历年全国中考数学试题及答案
历年中考数学试题题库(含解析)

历年中考数学试题题库(含解析)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列四个实数中,无理数是()A.2 B.C.0 D.﹣1【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、2是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C正确;D、﹣1是有理数,故D正确;故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图所示的几何体是由4个小正方体搭成,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层两个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,主视图是从正面看得到的图形.3.(3分)下列运算正确的是()A.a3+a3=a6B.a3•a3=a9C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【考点】35:合并同类项;46:同底数幂的乘法;4C:完全平方公式;4F:平方差公式.【分析】直接利用合并同类项法则以及完全平方公式和平方差公式分别判断得出即可.【解答】解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(a+b)(a﹣b)=a2﹣b2,正确.故选:D.【点评】此题主要考查了完全平方公式/合并同类项、平方差公式等知识,正确应用乘法公式是解题关键.4.(3分)下列选项中能由左图平移得到的是()A.B.C.D.【考点】Q1:生活中的平移现象.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.(3分)如图,点A、B、C是⊙O上,∠AOB=80°,则∠ACB的度数为()A.40°B.80°C.120°D.160°【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=80°.∴∠ACB=∠AOB=40°.故选:A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.(3分)下列说法正确的是()A.哥哥的身高比弟弟高是必然事件B.今年中秋节有雨是不确定事件C.随机抛一枚均匀的硬币两次,都是正面朝上是不可能事件D.“彩票中奖的概率为”表示买5张彩票肯定会中奖【考点】X1:随机事件;X3:概率的意义.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、哥哥的身高比弟弟高是随机事件,故A错误;B、今年中秋节有雨是不确定事件,故B正确;C、随机抛一枚均匀的硬币两次,都是正面朝上是随机事件,故C错误;D、“彩票中奖的概率为”表示买5张彩票可能中奖,可能不中奖,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)甲、乙两个同学在四次模拟试中,数学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定【考点】W7:方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S 乙2=12.∴S甲2<S乙2.∴成绩比较稳定的是甲;故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(3分)如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等.∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选:A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.9.(3分)一次函数y=x+2的图象不经过的象限是()A.一B.二C.三D.四【考点】F7:一次函数图象与系数的关系.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限.∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.10.(3分)如图,设他们中有x个成人,y个儿童根据图中的对话可得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】题目中的等量关系为:1、大人数+儿童数=8;2、大人票钱数+儿童票钱数=195,据此求解.【解答】解:设他们中有x个成人,y个儿童,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系并根据等量关系列出方程.二、填空题(共5小题,每小题3分,满分15分)11.(3分)a的相反数是﹣9,则a=9.【考点】14:相反数.【分析】根据相反数定义解答即可.【解答】解:∵a的相反数是﹣9.∴a=9.故答案为:9.【点评】此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的一个数是另一个的相反数.12.(3分)如图,直线a∥b,∠1=70°,则∠2=70°.【考点】JA:平行线的性质.【分析】根据两直线平行同位角相等可得∠1=∠2=70°.【解答】解:∵a∥b.∴∠1=∠2.∵∠1=70°.∴∠2=70°.故答案为:70°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.13.(3分)茂名滨海新区成立以来,发展势头良好,重点项目投入已超过2000亿元,2000亿元用科学记数法表示为2×103亿元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2000=2×103.故答案为:2×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB ⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米.在Rt△OAD中,根据勾股定理,OD==2(米).∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.(3分)用边长为1的小正方形摆成如图所示的塔状图形,按此规律,第4次所摆成的周长是16,第n次所摆图形的周长是4n(用关于n的代数式表示)【考点】38:规律型:图形的变化类.【分析】由题意可知:第一次1个小正方形的时候,周长等于1个正方形的周长,是1×4=4;第二次3个小正方形的时候,一共有4条边被遮挡,相当于少了1个小正方形的周长,所搭图形的周长为2个小正方形的周长,是2×4=8;第三次6个小正方形的时候,一共有12条边被遮挡,相当于少了3个小正方形的周长,所搭图形的周长为3个小正方形的周长,是3×4=12;…由此得出第几次搭建的图形的周长就相当于几个小正方形的周长是4n,由此规律解决问题.【解答】解:第一次所摆图形周长是1×4=4;第二次所摆图形的周长是2×4=8;第三次所摆图形的周长是3×4=12;…第n次所摆图形的周长是n×4=4n.第4次所摆成的周长是4×4=16.故答案为:16,4n.【点评】此题考查图形的变化规律可,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,解决问题.三、解答题(共10小题,满分75分)16.(7分)计算:|﹣2|﹣()0+(﹣1)2014.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.【解答】解:原式=2﹣1+1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组:.【考点】CB:解一元一次不等式组.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:由①得:x>1.由②得:x<2.不等式组的解集为:1<x<2.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)如图,在正方形ABCD中,点E在AB边上,点F在BC边的延长线上,且AE=CF(1)求证:△AED≌△CFD;(2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合,旋转中心是什么?