b ->【答案】D29.(2010某某红河哈尼族彝族自治州)下列计算正确的是A .(-1)-1=1 B.(-3)20=1 D.(-2)6÷(-2)3=(-2)2 【答案】C30.(2010某某某某)下列计算正确的是( )A .a 2·a 3=a 6B .6÷2=3C .(21)-2=-2 D . (-a 3)2=-a 6 【答案】B31. (2010某某随州)下列运算正确的是( )A .1331-÷= B 2a a = C .3.14 3.14ππ-=- D .326211()24a b a b =【答案】D32. (2010某某某某)计算(-2)×3的结果是( )(A)-6 (B)6 (C)-5 (D)5 【答案】A33. (2010某某某某)某年某某市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( )(A )16℃(B )20℃(C )-16℃(D ).-20℃【答案】B34. (2010 某某某某)如果□,1)23(=-⨯则□内应填的实数是 ( )A .23-B .32-C .23 D .32 【答案】B35. (2010某某襄樊)某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高( ) A .10℃B .-10℃C .6℃D .-6℃【答案】A36. (2010 某某某某)2010)1(-的值是( )A .1B .—1C .2010D .—2010【答案】A37.(2010 某某某某)下列结论中不能由0=+b a 得到的是(A )ab a -=2(B )b a =(C )0=a ,0=b (D )22b a = 【答案】C38.(2010 某某某某)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623(D )10033231003⨯+【答案】B39.(2010某某某某)的结果是)(计算12010)21(1:.1--- A. 1 B. -1 C.0 D. 2【答案】B40.(2010 某某)()=-21( )A .1B .-1C .2D .-2【答案】A41.(2010 某某荷泽)2010年元月19日,某某省气象局预报我市元月20日的最高气温是4℃,最低气温是-6℃,那么我市元月20日的最大温差是(第11题)A .10℃B .6℃C .4℃D .2℃【答案】A42.(2010某某某某)计算)3(21-⨯--的结果等于A.5B.5-C.7D.7-【答案】A43.(2010某某某某)用0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是( ) A .36 B .117 C .115 D .153 【答案】44.(2010某某某某)观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 【答案】B45.(2010某某某某)冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )。

