中考数学试题与参考答案

合集下载

2024年安徽省中考真题数学试卷含答案解析

2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(本题共有10小题.每题3分.共30分)1.(3分)﹣2的绝对值等于()A.2 B.﹣2 C.D.±22.(3分)计算2a﹣a.正确的结果是()A.﹣2a3B.1 C.2 D.a3.(3分)要使分式有意义.x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 4.(3分)数据5.7.8.8.9的众数是()A.5 B.7 C.8 D.9、5.(3分)如图.在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.则CD的长是()A.20 B.10 C.5 D.6.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图.则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°C.108°D.180°7.(3分)下列四个水平放置的几何体中.三视图如图所示的是()A.B.C.D.8.(3分)△ABC中的三条中位线围成的三角形周长是15cm.则△ABC的周长为()A.60cm B.45cm C.30cm D.cm 9.(3分)如图.△ABC是⊙O的内接三角形.AC是⊙O的直径.∠C =50°.∠ABC的平分线BD交⊙O于点D.则∠BAD的度数是()A.45°B.85°C.90°D.95°10.(3分)如图.已知点A(4.0).O为坐标原点.P是线段OA上任意一点(不含端点O.A).过P、O两点的二次函数y1和过P、A 两点的二次函数y2的图象开口均向下.它们的顶点分别为B、C.射线OB与AC相交于点D.当OD=AD=3时.这两个二次函数的最大值之和等于()A.B.C.3 D.4二、填空题(本题共有6小题.每题4分.共24分)11.(4分)当x=1时.代数式x+2的值是.12.(4分)因式分解:x2﹣36=.13.(4分)甲、乙两名射击运动员在一次训练中.每人各打10发子弹.根据命中环数求得方差分别是=0.6.=0.8.则运动员的成绩比较稳定.14.(4分)如图.在△ABC中.D、E分别是AB、AC上的点.点F在BC的延长线上.DE∥BC.∠A=46°.∠1=52°.则∠2=度.15.(4分)一次函数y=kx+b(k.b为常数.且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.16.(4分)如图.将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形.这个黑色菱形可分割成n个边长为1的小三角形.若=.则△ABC的边长是.三、解答题(本题共有8小题.共66分)17.(6分)计算:+(﹣2)2+tan45°.18.(6分)解方程组.19.(6分)如图.已知反比例函数y=(k≠0)的图象经过点(﹣2.8).(1)求这个反比例函数的解析式;(2)若(2.y1).(4.y2)是这个反比例函数图象上的两个点.请比较y1、y2的大小.并说明理由.20.(8分)已知:如图.在▱ABCD中.点F在AB的延长线上.且BF =AB.连接FD.交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3.求AD的长.21.(8分)某市开展了“雷锋精神你我传承.关爱老人从我做起”的主题活动.随机调查了本市部分老人与子女同住情况.根据收集到的数据.绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表老人与子女同住情况同住不同住(子女在本市)不同住(子女在市外)其他A50%B5%根据统计图表中的信息.解答下列问题:(1)求本次调查的老人的总数及a、b的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人.请估计该市与子女“同住”的老人总数.22.(10分)已知.如图.在梯形ABCD中.AD∥BC.DA=DC.以点D 为圆心.DA长为半径的⊙D与AB相切于A.与BC交于点F.过点D 作DE⊥BC.垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4.=.求CF的长.23.(10分)为进一步建设秀美、宜居的生态环境.某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.现计划用210000元资金.购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍.恰好用完计划资金.求这三种树各能购买多少棵?(3)若又增加了10120元的购树款.在购买总棵树不变的前提下.求丙种树最多可以购买多少棵?24.(12分)如图1.已知菱形ABCD的边长为2.点A在x轴负半轴上.点B在坐标原点.点D的坐标为(﹣.3).抛物线y=ax2+b (a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2).过点B作BE⊥CD于点E.交抛物线于点F.连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t.使△ADF与△DEF相似?若存在.求出t的值;若不存在.请说明理由;②连接FC.以点F为旋转中心.将△FEC按顺时针方向旋转180°.得△FE′C′.当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时.求t的取值范围.(写出答案即可)参考答案与试题解析一、选择题(本题共有10小题.每题3分.共30分)1.【分析】根据绝对值的性质.当a是正有理数时.a的绝对值是它本身a;即可解答.【解答】解:根据绝对值的性质.|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质.①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.【分析】根据合并同类项的法则:把同类项的系数相加.所得结果作为系数.字母和字母的指数不变.进行运算即可.【解答】解:2a﹣a=a.故选:D.【点评】此题考查了同类项的合并.属于基础题.关键是掌握合并同类项的法则.3.【分析】根据分母不等于0.列式即可得解.【解答】解:根据题意得.x≠0.故选:B.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次.且次数最多. 所以众数是8.故选:C.【点评】本题考查了众数的定义.熟记定义是解题的关键.需要注意.众数有时候可以不止一个.5.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半.即可求出CD的长.【解答】解:∵在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.∴CD=AB=5.故选:C.【点评】本题考查了直角三角形斜边上的中线的性质.在直角三角形中.斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).6.【分析】根据扇形统计图整个圆的面积表示总数(单位1).然后结合图形即可得出唱歌兴趣小组人数所占的百分比.也可求出圆心角的度数.【解答】解:唱歌所占百分数为:1﹣50%﹣30%=20%.唱歌兴趣小组人数的扇形的圆心角度数为:360°×20%=72°.故选:B.【点评】此题考查了扇形统计图.解答本题的关键是熟练扇形统计图的特点.用整个圆的面积表示总数(单位1).用圆的扇形面积表示各部分占总数的百分数.7.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看.所得到的图形.即可得出答案.【解答】解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形.所以这个几何体是长方体;故选:D.【点评】本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看.所得到的图形.8.【分析】根据三角形的中位线平行且等于底边的一半.又相似三角形的周长的比等于相似比.问题可求.【解答】解:∵△ABC三条中位线围成的三角形与△ABC相似. ∴相似比是.∵△ABC中的三条中位线围成的三角形周长是15cm.∴△ABC的周长为30cm.故选:C.【点评】本题主要考查三角形的中位线定理.要熟记相似三角形的周长比、高、中线的比等于相似比.面积比等于相似比的平方.9.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数.进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径.∴∠ABC=90°.∵∠C=50°.∴∠BAC=40°.∵∠ABC的平分线BD交⊙O于点D.∴∠ABD=∠DBC=45°.∴∠CAD=∠DBC=45°.∴∠BAD=∠BAC+∠CAD=40°+45°=85°.故选:B.【点评】本题考查的是圆周角定理.即在同圆或等圆中.同弧或等弧所对的圆周角相等.直径所对的圆周角是直角.10.【分析】过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M.则BF+CM是这两个二次函数的最大值之和.BF∥DE∥CM.求出AE=OE=2.DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.推出△OBF∽△ODE.△ACM∽△ADE.得出=.=.代入求出BF和CM.相加即可求出答案.【解答】解:过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M. ∵BF⊥OA.DE⊥OA.CM⊥OA.∴BF∥DE∥CM.∵OD=AD=3.DE⊥OA.∴OE=EA=OA=2.由勾股定理得:DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.∵BF∥DE∥CM.∴△OBF∽△ODE.△ACM∽△ADE.∴=.=.∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x.即=.=.解得:BF=x.CM=﹣x.∴BF+CM=.故选:A.【点评】本题考查了二次函数的最值.勾股定理.等腰三角形性质.相似三角形的性质和判定的应用.主要考查学生运用性质和定理进行推理和计算的能力.题目比较好.但是有一定的难度.二、填空题(本题共有6小题.每题4分.共24分)11.