【考点】KD:全等三角形的判定与性质;LE:正方形的性质;R2:旋转的性质.【分析】(1)由正方形的性质就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出结论;(2)由∠ADC=90°就可以得出△AED按逆时针方向至少旋转90度才能与△CFD 重合,旋转中心是点D.【解答】解:(1)∵四边形ABCD是正方形.∴AD=CD,∠A=∠DCB=∠ADC=90°.∴∠A=∠DCF=90°.在△AED和△CFD中..∴△AED≌△CFD(SAS);(2)∵∠ADC=90°.∴△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,旋转的旋转的运用,解答时证明三角形全等是关键.19.(7分)2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)能答5条的人数除以总人数得出能答5条”人数的百分比;用总人数乘以“仅能答3条”的人数所占的百分比即可求出“仅能答3条”的人数;(2)用该校的总人数乘以能答3条不准以上(含3条)的人数所占的百分比即可.【解答】解:(1)“能答5条”人数的百分比是×100%=20%.“仅能答3条”的人数是200×40%=80(人);(2)根据题意得:2000×(1﹣5%﹣10%)=1700(人).答:该校能答3条不准以上(含3条)的人数是1700人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负(1)爸爸一次出“石头”的概率是多少?(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.【考点】X4:概率公式;X6:列表法与树状图法.【分析】(1)由随机作出“石头”、“剪刀”、“布”三种手势,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与妈妈一次获胜的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:爸爸一次出“石头”的概率是:;(2)画树状图得:∵共有9种等可能的结果,妈妈一次获胜的有3种情况.∴妈妈一次获胜的概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度;(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】本题中两个直角三角形有公共的边,那么可利用这条公共直角边进行求解.(1)求AD长的时候,可在直角三角形ADC内,根据30°的角所对的直角边是斜边的一半求解.(2)在直角三角形ABC中求得AB的长后用AD﹣AB即可求得增加的长度.【解答】解:(1)Rt△ABD中.∵∠ADB=30°,AC=6米.∴AD=2AC=12(m)∴AD的长度为12米;(2)∵Rt△ABC中,AB=AC÷sin60°=4(m).∴AD﹣AB=12﹣4≈5.1(m).∴改善后的滑梯会加长5.1m.【点评】本题主要考查了解直角三角形的应用,利用这两个直角三角形有公共的直角边求解是解决此类题目的基本出发点.22.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1.(1)若反比例函数y=和y=的图象分别经过点B、B1,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2,当点O2、B2在反比例函数y=的图象上时,求平移的距离和k3的值.【考点】G5:反比例函数系数k的几何意义;Q2:平移的性质.【分析】(1)将B(3,2)代入y=,即可求出k1的值;将B1(3,6)代入y=,即可求出k2的值;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,根据向左平移,横坐标相减,纵坐标不变得到点O2(﹣a,4),B2(3﹣a,6),由点O2、B2在反比例函数y=的图象上,得出k3=﹣4a=6(3﹣a),解方程即可求出a与k3的值.【解答】解:(1)∵矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2.∴B(3,2).∵反比例函数y=的图象分别经过点B.∴k1=3×2=6;∵将矩形OABC向上平移4个单位得到矩形O1A1B1C1.∴B1(3,6).∵反比例函数y=的图象经过点B1.∴k2=3×6=18;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,则O2(﹣a,4),B2(3﹣a,6).∵点O2、B2在反比例函数y=的图象上.∴k3=﹣4a=6(3﹣a).解得a=9,k3=﹣36.【点评】本题考查了反比例函数比例系数k的几何意义,反比例函数图象上点的坐标特征,平移的性质,难度适中.利用数形结合与方程思想是解题的关键.23.(8分)网络购物越来越方便快捷,远方的朋友通过网购就可以迅速品尝到茂名的新鲜荔枝,同时也增加了种植户的收入,种植户老张去年将全部荔枝按批发价卖给水果商,收入6万元,今年的荔枝产量比去年增加2000千克,计划全部采用互联网销售,网上销售比去年的批发价高50%,若按此价格售完,今年的收入将达到10.8万元.(1)去年的批发价和今年网上售价分别是多少?(2)若今年老张按(1)中的网上售价销售,则每天的销量相同,20天恰好可将荔枝售完,经调查发现,当网上售价每上升0.1元/千克,每日销量将减少5千克,将网上售价定为多少,才能使日销量收入最大?【考点】HE:二次函数的应用.【分析】(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,根据条件建立方程组求出其解即可;(2)由(1)的结论可以求出今年的产量,就可以求出日销售量,设日销售利润为W元,网上售价为a元,由利润问题的数量关系表示出W与a的数量关系,由二次函数的性质就可以求出结论.【解答】解:(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,由题意,得.解得:.则今年的售价为(1+50%)x=9元.答:去年的售价为6元,则今年的售价为9元;(2)由题意,得今年的产量为:10000+2000=12000千克.则网上日销售量为:12000÷20=600千克.设日销售收入为W元,网上售价为a元,由题意,得W=a(600﹣).W=﹣50a2+1050aW=﹣50(a﹣)2+.∴a=﹣50<0.∴a=时,W=.最大∴网上售价定为10.5元,才能使日销量收入最大为元.【点评】本题考查了列二元二次方程组解实际问题的运用,二元二次方程组的解法的运用,二次函数的运用,二次函数的性质的运用,解答时求出二次函数的解析式是关键.24.(8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.【考点】MR:圆的综合题.【分析】(1)利用段垂直平分线的性质得出OC⊥AB,进而得出答案即可;(2)利用勾股定理得出OC2+AC2=OA2,进而得出⊙O的半径;(3)首先得出△HOC∽△COA,进而得出OC2=OH×OA,即可得出⊙O的直径与OH、OB之间的数量关系.【解答】(1)证明:如图所示:连接CO.∵OA=OB,AC=BC.∴OC⊥AB.∵OC为⊙O的半径.∴直线AB与⊙O相切;(2)解:在直角三角形OAC中用勾股定理就可以了.设半径为r,则OC=r,OA=a+r.AC=AB= b.在Rt△AOC中.OC2+AC2=OA2.则r2+b2=(a+r)2.解得:r=﹣;(3)d2=4OH×OB.理由:∵OA⊥CD,OC⊥AC.∴∠OCA=∠OHC.∵∠HOC=∠COA.∴△HOC∽△COA.∴=.即OC2=OH×OA.∵OC垂直平分AB.∴OA=OB.设直径为d,则OC=.∴()2=OH×OB.即d2=4OH×OB.【点评】此题主要考查了圆的综合以及相似三角形的判定与性质,得出△HOC∽△COA是解题关键.25.(8分)如图,在△ABC中,AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,),点B在y轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C(1)求b,c的值;(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用待定系数法求出抛物线解析式得出即可;(2)利用当AQ=QC,以及当AC=Q1C时,当AC=CQ2=2时,当AQ3=AC=2时,分别得出符合题意的答案即可;(3)利用平行四边形的性质首先得出BC的长,进而表示出线段ME的长,进而求出答案,再利用梯形的判定得出答案.