2010年内蒙古包头市中考数学试题含答案

2010年内蒙古包头市中考数学试题含答案

2010年内蒙古包头市高中招生考试试卷数 学注意事项:1.本试卷1~8页,满分为120分,考试时间为120分钟. 2.考生必须用蓝、黑钢笔或圆珠笔直接答在试卷上. 3.答卷前务必将装订线内的项目填写清楚.一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内. 1.27的立方根是( )A .3B .C .9D .2.下列运算中,正确的是( ) A . B .C .D .3.函数中,自变量的取值范围是( )A .B .C .D .4.国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( ) A .平方米 B .平方米 C .平方米D .平方米5.已知在中,,则的值为( ) A . B .C .D .6.下列图形中,既是轴对称图形又是中心对称图形的有( ) A .4个 B .3个 C .2个 D .1个7.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( ) A .0.1 B .0.17 C .0.33 D .8.将一个正方体沿某些棱展开后,能够得到的平面图形是( )9.化简,其结果是( ) A .B .C .D .10.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )3-9-2a a a +=22a a a =22(2)4a a =325()a a =y =x 2x >-2x -≥2x ≠-2x -≤42610⨯42.610⨯52.610⨯62.610⨯Rt ABC △390sin 5C A ∠==°,tan B 4345543422424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭82x --82x -82x -+82x +A .B.C.D .A .B .C .D .11.已知下列命题:①若,则;②若,则;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个12.关于的一元二次方程的两个实数根分别是,且,则的值是( )A .1B .12C .13D .25二、填空题:本大题共有8小题,每小题3分,共24分.请把答案填在题中的横线上.13.不等式组的解集是 .14.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,,6,4;若这组数据的平均数是5,则这组数据的中位数是 件.15.线段是由线段平移得到的,点的对应点为,则点的对应点的坐标是 .16.如图,在中,,与相切于点,且交于两点,则图中阴影部分的面积是(保留). 17.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm 2. 18.如图,已知一次函数的图象与反比例函数的图象在第一象限相交于点,与轴相交于点轴于点,的面积为1,则的长为(保留根号). 19.如图,已知与是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点在同一条直线上,且点与点重合,将图(1)中的绕点顺时针方向旋转到图(2)的位置,点在边上,交于点,则线段的长为 cm (保留根号).20.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.三、解答题:本大题共有6小题,共60分.解答时要求写出必要的文字说明、计算过程或推理过程. 21.(本小题满分8分)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为10013165185600a b >>,0a b +>a b ≠22a b ≠x 2210x mx m -+-=12x x 、22127x x +=212()x x -3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,x CD AB (14)A -,(47)C ,(41)B --,D ABC △120AB AC A BC =∠==,°,A ⊙BCDAB AC 、M N 、π1y x =+ky x=A x C AB x ,⊥B AOB △AC ACB △DFE △B C FD 、、、C F ACB △CE AB AC DE G FG 2y ax bx c =++x (20)-,1(0)x ,112x <<y (02),420a b c -+=0a b <<20a c +>210a b -+>AEC (F )B 图(1) E A GBC (F )D 图(2)(1(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由. 22.(本小题满分8分) 如图,线段分别表示甲、乙两建筑物的高,,从点测得点的仰角为60°从点测得点的仰角为30°,已知甲建筑物高米. (1)求乙建筑物的高;(2)求甲、乙两建筑物之间的距离(结果精确到0.01米).)23.(本小题满分10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围. 24.(本小题满分10分) 如图,已知是的直径,点在上,过点的直线与的延长线交于点,,.(1)求证:是的切线; (2)求证:; (3)点是的中点,交于点,若,求的值. 25.(本小题满分12分)如图,已知中,厘米,厘米,点为的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,与是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使与全等?AB DC 、AB BC DC BC ⊥,⊥B D αA D β36AB =DC BC 1.414 1.732y x y kx b =+65x =55y =75x =45y =y kx b =+W W x x AB O ⊙C O ⊙C AB P AC PC =2COB PCB ∠=∠PC O ⊙12BC AB =M AB CM AB N 4AB =MN MC ABC △10AB AC ==8BC =D AB BPD △CQP △BPD △CQP △D乙A甲O N B P CAM(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?26.(本小题满分12分)已知二次函数()的图象经过点,()与轴交于点.(1)求二次函数的解析式;(2)在直线()上有一点(点在第四象限),使得为顶点的三角形相似,求点坐标(用含的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点,使得四边形为平行四边形?若存在,请求出的值及四边形的面积;若不存在,请说明理由.13. 14.5 15. 16 17.或18. 19. 20.4三、解答题:共6小题,共60分.21.(8分)解:(1)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:,候选人丙将被录用.·····················(4分)(2)甲的测试成绩为:,乙的测试成绩为:,丙的测试成绩为:,候选人甲将被录用.······················(8分)22.(8分)解:(1)过点作于点,根据题意,得,米,········(2分)设,则,ABC△ABC△2y ax bx c=++0a≠(10)A,(2B x m=2m>x Dx m=2m>E E E、A O C、、E mF ABEFm ABEF1x≤(12),3212.52(857064)373++÷=(737172)372++÷=(736584)374++÷=∴(855703642)(532)76.3⨯+⨯+⨯÷++=(735713722)(532)72.2⨯+⨯+⨯÷++=(735653842)(532)72.8⨯+⨯+⨯÷++=∴A AE CD⊥E6030DBC DAEαβ∠=∠=∠=∠=°,°36AE BC EC AB===,DE x=36DC DE EC x=+=+D乙AE在中,, ,在中,, (米). ················· (6分)(2),,(米). ··············· (8分)23.(10分) 解:(1)根据题意得解得. 所求一次函数的表达式为. ·················· (2分) (2),······················· (4分) 抛物线的开口向下,当时,随的增大而增大, 而,当时,.当销售单价定为87元时,商场可获得最大利润,最大利润是891元. ···· (6分)(3)由,得,整理得,,解得,. ········· (7分)由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而,所以,销售单价的范围是. ·················· (10分) 24.(10分)解:(1), 又, .又是的直径,,,即,而是的半径,是的切线. ························· (3分)(2), ,又,Rt AED △tan tan 30DEDAE AE∠==°AE BC AE ∴=∴==,Rt DCB△tan tan 60DC DBC BC ∠===°,3361854x x x DC ∴=+=∴=,,BC AE ==18x=1818 1.73231.18BC ∴==⨯≈65557545.k b k b +=⎧⎨+=⎩,1120k b =-=,120y x =-+(60)(120)W x x =--+2(90)900x =--+∴90x <W x 6087x ≤≤∴87x =2(8790)900891W =--+=∴500W =25001807200x x =-+-218077000x x -+=1270110x x ==,6087x ≤≤x 7087x ≤≤OA OC A ACO =∴∠=∠,22COB A COB PCB ∠=∠∠=∠,A ACO PCB ∴∠=∠=∠AB O ⊙90ACO OCB ∴∠+∠=°90PCB OCB ∴∠+∠=°OC CP ⊥OC O ⊙∴PC O ⊙AC PC A P =∴∠=∠,A ACO PCB P ∴∠=∠=∠=∠COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠,O N B P CAM. ·············· (6分) (3)连接, 点是的中点,,, 而,,而,,,, 又是的直径,,.,. ··········· (10分)25.(12分)解:(1)①∵秒, ∴厘米,∵厘米,点为的中点, ∴厘米.又∵厘米, ∴厘米, ∴. 又∵, ∴,∴. ························· (4分) ②∵, ∴,又∵,,则, ∴点,点运动的时间秒, ∴厘米/秒. ····················· (7分) (2)设经过秒后点与点第一次相遇,由题意,得, 解得秒. 12COB CBO BC OC BC AB ∴∠=∠∴=∴=,,MAMB,M AB AM BM ∴=ACM BCM ∴∠=∠ACM ABM ∠=∠BCM ABM ∴∠=∠BMN BMC ∠=∠MBN MCB ∴△∽△BM MN MC BM∴=2BM MN MC ∴=AB O ⊙AM BM =90AMB AM BM ∴∠==°,4AB BM =∴=,28MN MC BM ∴==1t =313BP CQ ==⨯=10AB =D AB 5BD =8PC BC BP BC =-=,835PC =-=PC BD =AB AC =B C ∠=∠BPD CQP △≌△P Q v v ≠BP CQ ≠BPD CQP △≌△B C ∠=∠45BP PC CQ BD ====,P Q 433BP t ==515443Q CQ v t===x P Q 1532104x x =+⨯803x =∴点共运动了厘米. ∵,∴点、点在边上相遇,∴经过秒点与点第一次在边上相遇. ············· (12分) 26.(12分)解:(1)根据题意,得解得. . ········ (2分)(2)当时, 得或, ∵, 当时,得, ∴, ∵点在第四象限,∴. ··················(4分) 当时,得,∴, ∵点在第四象限,∴. ·················· (6分)(3)假设抛物线上存在一点,使得四边形为平行四边形,则,点的横坐标为,当点的坐标为时,点的坐标为, ∵点在抛物线的图象上, ∴, ∴,P 803803⨯=8022824=⨯+P Q AB 803P Q AB 04202.a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,132a b c =-==-,,232y x x ∴=-+-EDB AOC △∽△AO CO ED BD =AO CO BD ED=122AO CO BD m ===-,,AO CO ED BD =122ED m =-22m ED -=E 122m E m -⎛⎫⎪⎝⎭,AO CO BD ED =122m ED=-24ED m =-E 2(42)E m m -,F ABEF 1EF AB ==F 1m -1E 22m m -⎛⎫ ⎪⎝⎭,1F 212m m -⎛⎫- ⎪⎝⎭,1F 22(1)3(1)22mm m -=--+--2211140m m -+=∴,∴(舍去), ∴, ∴. ························· (9分) 当点的坐标为时,点的坐标为, ∵点在抛物线的图象上,∴,∴,∴,∴(舍去),,∴, ∴. ························ (12分)注:各题的其它解法或证法可参照该评分标准给分.(27)(2)0m m --=722m m ==,15324F ⎛⎫- ⎪⎝⎭,33144ABEFS=⨯=2E (42)m m -,2F (142)m m --,2F 242(1)3(1)2m m m -=--+--27100m m -+=(2)(5)0m m --=2m =5m =2(46)F -,166ABEFS=⨯=。

2010年中考梯形

2010年中考梯形

2010年中考梯形1、(芜湖)如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF等于()A.9 B.10 C.11 D.122、(芜湖)如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB.(1)求证:△ADF ∽△CAE;(2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积3、(鞍山)如图,设M、N分别是直角梯形ABCD两腰的中点,DE⊥AB,将△ADE沿DE翻折,M、N恰好重合,则AB:BE等于()A.2:1B.1:2C.3:2D.2:34、(鞍山)如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10. 点E在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.③如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。