【分析】把x=1直接代入代数式x+2中求值即可.【解答】解:当x=1时.x+2=1+2=3.故答案为:3.【点评】本题考查了代数式求值.明确运算顺序是关键.12.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).【点评】本题主要考查利用平方差公式分解因式.熟记公式结构是解题的关键.13.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.即可求出答案.【解答】解:∵=0.6.=0.8.∴<.甲的方差小于乙的方差.∴甲的成绩比较稳定.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量.方差越大.表明这组数据偏离平均数越大.即波动越大.数据越不稳定;反之.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.14.【分析】先根据三角形的外角性质求出∠DEC的度数.再根据平行线的性质得出结论即可.【解答】解:∵∠DEC是△ADE的外角.∠A=46°.∠1=52°.∴∠DEC=∠A+∠1=46°+52°=98°.∵DE∥BC.∴∠2=∠DEC=98°.故答案为:98.【点评】本题考查的是平行线的性质及三角形的外角性质.用到的知识点为:两直线平行.内错角相等.15.【分析】先根据一次函数y=kx+b过(2.3).(0.1)点.求出一次函数的解析式.再求出一次函数y=x+1的图象与x轴的交点坐标.即可求出答案.【解答】解∵一次函数y=kx+b过(2.3).(0.1)点.∴.解得:.一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(﹣1.0)点.∴关于x的方程kx+b=0的解为x=﹣1.故答案为:x=﹣1.【点评】本题考查了一次函数与一元一次方程.关键是根据函数的图象求出一次函数的图象与x轴的交点坐标.再利用交点坐标与方程的关系求方程的解.16.【分析】设正△ABC的边长为x.根据等边三角形的高为边长的倍.求出正△ABC的面积.再根据菱形的性质结合图形表示出菱形的两对角线.然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积.然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x.则高为x.S△ABC=x•x=x2.∵所分成的都是正三角形.∴结合图形可得黑色菱形的较长的对角线为x﹣.较短的对角线为(x﹣)=x﹣1.∴黑色菱形的面积=(x﹣)(x﹣1)=(x﹣2)2.∴==.整理得.11x2﹣144x+144=0.解得x1=(不符合题意.舍去).x2=12.所以.△ABC的边长是12.故答案为:12.【点评】本题考查了菱形的性质.等边三角形的性质.熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键.本题难点在于根据三角形的面积与菱形的面积列出方程.三、解答题(本题共有8小题.共66分)17.【分析】分别进行二次根式的化简、零指数幂.然后代入tan45°=1.进行运算即可.【解答】解:原式=4﹣1+4+1=8.【点评】此题考查了实数的运算.解答本题关键是掌握零指数幂的运算.二次根式的化简.属于基础题.18.【分析】①+②消去未知数y求x的值.再把x=3代入②.求未知数y的值.【解答】解:①+②得3x=9.解得x=3.把x=3代入②.得3﹣y=1.解得y=2.∴原方程组的解是.【点评】本题考查了解二元一次方程组.熟练掌握加减消元法的解题步骤是关键.19.【分析】(1)把经过的点的坐标代入解析式进行计算即可得解;(2)根据反比例函数图象的性质.在每一个象限内.函数值y随x的增大而增大解答.【解答】解:(1)把(﹣2.8)代入y=.得8=.解得:k=﹣16.所以y=﹣;(2)y1<y2.理由:∵k=﹣16<0.∴在每一个象限内.函数值y随x的增大而增大.∵点(2.y1).(4.y2)都在第四象限.且2<4.【点评】本题考查了待定系数法求反比例函数解析式.反比例函数图象的增减性.是中学阶段的重点.需熟练掌握.20.【分析】(1)由四边形ABCD是平行四边形.根据平行四边形的对边平行且相等.即可得AB=DC.AB∥DC.继而可求得∠CDE=∠F.又由BF=AB.即可利用AAS.判定△DCE≌△FBE;(2)由(1).可得BE=EC.即可求得BC的长.又由平行四边形的对边相等.即可求得AD的长.【解答】(1)证明:∵四边形ABCD是平行四边形.∴AB=DC.AB∥DC.∴∠CDE=∠F.又∵BF=AB.∴DC=FB.在△DCE和△FBE中.∵∴△DCE≌△FBE(AAS)(2)解:∵△DCE≌△FBE.∴EB=EC.∵EC=3.∴BC=2EB=6.∵四边形ABCD是平行四边形.∴AD=BC.【点评】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中.注意数形结合思想的应用.21.【分析】(1)有统计图表中的信息可知:其他所占的比例为5%.又人数为25人.所以可以求出总人数.进而求出a和b的值;(2)有(1)的数据可将条形统计图补充完整;(3)用该老人的总数15万人乘以与子女“同住”所占的比例30%即为估计值.【解答】解:(1)老人总数为250÷50%=500(人).b=%=15%.a=1﹣50%﹣15%﹣5%=30%.(2)如图:(3)该市与子女“同住”的老人的总数约为15×30%=4.5(万人).【点评】本题考查了条形统计图、用样本估计总数的知识.解题的关键是从统计图中整理出进一步解题的信息.22.【分析】(1)根据AD∥BC和AB切圆D于A.求出DAB=∠ADE =∠DEB=90°.即可推出结论;(2)根据矩形的性质求出AB=DE=4.根据垂径定理求出CF=2CE.设AD=3k.则BC=4k.BE=3k.EC=k.DC=AD=3k.在△DEC中由勾股定理得出一个关于k的方程.求出k的值.即可求出答案.【解答】(1)证明:∵⊙D与AB相切于点A.∴AB⊥AD.∵AD∥BC.DE⊥BC.∴DE⊥AD.∴∠DAB=∠ADE=∠DEB=90°.∴四边形ABED为矩形.(2)解:∵四边形ABED为矩形.∴DE=AB=4.∵DC=DA.∴点C在⊙D上.∵D为圆心.DE⊥BC.∴CF=2EC.∵.设AD=3k(k>0)则BC=4k.∴BE=3k.EC=BC﹣BE=4k﹣3k=k.DC=AD=3k.由勾股定理得DE2+EC2=DC2.即42+k2=(3k)2.∴k2=2.∵k>0.∴k=.∴CF=2EC=2.【点评】本题考查了勾股定理.切线的判定和性质.矩形的判定.垂径定理等知识点的应用.通过做此题培养了学生的推理能力和计算能力.用的数学思想是方程思想.题目具有一定的代表性.是一道比较好的题目.23.【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵.得出等式方程.求出即可;(3)假设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.求出即可.【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.则乙种树每棵200元.丙种树每棵×200=300(元);(2)设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000.解得x=300∴2x=600.1000﹣3x=100.答:能购买甲种树600棵.乙种树300棵.丙种树100棵;(3)设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.解得:y≤201.2.∵y为正整数.∴y最大取201.答:丙种树最多可以购买201棵.【点评】本题考查一元一次不等式组的应用.将现实生活中的事件与数学思想联系起来.读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化.购买总棵树不变的情况下得出不等式方程.24.【分析】(1)根据已知条件求出AB和CD的中点坐标.然后利用待定系数法求该二次函数的解析式;(2)本问是难点所在.需要认真全面地分析解答:①如图2所示.△ADF与△DEF相似.包括三种情况.需要分类讨论:(I)若∠ADF=90°时.△ADF∽△DEF.求此时t的值;(II)若∠DF A=90°时.△DEF∽△FBA.利用相似三角形的对应边成比例可以求得相应的t的值;(III)∠DAF≠90°.此时t不存在;②如图3所示.画出旋转后的图形.认真分析满足题意要求时.需要具备什么样的限制条件.然后根据限制条件列出不等式.求出t的取值范围.确定限制条件是解题的关键.【解答】解:(1)由题意得AB的中点坐标为(﹣.0).CD的中点坐标为(0.3).分别代入y=ax2+b得.解得..∴y=﹣x2+3.(2)①如图2所示.在Rt△BCE中.∠BEC=90°.BE=3.BC=2∴sin C===.∴∠C=60°.∠CBE=30°∴EC=BC=.DE=又∵AD∥BC.∴∠ADC+∠C=180°∴∠ADC=180°﹣60°=120°要使△ADF与△DEF相似.则△ADF中必有一个角为直角.(I)若∠ADF=90°∠EDF=120°﹣90°=30°在Rt△DEF中.DE=.求得EF=1.DF=2.又∵E(t.3).F(t.﹣t2+3).∴EF=3﹣(﹣t2+3)=t2∴t2=1.∵t>0.∴t=1此时=2..∴.又∵∠ADF=∠DEF∴△ADF∽△DEF(II)若∠DF A=90°.可证得△DEF∽△FBA.则设EF=m.则FB=3﹣m∴.即m2﹣3m+6=0.此方程无实数根.∴此时t不存在;(III)由题意得.∠DAF<∠DAB=60°∴∠DAF≠90°.此时t不存在.综上所述.存在t=1.使△ADF与△DEF相似;②如图3所示.依题意作出旋转后的三角形△FE′C′.过C′作MN⊥x轴.分别交抛物线、x轴于点M、点N.观察图形可知.欲使△FE′C′落在指定区域内.必须满足:EE′≤BE且MN≥C′N.∵F(t.3﹣t2).∴EF=3﹣(3﹣t2)=t2.∴EE′=2EF=2t2.由EE′≤BE.得2t2≤3.解得t≤.∵C′E′=CE=.∴C′点的横坐标为t﹣.∴MN=3﹣(t﹣)2.又C′N=BE′=BE﹣EE′=3﹣2t2.由MN≥C′N.得3﹣(t﹣)2≥3﹣2t2.解得t≥或t≤﹣﹣3(舍).∴t的取值范围为:.【点评】本题是动线型中考压轴题.综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点.难度较大.对考生能力要求很高.本题难点在于第(2)问.(2)①中.需要结合△ADF与△DEF 相似的三种情况.分别进行讨论.避免漏解;(2)②中.确定“限制条件”是解题关键.。