【解答】解:(1)∵点A的坐标为(﹣3,0),点C坐标为(0,),点B在y 轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C.∴.解得:;(2)在抛物线的对称轴上存在点Q,使得△ACQ为等腰三角形.当AQ=QC,如图1.由(1)得:y=﹣x2﹣x+=﹣(x+1)2+.即抛物线对称轴为:直线x=﹣1,则QO=1,AQ=2.∵CO=,QO=1.∴QC=2.∴AQ=QC.∴Q(﹣1,0);当AC=Q1C时,过点C作CF⊥直线x=﹣1,于一点F.则FC=1.∵AO=3,CO=.∴AC=2.∴Q1C=2.∴FQ1=,故Q1的坐标为:(﹣1,+);当AC=CQ2=2时,由Q1的坐标可得;Q2(﹣1,﹣+);当AQ3=AC=2时,则QQ3=2,故Q3(﹣1,﹣2),根据对称性可知Q4(﹣1,2)(Q4和Q3关于x轴对称)也符合题意.综上所述:符合题意的Q点的坐标为:(﹣1,0);(﹣1,+);(﹣1,﹣+);(﹣1,﹣2),(﹣1,2);(3)如图2所示,当四边形MEBC是平行四边形,则ME=BC.∵AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,).∴B(0,﹣).则BC=2.设直线AB的解析式为:y=kx+e.故.解得:.故直线AB的解析式为:y=﹣x﹣.设E(x,﹣x﹣),M(x,﹣x2﹣x+).故ME=﹣x2﹣x++x+=﹣x2﹣x+2=2.解得:x1=0(不合题意舍去),x2=﹣1.故P点在(﹣1,0),此时四边形MEBC是平行四边形;四边形AECM是梯形.理由:∵四边形MEBC是平行四边形.∴MC∥AB.∵CO=,AO=3.∴∠CAO=30°.∵AC=AB,AO⊥BC.∴∠BAO=30°.∴∠BAC=60°.∴△ABC是等边三角形.∵AC=BC,ME=BC,所以AC=ME.∴四边形AECM是等腰梯形.【点评】此题主要考查了二次函数综合应用以及平行四边形的性质和梯形的判定、等腰三角形的判定等知识,利用分类讨论以及数形结合得出是解题关键.。
往年中招数学试题及答案

往年中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 0.52. 如果一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 已知方程x^2 - 5x + 6 = 0,那么x的值是:A. 2B. 3C. 1和2D. 2和34. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. 45. 以下哪个是二次根式?A. √3B. 3√2C. √(-1)D. √(2x)6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π7. 以下哪个是一次函数?A. y = x^2B. y = 3x + 5C. y = √xD. y = 1/x8. 如果一个数的绝对值是2,那么这个数可以是:A. 2B. -2C. 2或-2D. 09. 一个正数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 210. 下列哪个是不等式的解集?A. x > 5B. x ≤ 3C. x = 2D. x ≠ 0答案:1. B 2. A 3. C 4. A 5. D 6. B 7. B 8. C 9. A 10. B二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是______。
12. 如果一个数的立方根是2,那么这个数是______。
13. 一个数的平方等于25,那么这个数可以是______或______。
14. 一个数的绝对值是5,那么这个数可以是______或______。
15. 一个圆的直径是10,那么它的半径是______。
16. 如果一个三角形的内角和是180°,那么一个直角三角形的两个锐角的和是______。
17. 一个数的平方根是2或-2,那么这个数是______。
18. 如果一个数的倒数是1/3,那么这个数是______。
历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题1. 以下哪个选项是正确的整数比例?A. 3:5B. 0.6:0.4C. 1.2:2.4D. 5:02. 已知一个等差数列的前三项分别是 2x-1,3x+1,4x+3,求 x 的值。
A. 1B. 2C. 3D. 43. 一个圆的半径是 5 厘米,求这个圆的面积(圆周率取 3.14)。
A. 78.5 平方厘米B. 157 平方厘米C. 78.5 平方米D. 157 平方米4. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = sin(x)5. 一个三角形的三个内角分别是 45 度、60 度和 75 度,这个三角形是什么三角形?A. 等腰三角形B. 直角三角形C. 钝角三角形D. 锐角三角形二、填空题6. 若 a:b = 2:3,b:c = 5:7,则 a:b:c = _______。
7. 一个等比数列的前三项分别是 2,6,18,这三项的和是 _______。
8. 一个正方形的边长是 6 厘米,求这个正方形的周长和面积。
周长 = _______ 厘米面积 = _______ 平方厘米9. 一个圆的直径是 10 厘米,求这个圆的半径、周长和面积。
半径 = _______ 厘米周长 = _______ 厘米面积 = _______ 平方厘米10. 已知一个三角形的两边长分别是 5 厘米和 7 厘米,夹角是 60 度,求这个三角形的面积。
面积 = _______ 平方厘米三、解答题11. 一个等差数列的前五项和是 35,首项是 3,求这个数列的公差和第五项。
12. 一个圆的半径是 8 厘米,求这个圆的周长和面积,并将结果表示为分数形式。
13. 一个三角形的三个顶点分别是 A(2,3),B(5,7),C(8,3),求这个三角形的周长和面积。
14. 一个等比数列的前三项分别是 a, ar, ar^2,其中 r 不为 1,如果这个数列的前五项的和是 31,求 a 和 r 的值。
历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 如果a > b,那么下列哪个不等式是正确的?A. a + 3 > b + 3B. a - 3 > b - 3C. a × 3 > b × 3D. a ÷ 3 > b ÷ 3答案:A3. 一个圆的直径是14厘米,那么它的半径是多少?A. 7厘米B. 14厘米C. 28厘米D. 21厘米答案:A4. 计算下列表达式的结果:(2x - 3) + (x + 4)A. 3x + 1B. 3x - 1C. 2x + 1D. 2x - 1答案:A5. 下列哪个选项是方程3x - 5 = 11的解?A. x = 4B. x = -2C. x = 2D. x = 1答案:A6. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B7. 下列哪个选项是不等式2x + 3 > 7的解?A. x > 1B. x > 2C. x < 1D. x < 2答案:B8. 计算下列表达式的结果:\(\frac{3}{4} \times \frac{2}{3}\)A. \(\frac{1}{2}\)B. \(\frac{3}{2}\)C. \(\frac{1}{4}\)D. \(\frac{3}{4}\)答案:C9. 下列哪个选项是方程x² - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = 3答案:A10. 下列哪个选项是二次函数y = ax² + bx + c的对称轴?A. x = aB. x = bC. x = -b/2aD. x = -a/b答案:C二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题1. 在坐标平面上,a点的坐标是(2,3),b点的坐标是(5,-2),则ab的长度是A. 2B. 3C. 5D. 7 (答案:D)2. 下列哪个数是无理数?A. 3B. 0.5C. -2D. √2 (答案:D)3. 如图,折线abcd是一个四边形,ab = 5cm,bc = 3cm,角a的度数为120°,角d的度数为90°,则ad的长度是多少?A. 4cmB. 6cmC. 8cmD. 10cm (答案:B)二、填空题1. (6 - x) ÷ 2 = 4,求x的值。