动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。

设运动的时间为t(秒).(1)设△BPQ 的面积为S ,求S 与t 之间的函数关系式(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形? (3)当线段PQ 与线段AB 相交于点O ,且2AO =OB 时,求t 的值.(4)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 的值;若不存在,请说明理由.5、(巴中)已知如图8所示,在梯形ABCD 中,AD ∥BC ,AB =AD =DC =8,∠B =60°,连接A C .(1)求cos ∠ACB 的值(2)若E 、F 分别是AB 、DC 的中点,连接EF ,求线段EF 的长。

有理数与实数中考专题复习-含答案

有理数与实数中考专题复习-含答案

有理数与实数专题复习专题一 有理数与无理数的意义知识回顾1. 实数的分类2.在实际生活中正负数表示_____的量.典例分析例1:(2010四川巴中)下列各数:2π,错误!未找到引用源。

0.23·,cos60°,227,0.30003……,1 )A .2 个B .3 个C .4 个D .5 个解析:无理数是无限不循环的小数,其中的无理数有2π,0.30003……,1故选C. 评注:解决此类问题的关键是准确把握有理数,无理数及实数的概念,不能片面的从形式上判断属于哪一类数,另外对有关实数进行归类时,必须对已给出的某些数进行化简,以最简的结果进行归类.专题训练一1.(2010年南宁)下列所给的数中,是无理数的是( )A .2B . 2C .12D .0.1 2.(2010年湖北襄樊)下列说法错误的是( )A 2± 是无理数 C D .2是分数3.(2010年上海)下列实数中,是无理数的为( )A . 3.14B . 13C . 3D . 9 4.(2010安徽)在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .1-B .0C .1D .2专题二 实数的有关概念知识回顾1. 数轴:规定了___、____、___的直线叫数轴.数轴上的点与___是一一对应.2.相反数:到原点的距离相等且符号不同的两个数称为相反数,实数a 的相反数是__,零的相反数是__,a 与b 互为相反数,则_____;3.绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.⎪⎩⎪⎨⎧<=>=)0___()0(___)0(___||a a a a典例分析例1:(2010.湘潭)下列判断中,你认为正确的是( )A .0的绝对值是0B .31是无理数 C .|—2|的相反数是2 D .1的倒数是1-解析:A评注:解决本题的关键是弄清实数中的有关的概念,关于绝对值除了了解几何意义是表示点到原点的距离,还应理解“正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数”的内涵;关于无理数应从概念上突破:表示无限不循环小数;|—2|=2,2的相反数为-2;对于倒数,掌握它们的乘积为1.专题训练1.(2009年滨州)对于式子(8)--,下列理解:(1)可表示8-的相反数;(2)可表示1- 与8-的乘积;(3)可表示8-的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0B .1C .2D .3 2.(2010年内蒙古鄂尔多斯)如果a 与1互为相反数,则a 等于( ).A .2B .2-C .1D .1-3.(2010年山东菏泽)负实数a 的倒数是( ).A .a -B .1aC .1a- D .a 4.(2010年绵阳)-2是2的( ).A .相反数B .倒数C .绝对值D .算术平方根5.(2010年镇江)31的倒数是 ;21-的相反数是 . 6.(2010年四川成都)若,x y 为实数,且20x ++=,则2010()x y +的值为________. 7.(2010吉林)如图,数轴上点A 所表示的数是_________.8(2010河南)若将三个数是 .专题三 实数的大小比较知识回顾比较实数大小的一般方法:① 性质比较法:正数大于___,负数____0,正数_____任何负数;② 数轴比较法:在数轴上的实数,右边的数总是比左边的数___;差值法:③ 设a ,b 是任意实数,如a -b .>0,则a ___b ,如a -b .<0,则a b ,如a -b =0,则a ___b ;④ 商值法:如a ÷b .>1,则a ___b ,如a ÷b .<1,则a ___b ,如a ÷b .=1,则a ___b ,⑤扩大法;⑥倒数比较法,当然还有分子、分母有理化和换元法等。

内蒙古鄂尔多斯市中考数学试卷

内蒙古鄂尔多斯市中考数学试卷

内蒙古鄂尔多斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列各数中,是负数的是()A . -(-3)B . -|-3|C . (-3)2D . |-3|2. (2分) (2019八上·江阴月考) 下列四个图形中,是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2019九下·台州期中) 关于x的方程的一个根是,则方程的另一个根是A .B . 1C . 2D .4. (2分)某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是().A . 0.1B . 0.2C . 0.3D . 0.45. (2分) (2016八上·卢龙期中) 如图,AD⊥BC,垂足为D,∠BAC=∠CAD,下列说法正确的是()A . 直线AD是△ABC的边BC上的高B . 线段BD是△ABD的边AD上的高C . 射线AC是△ABD的角平分线D . △ABC与△ACD的面积相等6. (2分)如果(x﹣1)2=2,那么代数式x2﹣2x+7的值是()A . 8B . 9C . 10D . 11二、填空题 (共10题;共10分)7. (1分)(2017·安次模拟) 计算:(﹣1)0+|﹣1|=________.8. (1分)若分式有意义,则a的取值范围是________ .9. (1分) (2016九上·沙坪坝期中) 2016年9月19日,重庆市第五届运动会开幕式将在涪陵区拉开大幕,组委会面向社会公开征集了主题口号、会徽、会歌、吉祥物等元素,共收到有效作品16000余件,数据16000用科学记数法表示为________.10. (1分)(2018·河南) 不等式组的最小整数解是________.11. (1分)如图,计算∠A+∠B+∠C+∠E+∠F+∠AGF= ________°.12. (1分)命题“对顶角相等”的逆命题是________命题(填“真”或“假”).13. (1分)护士若要统计一病人一昼夜体温情况,应选用________统计图.14. (1分)已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为________ .15. (1分)(2018·哈尔滨) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是________.16. (1分)(2018·邯郸模拟) 如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。

内蒙古鄂尔多斯中考数学试卷(及答案)

内蒙古鄂尔多斯中考数学试卷(及答案)