2024年河南省中考数学试题含答案解析

2024年河南省中考数学试题含答案解析

2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1. 如图,数轴上点P 表示的数是( )A. 1−B. 0C. 1D. 2 【答案】A【解析】【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P 表示的数为1−,从而求解.【详解】解:根据题意可知点P 表示的数为1−,故选:A .2. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410×B. 105.78410×C. 115.78410×D. 120.578410× 【答案】C【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为10n a ×,其中110a ≤<,确定a 和n 的值是解题的关键.用科学记数法表示绝对值较大的数时,一般形式为10n a ×,其中110a ≤<,且n 比原来的整数位数少1,据此判断即可.【详解】解:5784亿11578400000000 5.78410=×.故选:C .3. 如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°【答案】B【解析】【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=°,AB CD ∥,∴150BAC ∠=∠=°,故选:B .4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为()A. B.C. D.【答案】A【解析】【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5. 下列不等式中,与1x −>组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x −D. 3x >− 【答案】A【解析】【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x −>,可得1x <−,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意;故选:A6. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A 12 B. 1 C. 43 D. 2【答案】B【解析】【分析】本题考查了相似三角形判定与性质,平行四边形的性质等知识,利用平行四边形的性质、线段中点定义可得出14CE AC =,证明CEF CAB ∽△△,利用相似三角形的性质求解即可. 【详解】解∶∵四边形ABCD 是平行四边形,.的∴12OC AC =, ∵点E 为OC 的中点, ∴1124CE OC AC ==, ∵EF AB ∥,∴CEF CAB ∽△△, ∴EF CE AB AC =,即144EF =, ∴1EF =,故选:B .7. 计算3···a a a a个的结果是( ) A. 5aB. 6aC. 3a a +D. 3a a 【答案】D【解析】【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( ) A. 19 B. 16 C. 15 D. 13【答案】D【解析】【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种, ∴两次抽取的卡片图案相同的概率为3193=. 故选∶D .9. 如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π【答案】C【解析】【分析】过D 作DE BC ⊥于E ,利用圆内接四边形的性质,等边三角形的性质求出120BDC ∠=°,利用弧、弦的关系证明BD CD =,利用三线合一性质求出12BE BC ==,1602BDE BDC ∠=∠=°,在Rt BDE △中,利用正弦定义求出BD ,最后利用扇形面积公式求解即可.【详解】解∶过D 作DE BC ⊥于E ,∵O 是边长为的等边三角形ABC 的外接圆,∴BC =,60A ∠=°,180∠+∠=°BDC A , ∴120BDC ∠=°,∵点D 是 BC的中点, ∴ BDCD =, ∴BD CD =,∴12BE BC ==,1602BDE BDC ∠=∠=°,∴4sin BE BD BDE ==∠, ∴21204163603ππS ⋅==阴影, 故选:C .【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A ,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多【答案】C【解析】 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项:_______.【答案】m (答案不唯一)【解析】【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.【答案】9【解析】【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案:9.13. 若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为___________. 【答案】12##0.5【解析】【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =−−×=,再求解即可. 【详解】解∶∵方程2102x x c −+=有两个相等的实数根, ∴()21Δ1402c =−−×=, ∴12c =, 故答案为:12.14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.【答案】()3,10【解析】【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=°,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,为则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=°, ∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20−,,点F 的坐标为()06,, ∴2AO =,6FO =,∴2BO AB AO a =−=−,在Rt BOF △中,222BO FO BF +=,∴()22226a a −+=,解得10a =,∴4FG OG OF =−=,8GE CD DG CE CE =−−=−,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE −+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15. 如图,在Rt ABC △中,90ACB ∠=°,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.【答案】 ①. 1+##1+②. 1−##1−+【解析】【分析】根据题意得出点D 在以点C 为圆心,1为半径的圆上,点E 在以AB 为直径的圆上,根据cos AE AB BAE =⋅∠,得出当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,根据当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,分别画出图形,求出结果即可.【详解】解:∵90ACB ∠=°,3CA CB ==, ∴190452BAC ABC ∠=∠=×°=°, ∵线段CD 绕点C 在平面内旋转,1CD =,∴点D 在以点C 为圆心,1为半径的圆上,∵BE AE ⊥, ∴90AEB ∠=°, ∴点E 在以AB 为直径的圆上,在Rt ABE △中,cos AE AB BAE =⋅∠,∵AB 为定值,∴当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,∴当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥,∴90ADE CDE ∠=∠=°,∴AD =∵ AC AC=, ∴45CED ABC ==°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =+=+,即AE 的最大值为1+;当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥,∴90CDE ∠=°,∴AD =∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =°−=°∠∠,∴18045CED CEA =°−=°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =−=−,即AE 的最小值为1−;故答案为:1+;1−.【点睛】本题主要考查了切线的性质,圆周角定理,圆内接四边形的性质,勾股定理,等腰三角形的性质,解直角三角形的相关计算,解题的关键是作出辅助线,熟练掌握相关的性质,找出AE 取最大值和最小值时,点D 的位置.三、解答题(本大题共8个小题,共75分)16. (1(01−; (2)化简:231124a a a + +÷ −− . 【答案】(1)9(2)2a +【解析】【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式1−101=−9=;(2)原式()()3212222a a a a a a −+ =+÷ −−+− ()()22121a a a a a +−+⋅−+ 2a =+.17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.5 8 2乙26 10 3根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1×−,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【答案】(1)甲 29(2)甲(3)乙队员表现更好【解析】【分析】本题考查了折线统计图,统计表,中位数,加权平均数等知识,解题的关键是∶(1)根据折线统计图的波动判断得分更稳定的球员,根据中位数的定义求解即可;(2)根据平均每场得分以及得分的稳定性求解即可;(3)分别求出甲、乙的综合得分,然后判断即可.【小问1详解】解∶从比赛得分统计图可得,甲的得分上下波动幅度小于乙的的得分上下波动幅度,∴得分更稳定的队员是甲,乙的得分按照从小到大排序为14,20,28,30,32,32,最中间两个数为28,30,∴中位数为2830292+=, 故答案为∶乙,29;【小问2详解】解∶ 因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好;【小问3详解】解∶甲的综合得分为()26.518 1.52136.5×+×+×−=, 乙的综合得分为()26110 1.53138×+×+×−=, ∵36.538<,∴乙队员表现更好.18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.【答案】(1)6y x= (2)见解析 (3)92【解析】 【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是: (1)利用待定系数法求解即可;(2)分别求出1x =,2x =,6x =对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【小问1详解】 解:反比例函数k y x =的图象经过点()3,2A , ∴23k =, ∴6k =, ∴这个反比例函数的表达式为6y x =; 【小问2详解】解:当1x =时,6y =,当2x =时,3y =,当6x =时,1y =, ∴反比例函数6y x=的图象经过()1,6,()2,3,()6,1, 画图如下:【小问3详解】解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=, 解得32x =, ∴平移距离为39622−=. 故答案为:92. 19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E D C 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是: (1)根据作一个角等于已知角的方法作图即可;(2)先证明四边形CDBF 是平行四边形,然后利用直角三角形斜边中线的性质得出12CDBD AB ==,最后根据菱形的判定即可得证.【小问1详解】解:如图,;【小问2详解】证明:∵ECM A ∠=∠,∴CM AB ∥,∵∥B E D C ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边AB 上的中线,∴12CD BD AB ==, ∴平行四边形CDBF 是菱形.20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30°,在点P 处看塑像顶部点A 的仰角APE ∠为60°,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈). 【答案】(1)见解析 (2)塑像AB 的高约为6.9m【解析】【分析】本题考查了圆周角定理,三角形外角的性质,解直角三角形的应用等知识,解题的关键是: (1)连接BM ,根据圆周角定理得出AMB APB ∠=∠,根据三角形外角的性质得出AMB ADB ∠>∠,然后等量代换即可得证;(2)在Rt AHP 中,利用正切的定义求出AH ,在Rt BHP △中,利用正切的定义求出BH ,即可求解.【小问1详解】证明:如图,连接BM .则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=°,6PH =. ∵tan AH APH PH∠=,∴tan 606AH PH ⋅° ∵30APB ∠=°,∴603030BPH APH APB ∠=∠−∠=°−°=°.在Rt BHP △中,tan BHBPH PH∠=,∴tan 306BH PH ⋅°.∴()4 1.73 6.9m ABAH BH =−=−≈×≈. 答:塑像AB 的高约为6.9m .21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A ,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品?【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A 种食品x 包,B 种食品y 包,根据“从这两种食品中摄入4600kJ 热量和70g 蛋白质”列方程组求解即可;(2)设选用A 种食品a 包,则选用B 种食品()7−a 包,根据“每份午餐中的蛋白质含量不低于90g ”列不等式求解即可.小问1详解】解:设选用A 种食品x 包,B 种食品y 包,根据题意,得7009004600,101570.x y x y += +=解方程组,得4,2.x y = =答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7−a 包,根据题意,得()1015790a a +−≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+−=−+. ∵2000−<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a −=−=.答:选用A 种食品3包,B 种食品4包.22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可; (2)把010v t =,20h =代入205h t v t =−+求解即可; (3)由(2),得2520h t t =−+,把15h =代入,求出t 的值,小问1详解】解:205h t v t =−+ 220051020v v t =−−+ , ∴当010v t =时,h 最大, 故答案为:010v ; 【小问2详解】解:根据题意,得 当010v t =时,20h =, ∴20005201010v v v −×+×=, ∴()020m /s v =(负值舍去);【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =−+,当15h =时,215520t t =−+,解方程,得11t =,23t =,∴两次间隔的时间为312s −=, 【∴小明的说法不正确.23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示). (3)拓展应用如图3,在Rt ABC △中,90B ∠=︒,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.【答案】(1)②④ (2)①ACD ACB ∠=∠.理由见解析;②2cos m n θ+(3 【解析】【分析】(1)根据邻等对补四边形的定义判断即可;(2)①延长CB 至点E ,使BE DC =,连接AE ,根据邻等对补四边形定义、补角的性质可得出ABE D ∠=∠,证明()SAS ABE ADC ≌,得出E ACD ∠=∠,AE AC =,根据等边对等角得出E ACB ∠=∠,即可得出结论;②过A 作AF EC ⊥于F ,根据三线合一性质可求出2m n CF +=,由①可得ACD ACB θ∠=∠=,在Rt AFC △中,根据余弦的定义求解即可;(3)分AB BM =,AN AB =,MN AN =,BM MN =四种情况讨论即可.【小问1详解】解:观察图知,图①和图③中不存在对角互补,图2和图4中存在对角互补且邻边相等,故图②和图④中四边形是邻等对补四边形,故答案为:②④;【小问2详解】解:①ACD ACB ∠=∠,理由:延长CB 至点E ,使BE DC =,连接AE ,∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=°,∵180ABC ABE ∠+∠=°,∴ABE D ∠=∠,∵AB AD =,∴()SAS ABE ADC ≌,∴E ACD ∠=∠,AE AC =,∴E ACB ∠=∠,∴ACD ACB ∠=∠;②过A 作AF EC ⊥于F ,∵AE AC =, ∴()()1112222m n CF CE BC BE BC DC +==+=+=, ∵2BCD θ∠=,∴ACD ACB θ∠=∠=,在Rt AFC △中,cos CF θAC=, ∴cos 2cos CF m n AC θθ+==; 【小问3详解】解:∵90B ∠=︒,3AB =,4BC =,∴5AC ,∵四边形ABMN 是邻等对补四边形,∴180ANM B ∠+∠=°,∴90ANM =°,当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H ,∴22218AM AB BM =+=,在Rt AMN 中222218MN AM AN AN =−=−,在Rt CMN 中()()22222435MN CM CN AN =−=−−−,∴()()22218435AN AN −=−−−,解得 4.2AN =, ∴45CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即45534NH CH ==, ∴1225NH =,1625CH =, ∴8425BH =,∴BN ; 当AN AB =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴BM NM =,故不符合题意,舍去;当AN MN =时,连接AM ,过N 作NH BC ⊥于H ,∵90MNC ABC ∠=∠=°,C C ∠=∠, ∴CMN CAB ∽△△, ∴CN MN BC AB =,即543CN CN −=,解得207CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即207534NH CH ==, ∴127NH =,167CH =, ∴127BH =,∴BN ; 当BM MN =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;综上,BN . 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等知识,明确题意,理解新定义,添加合适辅助线,构造全等三角形、相似三角形是解题的关键.。

2024年重庆市中考数学试题B卷(含答案)

2024年重庆市中考数学试题B卷(含答案)