(答案:2)2. 化简下列代数式:3x + 2y - x + 5y - 4z。
(答案:2x + 7y - 4z)3. 若一个三角形的两个内角的度数分别是56°和74°,则第三个内角的度数为多少?(答案:50°)三、解答题1. 计算:2/3 + 3/4 - 5/6。
(答案:1/12)2. 小华去商场买东西,花了300元。
比去年多花了40%。
去年小华花了多少钱?(答案:214.29元)3. 小明家的房子长12米,宽8米。
计算小明家的门面积和窗户面积之和。
(答案:112平方米)四、解析选择题部分的答案都已给出,填空题和解答题的答案则需要参考具体计算过程。
在解答题时,需要将所使用的计算方法写清楚,并给出最终结果,以便读者理解和参考。
对于计算题,可使用等式或算式进行计算,并列出所有步骤和运算过程,确保答案的准确性。
对于问题分析题,需要明确解题思路和方法,并正确应用相关的数学知识进行解答。
总结本文列举历年全国中考数学试题及答案,考察了选择题、填空题和解答题。
在解答题时,需要清晰地呈现解题过程和答案,以方便读者理解。
希望本文对中考数学复习有所帮助。
中考数学试卷真题带答案

一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若方程2x-3=5的解为x,则x的值为()A. 2B. 4C. 7D. 8答案:B解析:将方程2x-3=5移项得2x=5+3,即2x=8,两边同时除以2得x=4。
2. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的面积为()A. 24cm²B. 32cm²C. 36cm²D. 48cm²答案:C解析:等腰三角形的面积公式为S=1/2×底×高,由于是等腰三角形,底边上的高也是腰的中线,所以高为8cm的一半,即4cm。
代入公式得S=1/2×6×4=12cm²,再乘以2得36cm²。
3. 下列函数中,定义域为全体实数的是()A. y=√(x-1)B. y=1/xC. y=x²D. y=1/x²答案:C解析:A选项中,x-1≥0,即x≥1,所以定义域不是全体实数;B选项中,x≠0,所以定义域不是全体实数;D选项中,x≠0,所以定义域不是全体实数;C选项中,x²的定义域为全体实数。
4. 若a、b、c是等差数列,且a+c=10,b=5,则公差d为()A. 1B. 2C. 3D. 4答案:B解析:等差数列的性质是相邻两项之差相等,即d=a2-a1=b-a1。
由a+c=10,得c=a+9。
又因为b=5,所以d=5-a。
将a+c=10代入得5-a+a+9=10,解得a=2,所以d=5-2=3。
5. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 直角三角形的斜边最长D. 等边三角形的三个角都相等答案:B解析:A选项错误,平行四边形的对角线互相平分但不一定垂直;B选项正确,等腰三角形的两腰相等,所以底角也相等;C选项正确,直角三角形的斜边是直角边所对的边,所以斜边最长;D选项正确,等边三角形的定义就是三边都相等,所以三个角也都相等。
中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(共10小题.每小题3分.共30分)1.(3分)﹣3的倒数是()A.﹣3B.3C.D.﹣2.(3分)计算2x(3x2+1).正确的结果是()A.5x3+2x B.6x3+1C.6x3+2x D.6x2+2x 3.(3分)二次根式中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1 4.(3分)如图.已知AB是△ABC外接圆的直径.∠A=35°.则∠B的度数是()A.35°B.45°C.55°D.65°5.(3分)数据﹣2.﹣1.0.1.2的方差是()A.0B.C.2D.46.(3分)如图.已知Rt△ABC中.∠C=90°.AC=4.tan A=.则BC的长是()A.2B.8C.2D.47.(3分)已知一个布袋里装有2个红球.3个白球和a个黄球.这些球除颜色外其余都相同.若从该布袋里任意摸出1个球.是红球的概率为.则a等于()A.1B.2C.3D.48.(3分)如图.已知在Rt△ABC中.∠ABC=90°.点D是BC边的中点.分别以B、C为圆心.大于线段BC长度一半的长为半径画弧.两弧在直线BC上方的交点为P.直线PD交AC于点E.连接BE.则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED =AB中.一定正确的是()A.①②③B.①②④C.①③④D.②③④9.(3分)如图.已知正方形ABCD.点E是边AB的中点.点O是线段AE上的一个动点(不与A、E重合).以O为圆心.OB为半径的圆与边AD相交于点M.过点M作⊙O的切线交DC于点N.连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3.则下列结论不一定成立的是()A.S1>S2+S3B.△AOM∽△DMN C.∠MBN=45°D.MN=AM+CN10.(3分)在连接A地与B地的线段上有四个不同的点D、G、K、Q.下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向).则路程最长的行进路线图是()A.B.C.D.二、填空题(共6小题.每小题4分.共24分)11.(4分)方程2x﹣1=0的解是x=.12.(4分)如图.由四个小正方体组成的几何体中.若每个小正方体的棱长都是1.则该几何体俯视图的面积是.13.(4分)计算:50°﹣15°30′=.14.(4分)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况.记该月A市和B市日平均气温是8℃的天数分别为a天和b天.则a+b=.15.(4分)如图.已知在Rt△OAC中.O为坐标原点.直角顶点C在x 轴的正半轴上.反比例函数y=(k≠0)在第一象限的图象经过OA的中点B.交AC于点D.连接OD.若△OCD∽△ACO.则直线OA的解析式为.16.(4分)已知当x1=a.x2=b.x3=c时.二次函数y=x2+mx对应的函数值分别为y1.y2.y3.若正整数a.b.c恰好是一个三角形的三边长.且当a<b<c时.都有y1<y2<y3.则实数m的取值范围是.三、解答题(共8小题.共66分)17.(6分)计算:(3+a)(3﹣a)+a2.18.(6分)解方程组.19.(6分)已知在以点O为圆心的两个同心圆中.大圆的弦AB交小圆于点C.D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10.小圆的半径r=8.且圆O到直线AB的距离为6.求AC的长.20.(8分)如图.已知在平面直角坐标系xOy中.O是坐标原点.点A(2.5)在反比例函数y=的图象上.过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.21.(8分)已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.53.64.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7(1)求这组数据的极差;(2)若以0.4kg为组距.对这组数据进行分组.制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填).请在频数分布表的空格中填写相关的量某医院2014年3月份20名新生儿体重的频数分布表组别(kg)划记频数略略3.55﹣3.95正一6略略略合计20(3)经检测.这20名婴儿的血型的扇形统计图如图所示(不完整).求:①这20名婴儿中是A型血的人数;②表示O型血的扇形的圆心角度数.22.(10分)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时.求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元.求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略.鼓励企业节约用水.该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费.规定:若企业月用水量x超过80吨.则除按2013年收费标准收取水费外.超过80吨部分每吨另加收元.