2010年鄂尔多斯市初中毕业升学考试数学注意事项:1.本试题满分120分,考试用时120分钟.答题前将密封线内的项目填写清楚.题号一二三总分1~10 11~18 19 20 21 22 23 24 25 26得分一、选择题(本大题10个小题,每小题3分,共30分.每小题给出的四个选项中只有一个是正确的,请把正确选项填在下面的选项栏内)题号 1 2 3 4 5 6 7 8 9 10 选项1.如果a与1互为相反数,则a等于().A.2B.2-C.1D.1-2.如图,数轴上的点P表示的数可能是().A.5B.-5-C. 3.8-D.10-3.下列计算正确的是().A.2323a a a+=B.326a a a=gC.329()a a=D.341(0)a a a a-÷=≠4.如图,形状相同、大小相等的两个小木块放在一起,其俯视图如图所示,则其主视图是().5.用折纸的方法,可以直接剪出一个正五边形.折纸过程如图所示,则α∠等于().A.108︒B.90︒C.72°D.60°第5题图第4题图(俯视图)A.B.C.D.第2题图6.如图,小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y (米)与时间x (分)关系的是( ).7.如图,在ABCD Y中,E 是BC 的中点,且AEC DCE ∠=∠,则下列结论不正确...的是( ). A .2ADF EBF S S =△△B .12BF DF =C .四边形AECD 是等腰梯形D .AEB ADC ∠=∠8.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如右表所示,点1122()()A x y B x y ,,,在函数的图象上,当12123o x x <<<<,时,1y 与2y 的大小关系正确的是( ).A .12y y ≥B .12y y >C .12y y <D .12y y ≤9.定义新运算:1()(0)a a b a b a a b b b⎧-⎪⊕=⎨->≠⎪⎩且≤,则函数3y x =⊕的图象大致是( ).10.某移动通讯公司提供了A 、B 两种方案的通讯费用y (元)与通话时间x (分)之间的关系,如图所示,则以下说法错误..的是( ).A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分第6题图D .C .B .A . D .第9题图C .B .A .第7题图第10题图二、填空题(本大题8个小题,每小题3分,共24分) 11.在函数2y x =-中,自变量x 的取值范围是__________.12.把[]332(1)a a +--化简得_________.13.“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件原价为140元的运动服,打折后他比按原价购买节省了________元. 14.为参加“初中毕业升学体育考试”,小亮同学在练习掷实心球时,测得5次投掷的成绩分别为:8,8.2,8.5,8,8.6(单位:m ),这组数据的众数、中位数依次是___________. 15.如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒……照这样的规律继续摆下去,第n 个图形需要__________根小棒(用含n 的代数式表示).16.已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为________. 17.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径为50cm .小红同学为了在“圣诞”节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是______度.18.如图,1O ⊙和2O ⊙的半径分别为1和2,连接12O O ,交2O ⊙于点P ,125O O =,若将1O ⊙绕点P 按顺时针方向旋转360°,则1O ⊙与2O ⊙共相切_________次.三、解答题(本大题8个小题,共66分,解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:12031227(π2)3-⎛⎫-+--⨯- ⎪⎝⎭;第15题图第17题图第18题图1O2OP(2)先化简:再求值:22222a b ab baa ab a⎛⎫-+÷+⎪-⎝⎭,其中211a b=-=,.20.(本小题满分7分)近年来,随着经济的快速发展,我市城市环境不断改观,社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来我市观光的首选景点作了一次抽样调查,调查结果图表如下:(1)此次共调查了多少人?并将上面的图表补充完整.(2)如果将上表制成扇形统计图,那么“恩格贝”所对的圆心角是多少度?(3)该旅行社预计6月份接待外地来我市的游客2 500人,请你估算一个首选去成陵观光的约有多少人?景点频数频率成陵116 29%响沙湾25%恩格贝84 21%七星湖63 15.75%巴图湾37 9.25%21.(本小题满分6分)如图,A信封中装有两张卡片,卡片上分别写着7cm、3cm;B信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度.(1)求这三条线段能组成三角形的概率(画出树状图);(2)求这三条线段能组成直角三角形的概率.第20题图第21题图22.(本小题满分8分)如图,在梯形ABCD 中,90AD BC C E ∠=∥,°,为CD 的中点,EF AB ∥交BC 于点F .(1)求证:BF AD CF =+; (2)当17AD BC ==,,且BE 平分ABC ∠时,求EF 的长. 23.(本小题满分7分)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(2 1.43 1.7)≈,≈(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.第22题图 第23题图24.(本小题满分9分)如图,AB 为O ⊙的直径,劣弧»»BCBE BD CE =,∥,连接AE 并延长交BD 于D . 求证:(1)BD 是O ⊙的切线; (2)2AB AC AD =·. 25.(本小题满分10分)在实施“中小学校舍安全工程”之际,某市计划对A 、B 两类学校的校舍进行改造,根据预算,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.(1)改造一所A 类学校的校舍和一所B 类学校的校舍所需资金分别是多少万元?(2)该市某县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所.第24题图26.(本小题满分11分)如图,四边形OABC 是一张放在平面直角坐标系的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,159OA OC ==,,在AB 上取一点M ,使得CBM △沿CM 翻折后,点B 落在x 轴上,记作N 点. (1)求N 点、M 点的坐标;(2)将抛物线236y x =-向右平移(010)a a <<个单位后,得到抛物线l ,l 经过N 点,求抛物线l 的解析式;(3)①抛物线l 的对称轴上存在点P ,使得P 点到M N ,两点的距离之差最大,求P 点的坐标;②若点D 是线段OC 上的一个动点(不与O 、C 重合),过点D 作DE OA ∥交CN 于E ,设CD 的长为m ,PDE △的面积为S ,求S 与m 之间的函数关系式,并说明S 是否存在最大值.若存在,请求出最大值;若不存在,请说明理由.第26题图2010年鄂尔多斯市初中毕业升学考试数学试题参考答案及评分说明(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期予以复查,防止前后期评分标准宽严不一致. 2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分. 5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准二、填空题(本大题8个小题,每小题3分,共24分) 11.2x ≥ 12.5a + 13.28 14.8,8.215.41n -16.64m m >-≠-且17.18(18)°18.3三、解答题(本大题8个小题,共66分) 19.(本小题满分8分)(1)计算:12012(π3-⎛⎫-⨯ ⎪⎝⎭解:原式=433--- ····························································· 3分(一处正确给1分)10=-. ······································································································· 4分(2)先化简:再求值:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,其中11a b ==,.解:原式=2()()()()a b a b a b a a b a+-+÷- ·········································· 2分(一处正确给1分)=1a b+ ·········································································································· 3分2==·························································································· 4分 20.(本小题满分7分)景点 频数 频率 成陵 116 29% 响沙湾 100 25% 恩格贝 84 21% 七星湖 63 15.75% 巴图湾379.25%解:(1)8421%400÷=(人).答:共调查了400人. ········································ 2分40025%100⨯=(人),补充图表如下 ················································ 4分(各1分) (2)36021%75.6⨯=°°.答:“恩格贝”所对的圆心角是75.6°. ·························· 6分 (3)250029%725⨯=(人).答:首选去成陵的人数约725人. ··························· 7分 21.(本小题满分6分) 解:(1)树状图:············································· 3分42()63P ==组成三角形.···················································································· 5分 (2)1()6P =组成直角三角形. ··········································································· 6分 22.