重庆市2024年初中学业水平暨高中招生考试数学试题(B卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a=++≠的顶点坐标为24,24b ac ba a⎛⎫-- ⎪⎝⎭,对称轴为2bxa=-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列各数中最小的数是()A.1-B.0C.1D.2【答案】A【解析】【分析】根据正数大于0,0大于负数,即可作出判断.【详解】1-是负数,其他三个数均是非负数,故1-是最小的数;故选:A.【点睛】本题考查了有理数大小的比较:负数小于一切非负数,明确此性质是关键.2.下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D .该标点符号不是轴对称图形,故此选项不符合题意.故选:A .3.反比例函数10y x =-的图象一定经过的点是()A.()1,10 B.()2,5- C.()2,5 D.()2,8【答案】B【解析】【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =-=-,图象不经过()1,10,故A 不符合要求;当2x =-时,1052y =-=-,图象一定经过()2,5-,故B 符合要求;当2x =时,1052y =-=-,图象不经过()2,5,故C 不符合要求;当2x =时,1052y =-=-,图象不经过()2,8,故D 不符合要求;故选:B .4.如图,AB CD ∥,若1125∠=︒,则2∠的度数为()A .35︒ B.45︒ C.55︒ D.125︒【答案】C【解析】【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒-∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .5.若两个相似三角形的相似比为1:4,则这两个三角形面积的比是()A.1:2B.1:4C.1:8D.1:16【答案】D【解析】【分析】本题主要考查了相似三角形的性质,根据相似三角形的面积之比等于相似比的平方进行求解即可.【详解】解:∵两个相似三角形的相似比为1:4,∴这两个三角形面积的比是221:41:16=,故选:D .6.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】C【解析】【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.6=,而45<=,∴10611<<,故答案为:C7.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是()A.20B.21C.23D.26【答案】C【解析】【分析】本题考查了图形类的规律探索,解题的关键是找出规律.利用规律求解.通过观察图形找到相应的规律,进行求解即可.【详解】解:第①个图案中有()131112+⨯-+=个菱形,第②个图案中有()132115+⨯-+=个菱形,第③个图案中有()133118+⨯-+=个菱形,第④个图案中有()1341111+⨯-+=个菱形,∴第n 个图案中有()131131n n +-+=-个菱形,∴第⑧个图案中菱形的个数为38123⨯-=,故选:C .8.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为()A.28︒B.34︒C.56︒D.62︒【答案】B【解析】【分析】本题考查了圆周角定理,等腰三角形的性质等知识,利用圆周角定理求出COB ∠,根据等腰三角形的三线合一性质求出AOB ∠,等边对等角然后结合三角形内角和定理求解即可.【详解】解:∵28D ∠=︒,∴256BOC D ∠=∠=︒,∵OC AB ⊥,OA OB =,∴2112AOB BOC ∠=∠=︒,OAB OBA ∠=∠,∴()1180342OAB AOB ∠=︒-∠=︒,故选:B .9.如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为()A.2B.C.D.125【答案】D【解析】【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到AE AF =,进一步证明()SAS AEM AFM △≌△得到EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=-=-,,在Rt CEM △中,由勾股定理得()()222134x x +=+-,解方程即可得到答案.【详解】解:∵四边形ABCD 是正方形,∴904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,又∵1BE DF ==,∴()SAS ABE ADF △≌△,∴AE AF =,∵AM 平分EAF ∠,∴EAM FAM ∠=∠,又∵AM AM =,∴()SAS AEM AFM △≌△,∴EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=-=-,,在Rt CEM △中,由勾股定理得222EM CE CM =+,∴()()222134x x +=+-,解得125x =,∴125DM =,故选:D .10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是()A.0B.1C.2D.3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:023-+=______.【答案】3【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.12.甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.【答案】13【解析】【分析】本题考查了列表法与树状图法:画树状图展示所有9种等可能的结果数,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,他们选择同一个景点有3种,故他们选择同一个景点的概率是:3193=,故答案为:13.13.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045︒÷︒可求得边数.【详解】解: 多边形外角和是360度,正多边形的一个外角是45︒,360458∴︒÷︒=即该正多边形的边数是8,故答案为:8.【点睛】本题主要考查了多边形外角和以及多边形的边数,解题的关键是掌握正多边形的各个内角相等,各个外角也相等.14.重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.【答案】()22001401x +=【解析】【分析】本题主要考查了一元二次方程的实际应用,设第二、第三两个季度安全运行架次的平均增长率为x ,则第二季度低空飞行航线安全运行了()2001x +架次,第三季度低空飞行航线安全运行了()22001x +架次,据此列出方程即可.【详解】解:设第二、第三两个季度安全运行架次的平均增长率为x ,由题意得,()22001401x +=,故答案为:()22001401x +=.15.如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.【答案】2【解析】【分析】本题主要考查了等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,先根据等边对等角和三角形内角和定理求出72C ABC ∠=∠=︒,再由角平分线的定义得到36ABD CBD ∠=∠=︒,进而可证明A ABD BDC C ==∠∠,∠∠,即可推出2AD BC ==.【详解】解:∵在ABC 中,AB AC =,36A ∠=︒,∴180722A C ABC ︒︒-∠∠=∠==,∵BD 平分ABC ∠,∴1362ABD CBD ABC ∠=∠=∠=︒,∴72A ABD BDC A ABD C ==+=︒=∠∠,∠∠∠∠,∴AD BD BD BC ==,,∴2AD BC ==,故答案为:2.16.若关于x 的一元一次不等式组2133423x x x a +⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是________.【答案】12【解析】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出2a >;解分式方程得到102a y -=,再由关于y 的分式方程8122a y y y --=++的解均为负整数,推出10a <且6a ≠且a 是偶数,则210a <<且6a ≠且a 是偶数,据此确定符合题意的a 的值,最后求和即可.【详解】解:2133423x x x a +⎧≤⎪⎨⎪-<+⎩①②解不等式①得:4x ≤,解不等式②得:2x a <+,∵不等式组的解集为4x ≤,∴24a +>,∴2a >;解分式方程8122a y y y --=++得102a y -=,∵关于y 的分式方程8122a y y y --=++的解均为负整数,∴1002a -<且102a -是整数且102202a y -+=+≠,∴10a <且6a ≠且a 是偶数,∴210a <<且6a ≠且a 是偶数,∴满足题意的a 的值可以为4或8,∴所有满足条件的整数a 的值之和是4812+=.故答案为:12.17.如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.【答案】①.203##263②.83##223【解析】【分析】由直径所对的圆周角是直角得到90ADB BDC ∠=∠=︒,根据勾股定理求出4BD =,则3cos 5CD C BC ==,由切线的性质得到90ABC ∠=︒,则可证明C ABD ∠=∠,解直角三角形即可求出20cos 3BD AB ABD ==∠;连接AE ,由平行线的性质得到BAF ABE ∠=∠,再由F ADE ∠=∠,ADE ABE ∠=∠,推出F BAF ∠=∠,得到203BF AB ==,则208433DF BF BD =-=-=.【详解】解:∵AB 是O 的直径,∴90ADB BDC ∠=∠=︒,在Rt BDC中,由勾股定理得4BD ==,∴3cos 5CD C BC ==,∵BC 是O 的切线,∴90ABC ∠=︒,∴90C CBD CBD ABD +=+=︒∠∠∠∠,∴C ABD ∠=∠,在Rt △ABD 中,4203cos 35BD AB ABD ===∠;如图所示,连接AE,∵AF BE ∥,∴BAF ABE ∠=∠,∵F ADE ∠=∠,ADE ABE ∠=∠,∴F BAF ∠=∠,∴203BF AB ==,∴208433DF BF BD =-=-=;故答案为:203;83.【点睛】本题主要考查了切线的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,解直角三角形,等腰三角形的判定等等,证明F BAF ∠=∠是解题的关键.18.一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.【答案】①.3456②.6273【解析】【分析】本题主要考查了新定义,根据新定义得到9a d b c +=+=,再由1b a c b -=-=可求出a 、b 、c 、d 的值,进而可得答案;先求出9999099M a b =++,进而得到()36981313F M ab cda b a ++++=++,根据()13F M ab cd++是整数,得到369813a b a ++++是整数,即3613a b ++是整数,则36a b ++是13的倍数,求出8a ≤,再按照a 从大到小的范围讨论求解即可.【详解】解:∵abcd 是一个“友谊数”,∴9a d b c +=+=,又∵1b a c b -=-=,∴45b c ==,,∴36a d ==,,∴这个数为3456;∵M abcd =是一个“友谊数”,∴100010010M a b c d=+++()10001001099a b b a=++-+-9999099a b =++,∴()11110119M F M a b ==++,∴()13F M ab cd++1111011101013a b a b c d++++++=()111101*********a b a b b a +++++-+-=12011013a b ++=1173104613a a b ++++=369813a b a ++=++,∵()13F M ab cd++是整数,∴369813a b a ++++是整数,即3613a b ++是整数,∴36a b ++是13的倍数,∵a b c d 、、、都是不为0的正整数,且9a d b c +=+=,∴8a ≤,∴当8a =时,313638a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当7a =时,283635a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当6a =时,253632a b ≤++≤,此时可以满足36a b ++是13的倍数,即此时2b =,则此时37d c ==,,∵要使M 最大,则一定要满足a 最大,∴满足题意的M 的最大值即为6273;故答案为:3456;6273.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭.【答案】(1)42a -(2)2x x +【解析】【分析】本题主要考查了整式的混合计算,分式的混合计算∶(1)先根据单项式乘以多项式的计算法则和多项式乘以多项式的计算法则去括号,然后合并同类项即可得到答案;(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.【小问1详解】解:()()()312a a a a -+-+22322a a a a a =-+-+-42a =-;【小问2详解】解:22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭()()()2222222x x x x x +--+=÷--()()()22222x x x x x -=⋅-+-2x x =+.20.数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数七年级8687b 八年级86a 90根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【解析】【分析】本题主要考查了中位数,众数,用样本估计总体,扇形统计图等等:(1)根据中位数和众数的定义可求出a 、b 的值,先求出把年级A 组的人数,进而可求出m 的值;(2)根据八年级学生成绩的中位数和众数都比七年级学生成绩的高即可得到结论;(3)用七年级的人数乘以七年级样本中优秀的人数占比求出七年级优秀人数,用八年级的人数乘以八年级样本中优秀的人数占比求出八年级优秀人数,再二者求和即可得到答案.