若某企业2014年3月份的水费和污水处理费共600元.求这个企业该月的用水量.23.(10分)如图.已知在平面直角坐标系xOy中.O是坐标原点.抛物线y=﹣x2+bx+c(c>0)的顶点为D.与y轴的交点为C.过点C作CA∥x轴交抛物线于点A.在AC延长线上取点B.使BC=AC.连接OA.OB.BD和AD.(1)若点A的坐标是(﹣4.4).①求b.c的值;②试判断四边形AOBD的形状.并说明理由;(2)是否存在这样的点A.使得四边形AOBD是矩形?若存在.请直接写出一个符合条件的点A的坐标;若不存在.请说明理由.24.(12分)已知在平面直角坐标系xOy中.O是坐标原点.以P(1.1)为圆心的⊙P与x轴.y轴分别相切于点M和点N.点F从点M出发.沿x轴正方向以每秒1个单位长度的速度运动.连接PF.过点P作PE⊥PF交y轴于点E.设点F运动的时间是t秒(t>0).(1)若点E在y轴的负半轴上(如图所示).求证:PE=PF;(2)在点F运动过程中.设OE=a.OF=b.试用含a的代数式表示b;(3)作点F关于点M的对称点F′.经过M、E和F′三点的抛物线的对称轴交x轴于点Q.连接QE.在点F运动过程中.是否存在某一时刻.使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在.请直接写出t的值;若不存在.请说明理由.参考答案与试题解析一、选择题(共10小题.每小题3分.共30分)1.【分析】根据乘积为的1两个数互为倒数.可得到一个数的倒数.【解答】解:﹣3的倒数是﹣.故选:D.【点评】本题考查了倒数.分子分母交换位置是求一个数的倒数的关键.2.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:原式=6x3+2x.故选:C.【点评】此题考查了单项式乘多项式.熟练掌握运算法则是解本题的关键.3.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得.x﹣1≥0.解得x≥1.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.【分析】由AB是△ABC外接圆的直径.根据直径所对的圆周角是直角.可求得∠ACB=90°.又由∠A=35°.即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径.∴∠C=90°.∵∠A=35°.∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单.注意掌握数形结合思想的应用.5.【分析】先求出这组数据的平均数.再根据方差的公式进行计算即可.【解答】解:∵数据﹣2.﹣1.0.1.2的平均数是:(﹣2﹣1+0+1+2)÷5=0.∴数据﹣2.﹣1.0.1.2的方差是:×[(﹣2)2+(﹣1)2+02+12+22]=2.故选:C.【点评】本题考查了方差:一般地设n个数据x1.x2.….x n的平均数为.则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].它反映了一组数据的波动大小.方差越大.波动性越大.反之也成立.6.【分析】根据锐角三角函数定义得出tan A=.代入求出即可.【解答】解:∵tan A==.AC=4.∴BC=2.故选:A.【点评】本题考查了锐角三角函数定义的应用.注意:在Rt△ACB 中.∠C=90°.sin A=.cos A=.tan A=.7.【分析】首先根据题意得:=.解此分式方程即可求得答案.【解答】解:根据题意得:=.解得:a=1.经检验.a=1是原分式方程的解.∴a=1.故选:A.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.8.【分析】根据作图过程得到PB=PC.然后利用D为BC的中点.得到PD垂直平分BC.从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP.∵D为BC的中点.∴PD垂直平分BC.∴①ED⊥BC正确;∵∠ABC=90°.∴PD∥AB.∴E为AC的中点.∴EC=EA.∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.故正确的有①②④.故选:B.【点评】本题考查了基本作图的知识.解题的关键是了解如何作已知线段的垂直平分线.难度中等.9.【分析】(1)如图作MP∥AO交ON于点P.当AM=MD时.求得S1=S2+S3.(2)利用MN是⊙O的切线.四边形ABCD为正方形.求得△AOM ∽△DMN.(3)作BP⊥MN于点P.利用Rt△MAB≌Rt△MPB和Rt△BPN≌Rt△BCN来证明C.D成立.【解答】解:(1)如图.作MP∥AO交ON于点P.∵点O是线段AE上的一个动点.当AM=MD时.S梯形ONDA=(OA+DN)•ADS△MNO=S△MOP+S△MPN=MP•AM+MP•MD=MP•AD.∵(OA+DN)=MP.∴S△MNO=S梯形ONDA.∴S1=S2+S3.∴不一定有S1>S2+S3.(2)∵MN是⊙O的切线.∴OM⊥MN.又∵四边形ABCD为正方形.∴∠A=∠D=90°.∠AMO+∠DMN=90°.∠AMO+∠AOM=90°.∴∠AOM=∠DMN.在△AMO和△DMN中..∴△AOM∽△DMN.故B成立;(3)如图.作BP⊥MN于点P.∵MN.BC是⊙O的切线.∴∠PMB=∠MOB.∠CBM=∠MOB.∵AD∥BC.∴∠CBM=∠AMB.∴∠AMB=∠PMB.在Rt△MAB和Rt△MPB中.∴Rt△MAB≌Rt△MPB(AAS)∴AM=MP.∠ABM=∠MBP.BP=AB=BC.在Rt△BPN和Rt△BCN中.∴Rt△BPN≌Rt△BCN(HL)∴PN=CN.∠PBN=∠CBN.∴∠MBN=∠MBP+∠PBN.MN=MP+PN=AM+CN.故C.D成立.综上所述.A不一定成立.故选:A.【点评】本题主要考查了圆的切线及全等三角形的判定和性质.关键是作出辅助线利用三角形全等证明.10.【分析】分别构造出平行四边形和三角形.根据平行四边形的性质和全等三角形的性质进行比较.即可判断.【解答】解:如图A中、延长AC、BE交于S.∵∠CAB=∠EDB=45°.∴AS∥ED.则SC∥DE.同理SE∥CD.∴四边形SCDE是平行四边形.∴SE=CD.DE=CS.即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;如图B中、延长AF、BH交于S.作EG∥AS交BS于E.显然AF+FG+GH+HB<SA+SB.如图C中、延长AI到S.使得∠SBA=70°.SB交KM于T.显然AI+IK+KM+BM>SA+SB.如图D中、显然AN+NQ+QP+PB>SA+SB.如图D中.延长AN交BP的延长线于T.作∠RQB=45°.显然:AN+NQ+QP+PB>AN+NQ+QR=RB.即AN+NQ+PQ+PB>AI+IK+KM+MB.综上所述.D选项的所走的线路最长.故选:D.【点评】本题考查了平行线的判定.平行四边形的性质和判定的应用.注意:两组对边分别平行的四边形是平行四边形.平行四边形的对边相等.二、填空题(共6小题.每小题4分.共24分)11.【分析】此题可有两种方法:(1)观察法:根据方程解的定义.当x=时.方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.【解答】解:移项得:2x=1.系数化为1得:x=.故答案为:.【点评】此题虽很容易.但也要注意方程解的表示方法:填空时应填若横线外没有“x=”.应注意要填x=.不能直接填.12.【分析】根据从上面看得到的图形是俯视图.可得俯视图.根据矩形的面积公式.可得答案.【解答】解:从上面看三个正方形组成的矩形.矩形的面积为1×3=3.故答案为:3.【点评】本题考查了简单组合体的三视图.先确定俯视图.再求面积.13.【分析】根据度化成分乘以60.可得度分的表示方法.根据同单位的相减.可得答案.【解答】解:原式=49°60′﹣15°30′=34°30′.故答案为:34°30′.【点评】此类题是进行度、分、秒的加法计算.相对比较简单.注意以60为进制即可.14.【分析】根据折线图即可求得a、b的值.从而求得代数式的值.【解答】解:根据图表可得:a=10.b=2.则a+b=10+2=12.故答案为:12.【点评】本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时.必须认真观察、分析、研究统计图.才能作出正确的判断和解决问题.15.【分析】设OC=a.根据点D在反比例函数图象上表示出CD.