(本小题满分8分) (1)证法一: 如图(1),延长AD 交FE 的延长线于N ,90NDE FCE DEN FEC DE EC ∠=∠=∠=∠=Q °,,,NDE FCE ∴△≌△. ····················································································· 3分 DN CF ∴=. ······························································································· 4分 AB FN AN BF Q ∥,∥,∴四边形ABFN 是平行四边形. ··································· 5分 BF AD DN AD FC ∴=+=+. ······································································· 6分 (2)解:1.AB EF BEF ∴∠=∠Q ∥,122BEF ∠=∠∴∠=∠Q ,.EF BF ∴=. ································································································ 7分 17422AD BC EF AD CF ++∴=+=+=. ························································· 8分 (1)证法二:如图(2)过D 点作DN AB ∥交BC 于N ,AD BN AB DN AD BN ∴=Q ∥,∥,. ····················· 1分 EF AB DN EF ∴Q ∥,∥. ····································· 2分 CEF CDN ∴△∽△. ············································· 3分 图(1)图(2)CE CFDC CN∴=. ······························································································ 4分 1122CE CF NF CF DC CN ===∴Q,,即. ····································································· 5分 BF BN NF AD FC ∴=+=+. ········································································ 6分 23.(本小题满分7分) 解:(1)tan30AB AC =° ··············································································· 1分3124373=⨯=≈(米).(结果也可以保留一位小数,下同) 答:树高约7米. ···························································································· 2分(2)①如图(2),112sin 454352B N AN AB ===⨯°≈(米) ························ 3分 11tan602638NC NB ==⨯°≈(米) ··························································· 4分 115813AC AN NC =+=+=(米).答:树与地面成45°角时影长约13米. ······························································· 5分 ②如图(2)当树与地面成60°角时影长最大2AC (或树与光线垂直时影长最大或光线与半径为AB 的A ⊙相切时影长最大) ······································································ 6分22214AC AB =≈(米).答:树的最大影长约14米. ·············································································· 7分24.(本小题满分9分)证明:(1)»»CBBE =Q , »»12AC AE AC AE ∴∠=∠==,,, ······························ 2分AB CE ∴⊥. ·························································· 3分 CE BD AB BD ∴⊥Q ∥,. ········································ 4分 BD ∴是O ⊙的切线. ················································ 5分 (2)连接CB .AB Q 是O ⊙的直径,90ACB ∴∠=°. ······························································ 6分 90ABD ACB ABD ∠=∴∠=∠Q °,. ································································· 7分 12ACB ABD ∠=∠∴Q ,△∽△. ····································································· 8分2AC AB AB AD AC AB AD∴=∴=,·. ····································································· 9分 (证法二,连接BE ,证明略) 25.(本小题满分10分)解:(1)设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元,则34803400x y x y +=⎧⎨+=⎩ ···························································· 3分(正确一个方程组2分) 解之得90130x y =⎧⎨=⎩. ·························································································· 4分 答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元. ···················································································································· 5分(2)设A 类学校应该有a 所,则B 类学校有(8)a -所,则2030(8)210(9020)(13030)(8)770a a a a +-⎧⎨-+--⎩≥≤ ························· 7分(正确一个不等式给1分) 解得31a a ⎧⎨⎩≤≥. ································································································ 8分 13a ∴≤≤,即123a =,,. ············································································· 9分 答:有3种改造方案:方案一:A 类学校1所,B 类学校7所;方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所. ··························································· 10分26.(本小题满分11分)解:如图(1)159CN CB OC ===Q ,,2215912(120)ON N ∴=-=∴,,.································ 1分 又15123AN OA ON =-=-=Q ,设AM x =,2223(9)x x ∴+=-, ···················································· 2分4(154)x M ∴=,,. ······················································································· 3分(2)解法一:设抛物线l 为2()36y x a =--,则2(12)36.a -= ···························································································· 4分 16a ∴=或218a =(舍去). ············································································· 5分∴抛物线2:(6)36l y x =--. ·········································································· 6分解法二:21236066x x x -==-=Q ,,,236y x ∴=-与x 轴的交点为(60)-,和(60),. ···················································· 4分 由题意知,交点(60),向右平移6个单位到N 点, ·················································· 5分 所以236y x =-向右平移6个单位得到抛物线2:(6)36l y x =--. ························· 6分(3)①由“三角形任意两边的差小于第三边”知,P 点是直线MN 与对称轴6x =的交点,···································· 7分 设直线MN 的解析式为y kx b =+,则120154k b k b +=⎧⎨+=⎩,解之得4316k b ⎧=⎪⎨⎪=-⎩ 416.(68)3y x P ∴=-∴-,. ············································································· 8分 ②DE OA ACB ABD ∴Q ∥,△∽△,49123m DE DE m ∴==,. ···························· 9分 214234(98)2333S m m m m ∴=⨯⨯+-=-+. ···················································· 10分 203a =-<Q ,开口向下,又343431739234223m ⨯=-==<⨯⎛⎫⨯- ⎪⎝⎭,S ∴有最大值, 2217341728932326S ⎛⎫=-⨯+⨯= ⎪⎝⎭最大. ······························································ 11分。