【小问1详解】解:八年级C 组的人数为1020%2⨯=人,而八年级B 组有4人,则把八年级10名学生的成绩按照从低到高排列,处在第5名和第6名的成绩分别为88分,88分,∴八年级学生成绩的中位数8888882a +==;∵七年级10名学生成绩中,得分为87分的人数最多,∴七年级的众数87b =;由题意得,1041020%%100%40%10m --⨯=⨯=,∴40m =;故答案为:88;87;40;【小问2详解】解:八年级学生数学文化知识较好,理由如下:∵两个年级10名学生的平均成绩相同,但是八年级学生成绩的中位数和众数都比七年级学生成绩的高,∴八年级学生数学文化知识较好;【小问3详解】解:350040040%31010⨯+⨯=人,∴估计该校七、八年级学生中数学文化知识为“优秀”的总共有310人.21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EFAC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是25平方米.【解析】【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键;(1)设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x -元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【小问1详解】解:设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x -元,∴()300300215000x x +-=,解得:26x =,∴224x -=,答:A 种外墙漆每千克的价格为26元,B 种外墙漆每千克的价格为24元.【小问2详解】设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;∴500500545y y -=,解得:25y =,经检验:25y =是原方程的根且符合题意,答:甲每小时粉刷外墙的面积是25平方米.23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y.(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)【答案】(1)()()124606063y x x y x x=<≤=<≤,(2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【解析】【分析】本题主要考查了一次函数与反比例函数综合,相似三角形的性质与判定:(1)证明APQ ABC ∽,根据相似三角形的性质得到APQABC C PQ AP C BC AB==△△,据此可得答案;(2)根据(1)所求利用描点法画出对应的函数图象并根据函数图象写出对应的函数图象的性质即可;(3)找到一次函数图象在反比例函数图象上方时自变量的取值范围即可.【小问1详解】解:∵PQ BC ∥,∴APQ ABC ∽,∴APQABC C PQ AP C BC AB==△△,∴12686y x AB y AP x ===,∴()()124606063y x x y x x =<≤=<≤,;【小问2详解】解:如图所示,即为所求;由函数图象可知,1y 随x 增大而增大,2y 随x 增大而减小;【小问3详解】解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米.1.41≈,1.73≈2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B --,乙选择的路线为:D A B --.请计算说明谁选择的路线较近?【答案】(1)2.5千米(2)甲选择的路线较近【解析】【分析】本题主要考查了解直角三角形的实际应用:(1)过点B 作BE AC ⊥于E ,先求出45ACB ∠=︒,再解Rt ABE △得到BE =千米,进一步解Rt BCE即可得到 2.5sin BE BC BCE ==≈∠千米;(2)过点C 作CF AD ⊥于D ,先解Rt ABE △得到1AE =千米,则(1AC AE CE =+=+千米,再Rt AFC △得到12CF +=千米,32AF +=千米,最后解Rt DCF 得到36DF +=千米,333CD +=千米,即可得到33 4.033CD BC ++=+千米, 5.15AD AB +≈千米,据此可得答案.【小问1详解】解:如图所示,过点B 作BE AC ⊥于E ,由题意得,903060901575CAB ABC =︒-︒=︒=︒-︒=︒∠,∠,∴18045ACB CAB ABC ∠=︒-∠-∠=︒,在Rt ABE △中,902AEB AB =︒=∠,千米,∴cos 2cos60BE AB BAE =⋅=⋅︒=∠千米,在Rt BCE 中, 2.5sin sin 45BE BC BCE ===︒∠千米,∴BC 的长度约为2.5千米;【小问2详解】解:如图所示,过点C 作CF AD ⊥于D ,在Rt ABE △中,cos 2cos601AE AB BAE =⋅=⋅︒=∠千米,∴(13AC AE CE =+=+千米,在Rt AFC △中,(13sin 13sin 302CF AC CAF +=⋅∠=+⋅︒=千米,(33cos 13cos302AF AC CAF =⋅∠=⋅︒=千米,在Rt DCF 中,3090DCF DFC =︒=︒∠,∠,∴1333tan tan 3026DF CF DCF +=⋅=⋅︒=∠千米,13332cos cos303CF CD DCF ++===︒∠千米,∴336 4.033CD BC ++=+≈千米,33332 5.1562AD AB DF AF AB +++=++=++≈千米,∵4.03 5.15<,∴甲选择的路线较近.25.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求52PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 552PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.【答案】(1)215322y x x =--(2)52PD PE +最大值为152;()5,3P -;(3)573,4732N ⎛- ⎝⎭或131113,2⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)直接利用待定系数法求解抛物线的解析式即可;(2)如图,延长PE 交x 轴于G ,过P 作PH y ∥轴于H ,求解223635BC =+=,可得625sin 535OB BCO BC ∠===,证明255PE PH =,设215,322P x x x ⎛⎫-- ⎪⎝⎭,2132PH x x =-+,25PD x =-,再建立二次函数求解即可;(3)由抛物线沿射线BC 方向平移5个单位,即把抛物线向左平移2个单位,再向下平移1个单位,可得新的抛物线为:211722y x x =--,()3,4F -,如图,当N 在y 轴的左侧时,过N 作NK y ⊥轴于K ,证明()0,1M -,可得45AMO OAM FMK ∠=∠=︒=∠,证明NMK ABC ∠=∠,如图,当N 在y 轴的右侧时,过M 作y 轴的垂线,过N '作N T '⊥过M 的垂线于T ,同理可得:N MT ABC '∠=∠,再进一步结合三角函数建立方程求解即可.【小问1详解】解:∵抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =,∴30522a b b a --=⎧⎪⎨-=⎪⎩,解得1252a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴215322y x x =--;【小问2详解】解:如图,延长PE 交x 轴于G ,过P 作PH y ∥轴于H,∵当2153022y x x =--=时,解得:11x =-,26x =,∴()6,0B ,当0x =时,=3y -,∴()0,3C -,∴BC ==,∴25sin 5OB BCO BC ∠===,∵PD x 轴,∴PHE BCO ∠=∠,∴25sin 5PE PHE PH ∠==,∴255PE PH =,∵()6,0B ,()0,3C -,设BC 为3y mx =-,∴630m -=,解得:12m =,∴直线BC 为:132y x =-,设215,322P x x x ⎛⎫-- ⎪⎝⎭,∴1,32H x x ⎛⎫- ⎪⎝⎭,∴2132PH x x =-+,∵抛物线215322y x x =--的对称轴为直线52x =,∴25PD x =-,∴2552512532252PD PE x x x ⎛⎫+=-+-+ ⎪⎝⎭21552x x =-+-,当55122x =-=⎛⎫⨯- ⎪⎝⎭时,52PD PE +取得最大值,最大值为152;此时()5,3P -;【小问3详解】解:∵抛物线沿射线BC方向平移个单位,即把抛物线向左平移2个单位,再向下平移1个单位,∴新的抛物线为:211722y x x =--,()3,4F -,如图,当N 在y 轴的左侧时,过N 作NK y ⊥轴于K ,∵()1,0A -,同理可得:直线AF 为=1y x --,当0x =时,1y =-,∴()0,1M -,∴45AMO OAM FMK ∠=∠=︒=∠,∵45NMF ABC ∠-∠=︒,∴4545NMK ABC ∠+︒-∠=︒,∴NMK ABC ∠=∠,∴1tan tan 2NMK ABC ∠=∠=,设211,722N n n n ⎛⎫-- ⎪⎝⎭,∴211121722NKn MK n n -==--++,解得:5732n =或5732+(舍去)∴573,42N ⎛- ⎝;如图,当N 在y 轴的右侧时,过M 作y 轴的垂线,过N '作N T '⊥过M 的垂线于T,同理可得:N MT ABC '∠=∠,设211,722N x x x ⎛-'⎫- ⎪⎝⎭,则(),1T x -,同理可得:211711222x x x --+=,∴1x =+或1,∴13112N ⎛⎫+ ⎝'⎪⎪⎭.【点睛】本题属于二次函数的综合题,难度很大,考查了待定系数法,二次函数的性质,锐角三角函数的应用,关键是做出合适的辅助线进行转化,清晰的分类讨论是解本题的关键.26.在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:2AM CN BD =+;(3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP 的最大值.【答案】(1)证明见解析(2)证明见解析(3)2++【解析】【分析】(1)证明()ASA ACE CBD ≌得到BD CE =,再由点E 是BC 的中点,得到22BC CE BD ==,即可证明2AC BD =;(2)如图所示,过点G 作GH AB ⊥于H ,连接HF ,先证明()AAS AGF DBF ≌,得到AG BD =,BF GF =,再证明AHG 是等腰直角三角形,得到2222AH AG ==;由直角三角形斜边上的中线的性质可得12FH FC BF BG ===,则FBH FHB FBC FCB ==∠∠,∠∠,进而可证明290HFC ABC ==︒∠∠,则HFM CFN =∠∠;设CBG x ∠=,则4590ABG x CGB x =︒-=︒-∠,∠,可得135HMF BFM FBM x =+=︒-∠∠∠由角平分线的定义可得1452GCN ACB ==︒∠∠,则可证明HMF CNF =∠∠,进而证明()AAS HFM CFN ≌,得到HM CN =,即可证明22AM BD CN =+;(3)如图所示,过点D 作DH AC ⊥交AC 延长线与H ,连接FH ,则四边形BCHD 是矩形,可得BC DH AC ==,证明FDH △是等边三角形,得到60DFH FDH ==︒∠∠,进而得到30BDA DAH ==︒∠∠,30FHA FAH ==︒∠∠;由旋转的性质可得60FQ FP PFQ DFH ==︒=,∠∠,证明()SAS DFQ HFP ≌,得到30FDQ FHP ==︒∠∠,则点Q 在直线DQ 上运动,设直线DQ 交FH 于K ,则113022DK FH FK FH FDK FDH ===︒⊥,,∠,可得60BDQ ∠=︒,由垂线段最短可知,当BQ DQ ⊥时,BQ 有最小值,则30DBQ ∠=︒,设6AC DH a ==,则AH ==6BD CH a ==-,则3DQ a =-,9BQ a =-;再求出3FK a =,则DK =,3QK DK DQ a =-=,由勾股定理得FQ =;由全等三角形的性质可得3PH DQ a ==-,则3CP a =-;由折叠的性质可得9TQ BQ a ==-,由FT FQ TQ ≤+,得到当点Q 在线段FT 上时,FT CP 此时有最大值,最大值为FQ TQ CP+,据此代值计算即可.【小问1详解】证明:∵90ACB ∠=︒,BD AC ∥,∴18090CBD ACB ∠∠︒︒=-=,∵AE CD ⊥,∴90ACD CAE ∠+∠=︒,∵90ACD BCD ∠+∠=︒,∴CAE BCD ∠=∠,又∵90AC CB CBD ACE ===︒,∠∠,∴()ASA ACE CBD ≌,∴BD CE =,∵点E 是BC 的中点,∴22BC CE BD ==,∴2AC BD =;【小问2详解】证明:如图所示,过点G 作GH AB ⊥于H ,连接HF ,∵BD AC ∥,∴FBD FGA D FAG ==∠∠,∠∠,∵点F 是AD 的中点,∴AF DF =,∴()AAS AGF DBF ≌,∴AG BD =,BF GF =,∵90AC BC ACB =∠=︒,,∴45CAB ACB ∠=∠=︒,∵GH AH ⊥,∴AHG 是等腰直角三角形,∴2222AH AG BD ==;∵90BHG BCG BF GF ==︒=∠∠,,∴12FH FC BF BG ===,∴FBH FHB FBC FCB ==∠∠,∠∠,∴22GFH FBH FHB FBH GFC FBC FCB FBC =+==+=∠∠∠∠,∠∠∠∠,∴22290HFC GFH GFC FBH FBC ABC =+=+==︒∠∠∠∠∠∠,∵FM BG ⊥,∴90BFM ∠=︒,∴HFM CFN =∠∠;设CBG x ∠=,则4590ABG x CGB x =︒-=︒-∠,∠,∴135HMF BFM FBM x =+=︒-∠∠∠,∵CN 平分ACB ∠,∴1452GCN ACB ==︒∠,∴135CNF CGN GCN x =+=︒-∠∠∠,∴HMF CNF =∠∠,∴()AAS HFM CFN ≌,∴HM CN =,∵AM AH HM =+,∴22AM BD CN =+;【小问3详解】解:如图所示,过点D 作DH AC ⊥交AC 延长线与H ,连接FH ,∵90BD AC ACB =︒∥,∠,∴90BCH CBD ==︒∠∠,∵DH AC ⊥,∴四边形BCHD 是矩形,∴BC DH AC ==,∵点F 是AD 的中点,且AF AC =,∴2222AD AF DH FH DF ====,∴FDH △是等边三角形,∴60DFH FDH ==︒∠∠,∴30BDA DAH ==︒∠∠,∴30FHA FAH ==︒∠∠,由旋转的性质可得60FQ FP PFQ DFH ==︒=,∠∠,∴DFQ HFP =∠∠,。