再根据相似三角形对应边成比例列式求出AC.然后根据中点的定义表示出点B的坐标.再根据点B在反比例函数图象上表示出a、k的关系.然后用a表示出点B的坐标.再利用待定系数法求一次函数解析式解答.【解答】解:设OC=a.∵点D在y=上.∴CD=.∵△OCD∽△ACO.∴=.∴AC==.∴点A(a.).∵点B是OA的中点.∴点B的坐标为(.).∵点B在反比例函数图象上.∴=.∴=2k2.∴a4=4k2.解得.a2=2k.∴点B的坐标为(.a).设直线OA的解析式为y=mx.则m•=a.解得m=2.所以.直线OA的解析式为y=2x.故答案为:y=2x.【点评】本题考查了相似三角形的性质.反比例函数图象上点的坐标特征.用OC的长度表示出点B的坐标是解题的关键.也是本题的难点.16.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2.再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2.即小于2.5.然后列出不等式求解即可.【解答】方法一:解:∵正整数a.b.c恰好是一个三角形的三边长.且a<b<c.∴a最小是2.∵y1<y2<y3.∴﹣<2.5.解得m>﹣2.5.方法二:解:当a<b<c时.都有y1<y2<y3.即.∴.∴.∵a.b.c恰好是一个三角形的三边长.a<b<c.∴a+b<b+c.∴m>﹣(a+b).∵a.b.c为正整数.∴a.b.c的最小值分别为2、3、4.∴m>﹣(a+b)≥﹣(2+3)=﹣.∴m>﹣.故答案为:m>﹣.【点评】本题考查了二次函数图象上点的坐标特征.三角形的三边关系.判断出a最小可以取2以及对称轴的位置是解题的关键.三、解答题(共8小题.共66分)17.【分析】原式第一项利用平方差公式计算.合并即可得到结果.【解答】解:原式=9﹣a2+a2=9.【点评】此题考查了整式的混合运算.熟练掌握运算法则是解本题的关键.18.【分析】方程组利用加减消元法求出解即可.【解答】解:.①+②得:5x=10.即x=2.将x=2代入①得:y=1.则方程组的解为.【点评】此题考查了解二元一次方程组.利用了消元的思想.消元的方法有:加减消元法与代入消元法.19.【分析】(1)过O作OE⊥AB.根据垂径定理得到AE=BE.CE=DE.从而得到AC=BD;(2)由(1)可知.OE⊥AB且OE⊥CD.连接OC.OA.再根据勾股定理求出CE及AE的长.根据AC=AE﹣CE即可得出结论.【解答】(1)证明:过O作OE⊥AB于点E.则CE=DE.AE=BE.∴BE﹣DE=AE﹣CE.即AC=BD;(2)解:由(1)可知.OE⊥AB且OE⊥CD.连接OC.OA.∴OE=6.∴CE===2.AE===8.∴AC=AE﹣CE=8﹣2.【点评】本题考查的是垂径定理.根据题意作出辅助线.构造出直角三角形是解答此题的关键.20.【分析】(1)根据待定系数法.可得答案;(2)根据三角形的面积公式.可得答案.【解答】解:(1)把A(2.5)分别代入y=和y=x+b.得.解得k=10.b=3;(2)作AC⊥x轴于点C.由(1)得直线AB的解析式为y=x+3.∴点B的坐标为(﹣3.0).∴OB=3.∵点A的坐标是(2.5).∴AC=5.∴=5=.【点评】本题考查了反比例函数与一次函数的交点问题.利用了待定系数法.三角形的面积公式.21.【分析】(1)根据求极差的方法用这组数据的最大值减去最小值即可;(2)根据所给出的数据和以0.4kg为组距.分别进行分组.再找出各组的数即可;(3)①用总人数乘以A型血的人数所占的百分比即可;②用360°减去A型、B型和AB型的圆心角的度数即可求出O型血的扇形的圆心角度数.【解答】解:(1)这组数据的极差是4.8﹣2.8=2(kg);(2)根据所给出的数据填表如下:某医院2014年3月份20名新生儿体重的频数分布表组别(kg)划记频数2.75﹣3.15略23.15﹣3.55略73.55﹣3.95正一63.95﹣4.35略24.35﹣4.75略24.75﹣5.15略1合计20(3)①A型血的人数是:20×45%=9(人);②表示O型血的扇形的圆心角度数是360°﹣(45%+30%)×360°﹣36°=360°﹣270°﹣36°=54°.【点评】此题考查了频数(率)分布表、扇形统计图以及极差的求法.读图时要全面细致.同时.解题方法要灵活多样.切忌死记硬背.要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.22.【分析】(1)设y关于x的函数关系式y=kx+b.代入(50.200)、(60.260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元.列出方程解决问题.【解答】解:(1)设y关于x的函数关系式y=kx+b.∵直线y=kx+b经过点(50.200).(60.260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知.当y=620时.x>50.∴6x﹣100=620.解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600.化简得x2+40x﹣14000=0解得:x1=100.x2=﹣140(不合题意.舍去).答:这个企业2014年3月份的用水量是100吨.【点评】此题考查一次函数的运用.一元二次方程和一元一次方程的运用.注意理解题意.结合图象.根据实际选择合理的方法解答.23.【分析】(1)①将抛物线上的点的坐标代入抛物线即可求出b、c 的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=.再根据勾股定理可得OC=BC.AC=OC.可求得横坐标为﹣c.纵坐标为c.【解答】解:(1)①∵AC∥x轴.A点坐标为(﹣4.4).∴点C的坐标是(0.4)把A、C两点的坐标代入y=﹣x2+bx+c得..解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4.∵y=﹣(x+2)2+8.∴顶点D的坐标为(﹣2.8).过D点作DE⊥AB于点E.则DE=OC=4.AE=2.∵AC=4.∴BC=AC=2.∴AE=BC.∵AC∥x轴.∴∠AED=∠BCO=90°.∴△AED≌△BCO.∴AD=BO.∠DAE=∠OBC.∴AD∥BO.∴四边形AOBD是平行四边形.(2)存在.点A的坐标可以是(﹣2.2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°.∵∠ABO=∠OBC.∴△ABO∽△OBC.∴=.又∵AB=AC+BC=3BC.∴OB=BC.∴在Rt△OBC中.根据勾股定理可得:OC=BC.AC=OC.∵C点是抛物线与y轴交点.∴OC=c.∴A点坐标为(﹣c.c).∴顶点横坐标=﹣c.b=﹣c.顶点D纵坐标是点A纵坐标的2倍.为2c.顶点D的坐标为(﹣c.2c)∵将D点代入可得2c=﹣(﹣c)2+c•c+c.解得:c=2或者0.当c为0时四边形AOBD不是矩形.舍去.故c=2;∴A点坐标为(﹣2.2).【点评】本题主要考查了二次函数对称轴顶点坐标的公式.以及函数与坐标轴交点坐标的求解方法.24.【分析】(1)连接PM.PN.运用△PMF≌△PNE证明;(2)分两种情况:①当t>1时.点E在y轴的负半轴上;②当0<t≤1时.点E在y轴的正半轴或原点上.再根据(1)求解.(3)分两种情况.当1<t<2时.当t>2时.三角形相似时还各有两种情况.根据比例式求出时间t.【解答】证明:(1)如图.连接PM.PN.∵⊙P与x轴.y轴分别相切于点M和点N.∴PM⊥MF.PN⊥ON且PM=PN.∴∠PMF=∠PNE=90°且∠NPM=90°.∵PE⊥PF.∠NPE=∠MPF=90°﹣∠MPE.在△PMF和△PNE中..∴△PMF≌△PNE(ASA).∴PE=PF;(2)解:分两种情况:①当t>1时.点E在y轴的负半轴上.如图1.由(1)得△PMF≌△PNE.∴NE=MF=t.PM=PN=1.∴b=OF=OM+MF=1+t.a=NE﹣ON=t﹣1.∴b﹣a=1+t﹣(t﹣1)=2.∴b=2+a.②0<t≤1时.如图2.点E在y轴的正半轴或原点上.同理可证△PMF≌△PNE.∴b=OF=OM+MF=1+t.a=OE=ON﹣NE=1﹣t.∴b+a=1+t+1﹣t=2.∴b=2﹣a.综上所述.当t>1时.b=2+a;当0<t≤1时.b=2﹣a;(3)存在;①如图3.当0<t<1时.∵F(1+t.0).F和F′关于点M对称.M的坐标为(1.0).∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=1﹣t.