内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案

内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案

鄂尔多斯市初中毕业升学考试数 学(课标)注意事项:1.本试题满分120分,考试用时120分钟; 2.答题前将密封线内的项目填写清楚;3.考试结束后将试卷按页码顺序排好,全部上交.一、选择题(本大题10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在下面的选项栏内.) 题号 1 2 3 4 5 6 7 8 9 10 选项 1.3-的相反数是( ) A .3-B .3C .13-D .132.图1是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )3.我市2006年财政收入近150亿元,居自治区首位.150亿用科学记数法可表示为( ) A .81.510⨯B .91.510⨯C .101.510⨯D .111.510⨯4.能够刻画一组数据离散程度的统计量是( )A .平均数B .众数C .中位数D .方差 5.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图2).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( ) A .平行四边形 B .矩形C .三角形D .半圆6.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 7.下列说法正确的有( ) (1)如图3(a ),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图3(b ),可以利用直角曲尺检查工件是否为半圆形; (3)如图3(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图3(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.图1 A . B . C . D . A B MAB M ()A ()B 图2A .1个B .2个C .3个D .4个8.一种蔬菜加工后出售,单价可提高20%,但重量减少10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x 元,加工后每千克卖y 元,根据题意,所列方程组正确的是( ) A .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%B .(120)30(110)3012y xy x =+⎧⎨--=⎩%%C .(120)30(110)3012y xy x =-⎧⎨--=⎩%%D .(120)30(110)3012y xy x =-⎧⎨+-=⎩%%9.如图4,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )10.观察表1,寻找规律.表2是从表1中截取的一部分,其中a b c ,,的值分别为( ) 表1 表2 1 2 3 4 …… 2 4 6 8 …… 3 6 9 12 …… 4 8 12 16 …… …………………………A .20,25,24B .25,20,24C .18,25,24D .20,30,25二、填空题(本大题8个小题,每小题3分,共24分)11.如图5,AB CD ∥,58B =o∠,20E =o∠,则D ∠的度数为 .16 a20 bc30图3(a )图3(b )图3(c )图3(d )AABCDP图4 1A 2A 3A 4A 5A O h t A . O h tB . O h tC . O ht D .图5 A BC D E F图6B (12)A , yx O 1 212.若43x y =,则y x y=+ . 13.如图6,双曲线1k y x=与直线2y k x =相交于A B ,两点,如果A 点的坐标是(12),,那么B 点的坐标为 .14.不等式组30240x x -⎧⎨+>⎩≤的解集是 .15.如图7,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于P ,如果4cm AB =,则图中阴影部分的面积为 2cm (结果用π表示).16.如图8,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线). 17.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图9(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图9(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).18.如图10,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为 平方米(不计墙的厚度).三、解答题(本大题8个小题,共66分.解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭.图7 A B P O图8ABP O图9(1) 图9(2) ab图10 猫 房间 门 1米(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭.20.(本小题满分6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图11所示,请你根据图中的信息回答问题.(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名? 21.(本小题满分6分) 有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的几何图形(如图12).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示);(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.22.(本小题满分6分) 如图13,A B ,两镇相距60km ,小山C 在A 镇的北偏东60o方向,在B 镇的北偏西30o方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?初一 初二 初三 年级人数 0100 200 300 400 500 450 350 150 参加综合实践活动人数统计图60% 14% 16%文体活动 社会调查 社区服务 科技活动 参加综合实践活动人数分布统计图 图11正三角形 A 正方形 B 菱 形 C 等腰梯形D图12 北北 A C B60o30o 图1323.(本小题满分9分)如图14,在ABC △中,90ACB =o∠,D 是AB 的中点,以DC 为直径的O e 交ABC △的边于G F E ,,点. 求证:(1)F 是BC 的中点;(2)A GEF =∠∠.24.(本小题满分10分)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图15所示;乙公司每月通话收费标准如表3所示.表3(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是 元;甲公司用户通话100分钟以后,每分钟的通话费为 元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择? 25.(本小题满分9分) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ; (2)如图16(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60o,得到DBE △,连结月租费 通话费 2.5元 0.15元/分钟A B C D E F GO图14图15 ()t 分()y 元O 100 20020 40 y B O A x 图16(1)AD DC ,,30DCB =o ∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形. 26.(本小题满分12分)如图17,抛物线2229y x nx n =-++-(n 为常数)经过坐标原点和x 轴上另一点C ,顶点在第一象限.(1)确定抛物线所对应的函数关系式,并写出顶点坐标;(2)在四边形OABC 内有一矩形MNPQ ,点M N ,分别在OA BC ,上,点Q P ,在x 轴上.当MN 为多少时,矩形MNPQ 的面积最大?最大面积是多少?2007年鄂尔多斯市初中毕业升学考试 数学试题参考答案及评分说明(课标)(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.ABCDE60o图16(2)yOC x图173.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准一、选择题(本大题10个小题,每小题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B C C D A A D B B A 二、填空题(本大题8个小题,每小题3分,共24分.) 11.38o(或38)12.3713.(12)--, 14.23x -<≤ 15.4π16.OA OB =(或OAP OBP =∠∠或APO BPO =∠∠)17.22()()a b a b a b -=+-(或22()()a b a b a b +-=-)18.17(填空正确给3分,图形不正确不扣分;图形正确,计算不正确可给1分.) 三、解答题(本大题8个小题,共66分.) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭解:原式124=+- ······················································· 3分(一处计算正确给1分) 1=- ······························································································· 4分(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭解:原式2(1)(1)1a a a -=+-- ············································ 2分(一处计算正确给1分)(1)(1)a a =+-- ··············································································· 3分 2= ········································································································· 4分 20.(本小题满分6分) 解:(1)450350150950++=(人) ······································· 1分(无单位不扣分) 950(1601614)95⨯---=%%%(人) ···································· 3分(无单位不扣分) 答:参加综合实践活动的有950人,参加科技活动的有95人. ································ 4分(2)95030000105003⨯⨯⨯% ············································································· 5分95201900=⨯=(人) ··················································· 6分(无单位不扣分)答:参加科技活动的学生估计有1900人. 21.(本小题满分6分)树状图: 列表:··········································································· 4分 注:出现3处(共12处)错误扣1分,扣完为止.(2)21126P == ··························································································· 6分 答:概率是16.22.(本小题满分6分)解:作CD AB ⊥于D ,由题意知:30CAB =o∠ 60CBA =o∠ 90ACB =o∠ ································· 1分 30DCB ∴=o ∠ ··················································· 2分 ∴在Rt ABC △中,1302BC AB == ································································ 3分 在Rt DBC △中,cos30CD BC =o································································ 4分 3302=⨯··································································· 5分 15320=> ································································ 6分 答:这条公路不经过该区域. 23.