安徽省2023年中考数学试题+参考答案

安徽省2023年中考数学试题+参考答案

安徽省2023年中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。

1.-5的相反数是()A.5B.-5C.15D.-152.某几何体的三视图如图所示,则该几何体为()A. B.C. D.3.下列计算正确的是()A.a4+a4=a8B.a4⋅a4=a16C.a4 4=a16D.a8÷a4=a24.在数轴上表示不等式x-12<0的解集,正确的是()A. B.C. D.5.下列函数中,y的值随x值的增大而减小的是()A.y=x2+1B.y=-x2+1C.y=2x+1D.y=-2x+16.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°7.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.298.如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.109.已知反比例函数y =kxk ≠0 在第一象限内的图象与一次函数y =-x +b 的图象如图所示,则函数y =x 2-bx +k -1的图象可能为()A. B.C. D.10.如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:38+1=。

2024年重庆市中考数学真题卷(A卷)和答案

2024年重庆市中考数学真题卷(A卷)和答案

重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑。

1.下列四个数中,最小的数是( )A .-2B .0C .3D .12-2.下列四种化学仪器的示意图中,是轴对称图形的是()A .B .C .D .3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .-3B .3C .-6D .64.如图,,165AB CD ∠=∥,则2∠的度数是()A .105B .115C .125D .1355.若两个相似三角形的相似比是1∶3,则这两个相似三角形的面积比是( )A .13:B .14:C .16:D .19:6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子。

第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A .20B .22C .24D .267.已知m =,则实数m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点。

2024年广东省深圳市中考真题数学试卷含答案解析

2024年广东省深圳市中考真题数学试卷含答案解析

2024年广东省深圳市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列用七巧板拼成的图案中,为中心对称图形的是()A .B .C .D .【答案】C【分析】本题主要考查了中心对称图形的识别.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:选项A 、B 、D 均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C 能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C .2.如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为()A .aB .bC .cD .d【答案】A【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A .3.下列运算正确的是()A .()523m m -=-B .23m n m m n ⋅=C .33mn m n-=D .()2211m m -=-【答案】B【分析】本题考查了同底数幂的乘法,合并同类项,积的乘方,完全平方公式.根据同底数幂的乘法,合并同类项,积的乘方,完全平方公式法则进行计算即可求解.【详解】解:A 、()6523m m m -=≠-,故该选项不符合题意;B 、23m n m m n ⋅=,故该选项符合题意;C 、33mn m n -≠,故该选项不符合题意;D 、()2221211m m m m -=-+≠-,故该选项不符合题意;故选:B .4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A .12B .112C .16D .145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A .40︒B .50︒C .60︒D .70︒【答案】B【分析】本题考查了平行线的性质,根据CD AB ⊥,56∠=∠,则1250∠=∠=︒,再结合平行线的性质,得出同位角相等,即可作答.【详解】解:如图:∵一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,∴CD AB ⊥,56∠=∠,∴152690∠+∠=∠+∠=︒,则1250∠=∠=︒,∵光线是平行的,即DE GF ,∴2450∠=∠=︒,故选:B .6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A .①②B .①③C .②③D .只有①【答案】B【分析】本题考查了尺规作图,全等三角形的判定与性质解决问题的关键是掌握角平分线的判定定理.利用基本作图对三个图形的作法进行判断即可.在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,可证明AFM AEN ≌,有AMD AND ∠=∠,可得ME NF =,进一步证明MDE NDF △≌△,得DM DN =,继而可证明ADM ADN △≌△,得MAD NAD ∠=∠,得到AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.【详解】在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,在AFM △和AEN △中,AE AF BAC BAC AM AN =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AFM AEN ≌,∴AMD AND ∠=∠,AM AE AN AF -=- ME NF∴=在MDE 和NDF 中AMD AND MDE NDF ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS MDE NDF ≌,∴DM DN =,∵,AD AD AM AN ==,∴()SSS ADM ADN ≌,∴MAD NAD ∠=∠,∴AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.则①③可得出射线AD 平分BAC ∠.故选:B .7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A .()7791x y x y +=⎧⎨-=⎩B .()7791x y x y +=⎧⎨+=⎩C .()7791x y x y-=⎧⎨-=⎩D .()7791x y x y+=⎧⎨+=⎩【答案】A【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x 间,房客y 人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x yx y +=⎧⎨-=⎩,故选:A .8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m【答案】A【分析】本题考查了解直角三角形,与俯角有关的解直角三角形,矩形的判定与性质,先证明四边形EFDG 、EFBM 、CDBN 是矩形,再设m GM x =,表示()5m EM x =+,然后在Rt tan AMAEM AEM EM∠=,,以及Rt tan AN ACN ACN CN ∠= ,,运用线段和差关系,即∵MEF EFB CDF ∠=∠=∠∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=∴四边形EFBM 是矩形同理得四边形CDBN 是矩形故选:A二、填空题9.已知一元二次方程230x x m -+=的一个根为1,则m =.【答案】2【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m -+=的一个根为1,1x ∴=满足一元二次方程230x x m -+=,130m ∴-+=,解得,2m =.故答案为:2.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是.(写出一个答案即可)∴正方形DEFG 的边长GH DE CD <<,即13DE <≤,∴正方形DEFG 的边长可以是2,故答案为:2(答案不唯一).11.如图,在矩形ABCD 中,BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0ky k x=≠上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A B 、作x 轴的垂线,垂足分别为D E 、,然后根据特殊三角函数值结合勾股定理求得232A ⎛⎫ ⎪⎝⎭,,52OA =,再求得点()42B ,,利用待定系数法求解即可.【详解】解:过点A B 、作x 轴的垂线,垂足分别为D E 、,如图,∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点232A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,13.如图,在ABC 中,AB BC =,tan 12B ∠=,D 为BC 上一点,且满足5BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.∵85BD DC =,AB BC =,设13AB BC x ==,∴85BD x DC x ==,,∵5tan 12B ∠=,AH CB ⊥,∴cos DM CD =⋅∵DE AD ⊥,CM ∴MC DE ∥,∴CE DM ==三、解答题14.计算:()1012cos 45 3.1414π-⎛⎫-⋅︒+-+ ⎪⎝⎭.15.先化简,再求值:221111a aa a-+⎛⎫-÷⎪,其中1a=+16.据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50,50学校B:(1)学校平均数众数中位数方差A①________4883.299B 48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A ,理由见解析【分析】本题考查求平均数,中位数和众数,利用方差判断稳定性:(1)根据平均数,中位数和众数的确定方法,进行求解即可;(2)根据方差判断稳定性,进行判断即可.【详解】(1)解:①()1283040454848484848505048.310++++++++++=;②数据中出现次数最多的是25,故众数为25;③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=;填表如下:学校平均数众数中位数方差A 48.34883.299B 48.42547.5354.04(2)小明爸爸应该预约学校A ,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若56AB =5BE =,求O 的半径.【答案】(1)见解析(2)35【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可.【详解】(1)证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,∴BH AD ⊥,AH DH =,∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒,19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.观察图象知,函数为二次函数,20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE,请直接写出PE的值.第二种情况:作ABC ∠的平分线,取CH CB =线BA 上取AF AB =,连接DF 故A 为BF 的中点;第三种情况:作AD BC ∥,交BE 的延长线于点在DA 延长线上取点F ,使则A 为DF 的中点,同理可证明12AD BC =,从而②若按照图1作图,∠=∠,由题意可知,ACB ACP四边形ABCD是平行四边形,ACB PAC∴∠=∠,∴∠=∠,PAC PCA延长CA 、DF 交于点G ,同理可得:PGC 是等腰三角形,连接PA ,GF BC ∥ ,故答案为:3414PE =或3412.【点睛】本题考查了垂中平行四边形的定义,平行四边形的性质与判定,相似三角形的判定与性质,勾股定理,尺规作图,等腰三角形的判定与性质等,熟练掌握以上知识点,读懂题意并作出合适的。