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=1﹣t.当△OEQ∽△MPF∴=∴=.此时无解.当△OEQ∽△MFP时.∴=.=.解得.t=2﹣或t=2+(舍去);②如图4.当1<t<2时.∵F(1+t.0).F和F′关于点M对称.M的坐标为(1.0).∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=1﹣t.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=t﹣1当△OEQ∽△MPF∴=∴=.解得.t=.当△OEQ∽△MFP时.∴=.=.解得.t=.③如图5.当t>2时.∵F(1+t.0).F和F′关于点M对称.∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=t﹣1.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=t﹣1当△OEQ∽△MPF∴=∴=.无解.当△OEQ∽△MFP时.∴=.=.解得.t=2+.t=2﹣(舍去)所以当t=2﹣或或或t=2+时.使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【点评】本题主要考查了圆的综合题.解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.。
中考数学试卷及答案解析

中考数学试卷及答案解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)下列实数中,是无理数的是()A.0B.﹣3C.D.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°【分析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等可得∠3=∠1.【解答】解:∵直线a∥b,∠1=50°,∴∠1=∠3=50°,∵直线AB⊥AC,∴∠2+∠3=90°.∴∠2=40°.故选:C.【点评】本题考查了平行线的性质,余角角的定义,熟记性质并准确识图是解题的关键.3.(3分)如图是一个L形状的物体,则它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(3分)下列计算正确的是()A.2a+a=2a2B.(﹣a)2=﹣a2C.(a﹣1)2=a2﹣1D.(ab)2=a2b2【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、2a+a=3a,故此选项错误;B、(﹣a)2=a2,故此选项错误;C、(a﹣1)2=a2﹣2a+1,故此选项错误;D、(ab)2=a2b2,正确.故选:D.【点评】此题主要考查了合并同类项以及积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.6.(3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177■808280■则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,2【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.【点评】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.7.(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=20【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.【解答】解:设原计划每天铺设钢轨x米,可得:,故选:A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.2【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50B.60C.62D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键.二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)分解因式:a2+2a=a(a+2).【分析】直接提公因式法:观察原式a2+2a,找到公因式a,提出即可得出答案.【解答】解:a2+2a=a(a+2).【点评】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.12.(3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.【点评】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.13.(3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有1400人.【分析】先根据及格人数及其对应百分比求得总人数,总人数乘以优秀对应的百分比求得其人数,继而用总人数乘以样本中优秀、良好人数所占比例.【解答】解:∵被调查的总人数为28÷28%=100(人),∴优秀的人数为100×20%=20(人),∴估计成绩为优秀和良好的学生共有2000×=1400(人),故答案为:1400.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.14.(3分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=﹣3或4.【分析】利用新定义得到[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,整理得到(2m﹣1)2﹣49=0,然后利用因式分解法解方程.【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3或4.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.15.(3分)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.(3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF 绕点A旋转,当∠ABF最大时,S△ADE=6.【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.【解答】解:作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题(本题有9个小题,共72分)17.(5分)计算:(﹣1)3+|1﹣|+.【分析】原式利用乘方的意义,绝对值的代数意义,以及立方根定义计算即可求出值.【解答】解:原式=﹣1+﹣1+2=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)先化简,再求值:(1﹣)÷(﹣2),其中a=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷(﹣2)===,当a=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(7分)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.【分析】过A点作AE⊥BC于点E,过D作DF⊥BC于点F,得到四边形AEFD是矩形,根据矩形的性质得到AE=DF=6,AD=EF=3,解直角三角形即可得到结论.【解答】解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=DF=6,∴BC=BE+EF+CF=6+3+6=9+6,∴BC=(9+6)m,答:BC的长(9+6)m.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形和矩形,利用锐角三角函数的概念和坡度的概念求解.20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是.(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.