(本小题满分9分) 证法一: (1)连结DF ,90ACB =o Q ∠,D 是AB 的中点12BD DC AB ∴==············································· 2分 DC Q 是O e 的直径DF BC ∴⊥ ······················································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)D F Q ,分别是AB BC ,的中点A B C D A A BA C A DB A B BC BD C A C B C D C D A D B D D C AB C D D B C A D C A B D A B C 1 北北AD CB60o30oABCDEF GODF AC ∴∥ ································································································· 6分 A BDF ∴=∠∠ ···························································································· 7分 BDF GEF ∴=∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 证法二:(1)连结DF DE , DC Q 是O e 直径90DEC DFC ∴==o ∠∠ ················································································ 1分 90ECF =o Q ∠ ∴四边形DECF 是矩形EF CD ∴=,DF EC = ······································· 2分 D Q 是AB 的中点,90ACB =o∠12EF CD BD AB ∴=== ····································· 3分 DBF EFC ∴△≌△ ············································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)DBF EFC Q △≌△BDF FEC ∴=∠∠,B EFC =∠∠ ································································· 6分 90ACB =o Q ∠(也可证AB EF ∥,得A FEC =∠∠)A FEC ∴=∠∠····························································································· 7分 FEG BDF =Q ∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 (此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)24.(本小题满分10分) (1)20;0.2 ············································································ 4分(每空2分) (2)通话时间不超过100分钟选甲公司合算 ························································ 5分 解:设通话时间为t 分钟(100t >),甲公司用户通话费为1y 元,乙公司用户通话费为2y 元. 则:1200.2(100)0.2y t t =+-= ·························· 6分(条件100t >没有写出不扣分)2250.15y t =+ ····························································································· 7分当12y y = 即:0.2250.15t t =+时,500t = ···················································· 8分 当12y y > 即:0.2250.15t t >+时,500t >当12y y < 即:0.2250.15t t <+时,500t < ······················································ 9分 答:通话时间不超过500分钟选甲公司;500分钟选甲、乙公司均可;超过500分钟选乙公司. ··········································································································· 10分 25.(本小题满分9分)A BCD E F GO(1)正方形、长方形、直角梯形.(任选两个均可) ··············· 2分(填正确一个得1分) (2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)······· 2分(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE Q △≌△ ······················································································· 5分 AC DE ∴=,BC BE = ················································································· 6分 60CBE =o Q ∠ EC BC ∴=,60BCE =o ∠ ······················································ 7分 30DCB =o Q ∠ 90DCE ∴=o ∠ 222DC EC DE ∴+= ······································· 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ·········································· 9分 26.(本小题满分12分)解(1)Q 抛物线过(00),点.290n ∴-= ·························································· 1分 3n ∴=± ······································································································ 2分 Q 顶点在第一象限,02bn a∴-=>且22244044ac b n n a --==>-(不写不扣分) 3n ∴= ········································································································ 3分 ∴抛物线26y x x =-+ ···················································································· 4分顶点坐标为(39), ···························································································· 5分 (2)①B 点的坐标为(48), ·············································································· 6分 ②如图所示,作AH x ⊥轴于H .设M 点的坐标为()x y ,OMQ OAH ∴△∽△ OQ MQOH AH∴= ······················· 7分28x y∴= 4y x ∴= ·············································· 8分 由抛物线的对称性可知:62QP MN x ==- ············· 9分y B O MMA x ABC DE 60o y A MO Q H (39),B NP C x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年鄂尔多斯市初中毕业升学考试数 学注意事项:1. 本试题满分120分,考试用时120分钟. 答题前将密封线内的项目填写清楚.一、选择题(本大题10个小题,每小题3分,共30分.每小题给出的四个选项中只有一个是正确的,请把正确选项填在下面的选项栏内)1.如果a 与1互为相反数,则a 等于( ). A .2 B .2- C .1 D.1- 2.如图,数轴上的点P 表示的数可能是( ). AB .-C . 3.8-D .3.下列计算正确的是( ). A .2323a a a += B .326a a a =C .329()a a =D .341(0)a a a a -÷=≠4.如图,形状相同、大小相等的两个小木块放在一起,其俯视图如图所示,则其主视图是( ).5.用折纸的方法,可以直接剪出一个正五边形.折纸过程如图所示,则α∠等于( ). A .108︒ B .90︒ C .72° D .60°第5题图第4题图(俯视图) A . B .C .D .第2题图6.如图,小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y (米)与时间x (分)关系的是( ).7.如图,在ABCD 中,E 是BC 的中点,且AEC DCE ∠=∠,则下列结论不正确...的是( ). A .2ADF EBF S S =△△B .12BF D F =C .四边形AECD 是等腰梯形D .AEB ADC ∠=∠8.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如右表所示,点1122()()A x y B x y ,,,在函数的图象上,当12123o x x <<<<,时,1y 与2y 的大小关系正确的是( ). A .12y y ≥B .12y y >C .12y y <D .12y y ≤9.定义新运算:1()(0)a a b a b aa b b b⎧-⎪⊕=⎨->≠⎪⎩且≤,则函数3y x =⊕的图象大致是( ).10.某移动通讯公司提供了A 、B 两种方案的通讯费用y (元)与通话时间x (分)之间的关系,如图所示,则以下说法错误..的是( ).A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分第6题图D .C .B .A .D .第9题图C . B .A .第7题图第10题图二、填空题(本大题8个小题,每小题3分,共24分) 11.在函数y =x 的取值范围是__________.12.把[]332(1)a a +--化简得_________.13.“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件原价为140元的运动服,打折后他比按原价购买节省了________元. 14.为参加“初中毕业升学体育考试”,小亮同学在练习掷实心球时,测得5次投掷的成绩分别为:8,8.2,8.5,8,8.6(单位:m ),这组数据的众数、中位数依次是___________. 15.如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒……照这样的规律继续摆下去,第n 个图形需要__________根小棒(用含n 的代数式表示).16.已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为________.17.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径为50cm .小红同学为了在“圣诞”节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是______度.18.如图,1O ⊙和2O ⊙的半径分别为1和2,连接12O O ,交2O ⊙于点P ,125O O =,若将1O ⊙绕点P 按顺时针方向旋转360°,则1O ⊙与2O ⊙共相切_________次.三、解答题(本大题8个小题,共66分,解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分) (1)计算:1212(π3-⎛⎫-+⨯- ⎪⎝⎭;第15题图第17题图第18题图1O2OP(2)先化简:再求值:22222a bab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,其中11a b ==,.20.(本小题满分7分)近年来,随着经济的快速发展,我市城市环境不断改观,社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来我市观光的首选景点作了一次抽样调查,调查结果图表如下:(1)此次共调查了多少人?并将上面的图表补充完整.(2)如果将上表制成扇形统计图,那么“恩格贝”所对的圆心角是多少度?(3)该旅行社预计6月份接待外地来我市的游客2 500人,请你估算一个首选去成陵观光的约有多少人?21.(本小题满分6分)如图,A 信封中装有两张卡片,卡片上分别写着7cm 、3cm ;B 信封中装有三张卡片,卡片上分别写着2cm 、4cm 、6cm ;信封外有一张写着5cm 的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度.(1)求这三条线段能组成三角形的概率(画出树状图); (2)求这三条线段能组成直角三角形的概率.第20题图第21题图22.(本小题满分8分)如图,在梯形ABC D 中,90AD BC C E ∠=∥,°,为CD 的中点,EF AB ∥交BC 于点F .(1)求证:BF AD CF =+;(2)当17AD BC ==,,且BE 平分ABC ∠时,求EF 的长. 23.(本小题满分7分)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角. 1.4 1.7)(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.第22题图第23题图24.(本小题满分9分)如图,AB 为O ⊙的直径,劣弧 BCBE BD CE =,∥,连接AE 并延长交BD 于D . 求证:(1)BD 是O ⊙的切线; (2)2AB AC AD =·.25.(本小题满分10分)在实施“中小学校舍安全工程”之际,某市计划对A 、B 两类学校的校舍进行改造,根据预算,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.(1)改造一所A 类学校的校舍和一所B 类学校的校舍所需资金分别是多少万元?(2)该市某县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所.第24题图26.(本小题满分11分)如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,159,,在AB上取一点M,使得CBM△沿CM翻折后,==OA OC点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线236=-向右平移(010)y x<<个单位后,得到抛物线l,l经过N点,a a求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M N,两点的距离之差最大,求P点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE OA∥交CN 于E,设CD的长为m,PDE△的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值.