2024年山东省烟台市中考真题数学试卷含答案解析

2024年山东省烟台市中考真题数学试卷含答案解析

2024年山东省烟台市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中的无理数是( )A .23B .3.14C D2.下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可【详解】A .23235a a a a +⋅==,故选项不符合题意;B . 12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .3.下图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走( )A .①B .②C .③D .④【答案】A 【分析】本题考查几何体的三视图,熟练掌握三视图的画法是解题的关键.分别画出各选项得出的左视图,再判断即可.【详解】解:A 、取走①时,左视图为 ,既是轴对称图形又是中心对称图形,故选项A 符合题意;B 、取走②时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项B 不符合题意;C 、取走③时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项C 不符合题意;D 、取走④时,左视图为 ,既不是轴对称图形也不是中心对称图形,故选项D 不符合题意;故选:A .4.实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c -<C .a c >D .22a b-<-【答案】B5.目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是4A 纸厚度的六分之一,已知1毫米1=百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为( )A .30.1510⨯纳米B ..41510⨯纳米C .51510-⨯纳米D .61.510-⨯纳米6.射击运动队进行射击测试,甲、乙两名选手的测试成绩如下图,其成绩的方差分别记为2S 甲和2S 乙,则2S 甲和2S 乙的大小关系是( )A .22S S >甲乙B .22S S <甲乙C .22S S =甲乙D .无法确定【答案】A 【分析】本题考查比较方差的大小,根据折线图,得到乙选手的成绩波动较小,即可得出结果.【详解】解:∵方差表示数据的离散程度,方差越大,数据波动越大,方差越小,数据波动越小,由折线图可知乙选手的成绩波动较小,∴22S S >甲乙;故选A .7.某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为AOB ∠的平分线的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】本题考查角平分线的判定,全等三角形的判定和性质,等腰三角形的判定和性质,中垂线的性质和判定,根据作图痕迹,逐一进行判断即可.【详解】解:第一个图为尺规作角平分线的方法,OP 为AOB ∠的平分线;第二个图,由作图可知:,OC OD OA OB ==,∴AC BD =,∵AOD BOC ∠=∠,∴AOD BOC ≌△△,∴OAD OBC ∠=∠,∵AC BD =,BPD APC ∠=∠,∴BPD APC ≌,∴AP BP =,∵,OA OB OP OP ==,∴AOP BOP ≌△△,∴AOP BOP ∠=∠,∴OP 为AOB ∠的平分线;第三个图,由作图可知,ACP AOB OC CP ∠=∠=,∴CP BO ∥,COP CPO ∠=∠,∴CPO BOPÐ=Ð∴COP BOP ∠=∠,∴OP 为AOB ∠的平分线;第四个图,由作图可知:OP CD ⊥,OC OD =,∴OP 为AOB ∠的平分线;故选D .8.如图,在正方形ABCD 中,点E ,F 分别为对角线BD AC ,的三等分点,连接AE 并延长交CD 于点G ,连接EF FG ,,若AGF α∠=,则FAG ∠用含α的代数式表示为( )A .452α︒-B .902α︒-C .452α︒+D .2α∴OD OC =,ODC ∠=∴OE OF =,∵EOF DOC ∠=∠,OE OD ∴EOF DOC ∽△△,9.《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织,问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同.第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?A.45尺B.88尺C.90尺D.98尺故选:C .10.如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .∵菱形EFGH ,60E ∠=︒,依题意,MNG 为等边三角形,运动时间为t ,则cos30NG =∴1sin 60S NG NG =⨯⨯⨯︒依题意,6EM EG t t =-=-,则EK ∴()211236223EKJ S EJ EM t =⋅=⨯- ∴EKJS S S =- 菱形当1114x <≤时,同理可得,3综上所述,当03x ≤≤时,函数图象为开口向上的一段抛物线,当开口向下的一段抛物线,当68x <≤时,函数图象为一条线段,当开口向下的一段抛物线,当1114x <≤时,函数图象为开口向上的一段抛物线;故选:D .二、填空题11x 的取值范围为 .【答案】1x >/1x<【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,解得:1x >;故答案为:1x >.12.关于x 的不等式12x m x -≤-有正数解,m 的值可以是 (写出一个即可).13.若一元二次方程22410x x --=的两根为m ,n ,则2234m m n -+的值为.14.如图,在边长为6的正六边形ABCDEF 中,以点F 为圆心,以FB 的长为半径作 BD,剪下图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为 .设圆锥的底面圆的半径为∴3r =;故答案为:3.15.如图,在ABCD Y 中,120C ∠=︒,8AB =,10BC =.E 为边CD 的中点,F 为边AD 上的一动点,将DEF 沿EF 翻折得D EF ' ,连接AD ',BD ',则ABD '△面积的最小值为.过C 作CN AB ⊥于N ,∵AB CD ∥,∴EM CN =,在Rt BCN 中,10BC =,CBN ∠16.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x4-3-1-15y59527-下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x -<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y --均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x -或3x >.其中正确结论的序号为 .【答案】①②④【分析】本题考查了二次函数的图象和性质, 利用待定系数法求出a b c 、、的值即可判断①;利用根的判别式即可判断②;利用二次函数的性质可判断③;利用对称性可判断④;画出函数图形可判断⑤;掌握二次函数的图象和性质是解题的关键.【详解】解:把()4,0-,()1,9-,()1,5代入2y ax bx c =++得,164095a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,解得128a b c =-⎧⎪=-⎨⎪=⎩,∴0abc >,故①正确;∵1a =-,2b =-,8c =,由2228y x y x x =-+⎧⎨=--+⎩,解得1120x y =⎧⎨=⎩,2235x y =-⎧⎨=⎩,∴()2,0A ,()3,5B -,由图形可得,当3x <-或2x >时,2282x x x --+<-+,即()212ax b x c +++<,故⑤错误;综上,正确的结论为①②④,故答案为:①②④.三、解答题17.利用课本上的计算器进行计算,按键顺序如下:,若m是其显示结果的平方根,先化简:27442393mm m m m m --⎛⎫+÷⎪--+,再求值.18.“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动,为了解学生参与情况,随机抽取部分学生对研学活动时长(用t 表示,单位:h )进行调查.经过整理,将数据分成四组(A 组:02t ≤<;B 组:24t ≤<;C 组:46t ≤<;D 组:68t ≤<),并绘制了如下不完整的条形统计图和扇形统计图.(1)请补全条形统计图;(2)扇形统计图中,a的值为_____,D组对应的扇形圆心角的度数为______;(3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.19.根据收集的素材,探索完成任务.探究太阳能热水器的安装素材一太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,1429α︒≤≤︒;夏至日时,4376α︒≤≤︒.sin140.24︒≈,cos140.97︒≈,tan140.25︒≈sin290.48︒≈,cos290.87≈︒,tan290.55≈︒sin430.68︒≈,cos430.73︒≈,tan430.93︒≈sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼AB 共11层,乙楼CD 共15层,一层从地面起,每层楼高皆为3.3米,AE 为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择________日(填冬至或夏至)时,α为________(填14︒,29︒,43︒,76︒中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.【答案】任务一:冬至,14︒;任务二:乙楼中7层(含7层)以下不能安装该品牌太阳能热水器【分析】本题考查解直角三角形的应用,理解题意是解答的关键.任务一:根据题意直接求解即可;任务二:过E 作EF AB ⊥于F ,利用正切定义求得【详解】解:任务一:根据题意,要判断乙楼哪些楼层不能安装该品牌太阳能板,只需α为冬至日时的最小角度,即14α=︒,故答案为:冬至,14︒;任务二:过E 作EF AB ⊥于F ,则90AFE ∠=︒,54EF =米,BF DF =,在Rt AFE 中,tan AFEFα=,∴tan14540.2513.5AF EF =⋅︒≈⨯=(米)∵11 3.336.3AB =⨯=(米),∴36.313.5DE BF AB AF ==-=-=22.8 3.37÷≈(层),20.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?21.如图,正比例函数y x =与反比例函数k y x =的图象交于点)A a ,将正比例函数图象向下平移()0n n >个单位后,与反比例函数图象在第一、三象限交于点B ,C ,与x 轴,y 轴交于点D ,E ,且满足:3:2BE CE =.过点B 作BF x ⊥轴,垂足为点F ,G 为x 轴上一点,直线BC 与BG 关于直线BF 成轴对称,连接CG .(1)求反比例函数的表达式;(2)求n 的值及BCG 的面积.22.在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为直线BC 上任意一点,连接AD .将线段AD 绕点D 按顺时针方向旋转90︒得线段ED ,连接BE .【尝试发现】(1)如图1,当点D 在线段BC 上时,线段BE 与CD 的数量关系为________;【类比探究】(2)当点D 在线段BC 的延长线上时,先在图2中补全图形,再探究线段BE 与CD 的数量关系并证明;【联系拓广】(3)若1AC BC ==,2CD =,请直接写出sin ECD ∠的值.由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,BE 过点E 作EM BC ⊥交BC 于点由旋转得AD DE =,ADE ∠∴90ADC EDM ∠+∠=︒,∵90ACB ∠=︒,∴ACD DME ∠=∠,ADC ∠+∴CAD EDM ∠=∠由(2)得1DM AC ==,2EM CD ==,∴3CM CD DM =+=,∴2213CE CM EM =+=,∴2213sin 1313EM ECD CE ∠===.同理可得:ACD DME △≌△,∴1DM AC ==,2ME CD ==,∴211CM =-=,∴22215CE =+=,∴225sin 55EM ECD CE ∠===;23.如图,AB 是O 的直径,ABC 内接于O ,点I 为ABC 的内心,连接CI 并延长交O于点D ,E 是 BC上任意一点,连接AD ,BD ,BE ,CE .(1)若25ABC ∠=︒,求CEB ∠的度数;(2)找出图中所有与DI 相等的线段,并证明;(3)若CI =DI =ABC 的周长.【答案】(1)115︒(2)DI AD BD ==,证明见解析(3)30【分析】(1)利用圆周角定理得到90ACB ∠=︒,再根据三角形的内角和定理求65CAB ∠=︒,然后利用圆内接四边形的对角互补求解即可;(2)连接A I ,由三角形的内心性质得到内心,CAI BAI ∠=∠,ACI BCI ∠=∠,然后利用圆周角定理得到DAB DCB ACI ∠=∠=∠,AD BD =,利用三角形的外角性质证得DAI DIA ∠=∠,然后利用等角对等边可得结论;(3)过I 分别作IQ AB ⊥,IF AC ⊥,IP BC ⊥,垂足分别为Q 、F 、P ,根据内切圆的性质和和切线长定理得到AQ AF =,CF CP =,BQ BP =,利用解直角三角形求得2CF CP ==, 13AB =,进而可求解.【详解】(1)解:∵AB 是O 的直径,∴90ADB ACB ∠=∠=︒,又25ABC ∠=︒,∴902565CAB ∠=︒-︒=︒,∵四边形ABEC 是O 内接四边形,∴180CEB CAB ∠+∠=︒,∴180115CEB CAB ∠=︒-∠=︒;∵点I 为ABC 的内心,∴CAI BAI ∠=∠,ACI ∠∴ AD BD=,∴DAB DCB ACI ∠=∠=∠∵点I 为ABC 的内心,即为∴Q 、F 、P 分别为该内切圆与∴AQ AF =,CF CP =,∵22CI =,90IFC ∠=2AB AQ BQ CF=+++22AB CF=+21322=⨯+⨯30=.【点睛】本题考查圆周角定理、圆内接四边形的性质、三角形的内角和定理、三角形的内心性质、三角形的外角性质、等腰三角形的判定、切线长定理以及解直角三角形,熟练掌握相关知识的联系与运用是解答的关键.24.如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.由题意得2AG BG ==,∵对称轴为直线=1x -,∴()()1,0, 3.0B A -,∴3OC OA ==,∴()0,3C ,将A 、B 、C 分别代入21y ax bx c =++,得:09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴2123y x x =--+,∴()2212314y x x x =--+=-++,顶点为()1,4-∵抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,∴抛物线2y 的1a =,顶点为()1,4-,∴2y 的表达式为:()2214y x =--,即2223y x x =--(2)解:将点F 向右平移2个单位至F ',则2F F '=,()4,0F '-,过点D 作直线2l 的对称点为D ¢,连接,,F N F D ND '''',∴ND ND '=,∵()2214y x =--,∴直线2l 为直线1x =,∵抛物线()2214y x =--,∴()1,4E -∵2l y ∥轴,∴1DHE ∠=∠,∵2PEH DHE ∠=∠,∴2112PEH ∠=∠=∠+∠,∴12∠=∠,作H 关于直线2l 的对称点H ',则点H '在直线PE 上,∵点H 的坐标为()0,2-,直线2l :1x =,∴()2,2H '-,设直线PE 的表达式为:()0y kx b k =+≠,代入()2,2H '-,()1,4E -,得:224k b k b +=-⎧⎨+=-⎩,解得:26k b =⎧⎨=-⎩,∴直线PE 的表达式为26y x =-,联立222623y x y x x =-⎧⎨=--⎩,得:22326x x x --=-,解得:3x =或1x =(舍),∴()3,0P ;②当点P 在直线2l 左侧抛物线上时,延长EP 交y 轴于点N ,作HN 的垂直平分线交HE 于点Q ,交y 轴于点M ,过点E 作EK y ⊥轴于点K ,则QM EK ∥,如图:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX 年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A.15 B.5 C.-15D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