【分析】(1)直接利用概率公式计算可得;(2)先画出树状图展示所有6种等可能的结果数,再找出恰好1个白球、1个黄球的结果数,然后根据概率公式求解;【解答】解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是,故答案为:;(2)画树状图为:,共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,所以取出的两个球中恰好1个白球、1个黄球的概率为.【点评】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.21.(7分)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.【分析】(1)根据根的判别式,可得到关于a的不等式,则可求得a的取值范围;(2)由根与系数的关系,用a表示出两根积、两根和,由已知条件可得到关于a的不等式,则可求得a的取值范围,再求其值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,∴△>0,即(﹣6)2﹣4(2a+5)>0,解得a<2;(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,∵x1,x2满足x12+x22﹣x1x2≤30,∴(x1+x2)2﹣3x1x2≤30,∴36﹣3(2a+5)≤30,∴a≥﹣,∵a为整数,∴a的值为﹣1,0,1.【点评】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k的取值范围是解题的关键,注意方程根的定义的运用.22.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.【分析】本题是通过构建函数模型解答销售利润的问题.(1)依据题意利用待定系数法,易得出当31≤x≤50时,y与x的关系式为:y=x+55,(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x (元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(3)要使第31天到第35天的日销售利润W(元)随x的增大而增大,则对称轴=≥35,求得a即可【解答】解:(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y=kx+b,则有,解得∴y与x的关系式为:y=x+55(2)依题意,∵W=(y﹣18)•m∴整理得,当1≤x≤30时,∵W随x增大而增大∴x=30时,取最大值W=30×110+1100=4400当31≤x≤50时,W=x2+160x+1850=∵<0∴x=32时,W取得最大值,此时W=4410综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元(3)依题意,W=(y+a﹣18)•m=∵第31天到第35天的日销售利润W(元)随x的增大而增大∴对称轴x==≥35,得a≥3故a的最小值为3.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E 三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG 的距离.【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=故答案为:(2)AE=BE+CF理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG==8∵AC2=AE2+CE2,∴(5)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.【点评】本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键.25.(12分)已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.【分析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△ADE,∴△BEF≌△ADE,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△B EF∽△ADE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).【点评】本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 姓名 学号 成绩 一、精心选一选
1.下列运算正确的是( ) A.()11a a --=--
B.(
)
2
3624a
a -=
C.()2
22a b a b -=-
D.3
2
5
2a a a +=
2.如图,由几个小正方体组成的立体图形的左视图是( )
3.下列事件中确定事件是( )
A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖
C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球
D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠
∠∠ B.123
360++=∠
∠∠ C.1322+=∠∠∠
D.132+=∠∠∠
5.已知24221
x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )
A.112
k -<<-
B.102
k <<
C.01k <<
D.
1
12
k << 6.顺次连接矩形各边中点所得的四边形( )
A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形
C.既是轴对称图形又是中心对称图形
D.没有对称性
7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4
y x
=
的图象上,则a ,b ,c 的大小关系为( )
A.a b c >> B.c b a >>
C.b c a >> D.c a b >>
8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( )
A.2
1185580x = B.()2
11851580x -= C.(
)2
11851580x
-=
D.()2
58011185x +=
A. B. C. D.
A B
D
C
3 2
1
第4题图
9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( A.1条 B.2条 C.3条
10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时
11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( )
A.76
B.68
C.52
当输入数据是时,输出的数是( ) A.
861
B.
865
C.
867
D.
869
二、细心填一填 13.化简2
1111
m
m m ⎛⎫+
÷ ⎪--⎝
⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.
P
第9题
050.5 .0 .5 .0
时间(小
第10题
第11题
图
15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.
16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.
17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )
三、用心用一用
18.用配方法解方程:2
210x x --=.
答案:
二、填空题 13.1m + 14.()()2
2
a b a b a b -=+-
15.81.2,4.4
16.()41,
17.0.80
三、解答题
18.解:两边都除以2,得2
11
022
x x -
-=. 第17题图
移项,得2
1122
x x -
=. 配方,得2
21192416x x ⎛⎫
-+= ⎪⎝⎭,
2
19416x ⎛
⎫-= ⎪
⎝
⎭. 1344x ∴-=或13
44
x -=-. 11x ∴=,21
2
x =-。