若存在,请求出最大值;若不存在,请说明理由.Array第26题图2010年鄂尔多斯市初中毕业升学考试数学试题参考答案及评分说明(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期予以复查,防止前后期评分标准宽严不一致. 2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分. 5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准二、填空题(本大题8个小题,每小题3分,共24分) 11.2x ≥ 12.5a + 13.28 14.8,8.215.41n -16.64mm >-≠-且17.18(18)° 18.3三、解答题(本大题8个小题,共66分) 19.(本小题满分8分) (1)计算:1212(π3-⎛⎫-+⨯- ⎪⎝⎭解:原式=433--- ············································································· 3分(一处正确给1分)10=-.····································································································································4分 (2)先化简:再求值:22222a bab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,其中11a b ==,.解:原式=2()()()()a b a b a b a a b a+-+÷- ····················································· 2分(一处正确给1分)=1a b+ ·······································································································································3分 2== ···················································································································4分20.(本小题满分7分)解:(1)8421%400÷=(人).答:共调查了400人. ····················································2分40025%100⨯=(人),补充图表如下 ····························································· 4分(各1分) (2)36021%75.6⨯=°°.答:“恩格贝”所对的圆心角是75.6°. ·································6分 (3)250029%725⨯=(人).答:首选去成陵的人数约725人. ···································7分 21.(本小题满分6分) 解:(1)树状图:··························································3分42()63P ==组成三角形.···········································································································5分(2)1()6P =组成直角三角形. ································································································6分22.(本小题满分8分)(1)证法一: 如图(1),延长AD 交FE 的延长线于N ,90N D E FC E D EN FEC D E EC ∠=∠=∠=∠= °,,,NDE FCE ∴△≌△. ············································································································3分 DN CF ∴=. ·························································································································4分 AB FN AN BF ∥,∥,∴四边形ABFN 是平行四边形. ·············································5分 BF AD DN AD FC ∴=+=+. ···························································································6分 (2)解:1.AB EF BEF ∴∠=∠ ∥,122BEF ∠=∠∴∠=∠ ,. EF BF ∴=. ··························································································································7分 17422AD BCEF AD CF ++∴=+=+=. ········································································8分 (1)证法二:如图(2)过D 点作DN AB ∥交BC 于N ,AD BN AB DN AD BN ∴= ∥,∥,.·························· 1分 EF AB DN EF ∴ ∥,∥. ··············································· 2分 CEF CDN ∴△∽△. ························································ 3分 图(1)图(2)CE CF DCCN∴=. ························································································································4分1122C E C F N F C FD CC N===∴,,即. ························································································5分BF BN NF AD FC ∴=+=+. ····························································································6分 23.(本小题满分7分)解:(1)tan 30AB AC =° ·····································································································1分1273=⨯=(米).(结果也可以保留一位小数,下同)答:树高约7米.·····················································································································2分(2)①如图(2),11sin 4552B N A N A B ===°≈(米) ·······························3分11tan 608NC NB ==°(米) ···········································································4分 115813AC AN NC =+=+=(米). 答:树与地面成45°角时影长约13米. ················································································5分 ②如图(2)当树与地面成60°角时影长最大2AC (或树与光线垂直时影长最大或光线与半径为AB 的A ⊙相切时影长最大) ··························································································6分 22214AC AB =≈(米). 答:树的最大影长约14米. ···································································································7分 24.(本小题满分9分)证明:(1) CBBE = , 12AC AE AC AE ∴∠=∠==,,,······································ 2分 AB CE ∴⊥. ········································································· 3分 CE BD AB BD ∴⊥ ∥,.··················································· 4分 BD ∴是O ⊙的切线. ···························································· 5分(2)连接CB .AB 是O ⊙的直径,90ACB ∴∠=°. ···············································································6分90ABD ACB ABD ∠=∴∠=∠ °,. ···················································································7分 12ACB ABD ∠=∠∴ ,△∽△. ························································································8分2ACABAB AD AC AB AD ∴=∴=,·. ························································································9分 (证法二,连接BE ,证明略)25.(本小题满分10分)解:(1)设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元,则34803400x y x y +=⎧⎨+=⎩ ············································································ 3分(正确一个方程组2分) 解之得90130x y =⎧⎨=⎩. ···················································································································4分 答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元. ···················································································································································5分(2)设A 类学校应该有a 所,则B 类学校有(8)a -所,则2030(8)210(9020)(13030)(8)770a a a a +-⎧⎨-+--⎩≥≤ ································ 7分(正确一个不等式给1分) 解得31a a ⎧⎨⎩≤≥. ··························································································································8分 13a ∴≤≤,即123a =,,.···································································································9分 答:有3种改造方案:方案一:A 类学校1所,B 类学校7所;方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所. ··········································································· 10分26.(本小题满分11分)解:如图(1)159CN CB OC === ,,12(120)O N N ∴==∴,,. ········································ 1分 又15123AN OA ON =-=-= ,设AM x =,2223(9)x x ∴+=-, ·································································· 2分 4(154)x M ∴=,,. ···············································································································3分 (2)解法一:设抛物线l 为2()36y x a =--,则2(12)36.a -= ·····················································································································4分16a ∴=或218a =(舍去). ··································································································5分。

相关文档
最新文档