20XX 年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)题7图8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= .13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

若干男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本,求男生 、女生志愿者各有多少人?四、解答题(二)(本大题共3题,每小题7分,共21分) 20.如是20图,在ABC ∆中,A B ∠>∠.(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,连接AE ,若50B ∠=︒,求AEC ∠的度数。

21.如图21图所示,已知四边形ABCD、ADEF都是菱形,BAD FAD BAD、为锐角.∠=∠∠(1)求证:AD BF⊥;(2)若BF=BC,求ADC∠的度数。

22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如题22图表所示,请根据图表信息回答下列问题:(1)填空:①m= (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(三)(本大题共3题,每小题9分,共27分)23.如图23图,在平面直角坐标系中,抛物线2=-++交x轴于A(1,0),B(3,0)两点,y x ax b点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线2=-++的解析式;y x ax b(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件,求sin OCB∠的值.24.如题24图,AB是⊙O的直径,,点E为线段OB上一点(不与O、B重合),作,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,于点F,连结CB.(1)求证:CB是的平分线;(2)求证:CF=CE;(3)当时,求劣弧»BC的长度(结果保留π).25.如题25图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A、C的坐标分别是和,点D是对角线AC上一动点(不与A、C重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:;②设,矩形BDEF的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值20XX 年广东省中考数学试卷参考答案一、选择题二、填空题 11、a (a +1) 12、6 13、> 14、52 15、-1 16、10 三、解答题(一) 17、计算:()1-031-1-7-⎪⎭⎫ ⎝⎛+π 解:原式=7-1+3 =918、先化简,再求值:()5421212=-⋅⎪⎭⎫⎝⎛++-x x x x ,其中 解:()()()()222222-++--++=x x x x x x 原式x 2= 当5=x 时,上式=5219、解:设男生x 人,女生y 人,则有⎩⎨⎧==⎩⎨⎧=+=+1612124040506802030y x y x y x 解得 答:男生有12人,女生16人。

四、解答题(二)20、(1)作图略(2)∵ED 是AB 的垂直平分线 ∴EA =EB∴∠EAC =∠B =50°∵∠AEC 是△ABE 的外角 ∴∠AEC =∠EBA +∠B =100°21、(1)如图,∵ABCD 、ADEF 是菱形∴AB =AD =AF又∵∠BAD =∠F AD由等腰三角形的三线合一性质可得 AD ⊥BF(2)∵BF =BC ∴BF =AB =AF∵△ABF 是等比三角形 ∴∠BAF =60°又∵∠BAD =∠F AD ∴∠BAD =30° ∴∠ADC =180°-30°=150° 22、(1)①、52 (2)144 (3)(人)720%1002008052121000=⨯++⨯答:略五、解答题(三)23、解(1)把A (1,0)B (3,0)代入b ax x y ++-=2得⎩⎨⎧-==⎩⎨⎧=++-=++3403901-b a b a b a 解得∴342-+-=x x y (2)过P 做PM ⊥x 轴与M ∵P 为BC 的中点,PM ∥y 轴 ∴M 为OB 的中点 ∴P 的横坐标为23 把x =23代入342-+-=x x y 得43=y ∴⎪⎭⎫⎝⎛43,23P (3)∵PM ∥OC ∴∠OCB =∠MPB ,2343==MB PM ,∴54349169=+=PB ∴sin ∠MPB =55254323==PB BM ∴sin ∠OCB =552 24、证明:连接AC , ∵AB 为直径, ∴∠ACB =90° ∴∠1+∠2=90°,∠2+∠3=90° ∴∠1=∠3 又∵CP 为切线 ∴∠OCP =90° ∵DC 为直径 ∴∠DBC =90°∴∠4+∠DCB =90°,∠DCB +∠D =90° ∴∠4=∠D又∵弧BC =弧BC ∴∠3=∠D∴∠1=∠4即:CB 是∠ECP 的平分线 (2)∵∠ACB =90° ∴∠5+∠4=90°,∠ACE +∠1=90° 由(1)得∠1=∠4 ∴∠5=∠ACE在Rt △AFC 和Rt △AEC 中AEC AFC AC AC ECA FCA AEC F ≌△△∴⎪⎩⎪⎨⎧=∠=∠︒=∠=∠90 ∴CF =CE(3)延长CE 交DB 于Qxx x EQ x CQ CP PQ CB QCB CB x CE CF x CP x CF CP CF =-=∴==∴⊥∠=====344324343的角平分线是∵)得由(,设:ππ332321806032346060-60-18060333tan 33290219019022=⨯∴=∴=︒=︒︒︒=∠∴︒=∠∴===∠=∴=⋅⋅=∴=∴∴∠=∠∴︒=∠+∠︒=∠+∠︒=∠⊥的长度为:弧∵中,在△即∽△△,,,BC OB AB CBE CBE xxEB CE CBE CEB xEB EB x x EQ CE EB EQEBEB CE BEQ CEB CQB CQB CBQ EB CE25、(1)()232,(2)存在理由:①如图1 若ED=EC 由题知:∠ECD =∠EDC =30° ∵DE ⊥DB ∴∠BDC =60° ∵∠BCD =90°-∠ECD =60°∴△BDC 是等边三角形,CD=BD=BC =2∴AC =422=+OC OA ∴AD=AC-CD =4-2=2 ②如图2 若CD=CE 依题意知:∠ACO =30°,∠CDE =∠CED =15° ∵DE ⊥DB ,∠DBE=90° ∴∠ADB =180°-∠ADB -∠CDE =75° ∵∠BAC =∠OCA =30° ∴∠ABD =180°-∠ADB -∠BAC =75° ∴△ABD 是等腰三角形,AD=AB =32③:若DC=DE 则∠DEC =∠DCE=30°或∠DEC =∠DCE=150° ∴∠DEC >90°,不符合题意,舍去 综上所述:AD 的值为2或者32,△CDE 为等腰三角形vip 会员免费(3)①如图(1),过点D 作DG ⊥OC 于点G ,DH ⊥BC 于点H 。

相关文档
最新文档