毫米波有源相控阵射频前端集成制造技术
毫米波通信系统的设计与优化

多天线技术在毫米波通信系统中的应用:提高系统容量和可靠性 多天线技术优化方法:采用自适应天线阵列、波束成形等技术,提高信号传 输效率和抗干扰能力。
频谱资源分配: 合理分配频谱 资源,提高频 谱利用率
频谱感知技术: 实时监测频谱 使用情况,避 免干扰
频谱共享技术: 允许多个用户 共享同一频谱 资源,提高频 谱利用率
频谱管理策略: 制定合理的频 谱管理策略,
04
优化目标:提高能量效率, 降低能耗
方法一:采用多天线技术, 提高信号接收质量
方法二:采用信道编码技 术,提高数据传输可靠性
方法三:采用自适应调制 技术,根据信道条件调整 传输速率
导致信号衰减和失真。
集成与小型化:随着通信 技术的发展,对毫米波通 信系统的集成度和小型化 要求越来越高,需要克服
技术难题和挑战。
硬件实现:毫米波通信系 统的硬件设备要求较高, 需要高精度、低损耗的器 件和材料,增加了设计和
制造成本。
安全性:毫米波通信系统 的信号容易被截获和干扰,
需要采取有效的加密和抗 干扰措施来保障通信安全。
01
卫星通信:毫 米波通信系统 可以用于卫星 通信,实现地 球与卫星之间 的高速数据传 输。
02
军事通信:毫 米波通信系统 可以用于军事 通信,实现战 场信息的实时 传输。
03
无线网络:毫 米波通信系统 可以用于无线 网络,实现高 速、低延迟的 数据传输。
04
发射机结构:包括射频前端、 功率放大器、调制器等
测试等。
覆盖范围评估的结果可以 帮助优化系统设计,提高
系统性能。
覆盖范围评估还可以为网 络规划和优化提供依据, 提高网络性能和可靠性。
毫米波技术的国内外发展现状与趋势(已看)(DOC)

毫米波技术的国内外发展现状与趋势【主要整理与翻译自“mm-Wave Silicon Technology, 60GHz and Beyond, Ali M. Niknejad, Hossein Hashemi, Springer 2008”,以及部分网络资料,如有侵权请勿怪!】随着千兆比特流(Gb/s)点对点链接通信、大容量的无线局域网(WLAN)、短距离高速无线个人局域网(WPAN)和车载雷达等高速率宽频带通信应用的市场需求不断扩大,设计实现具有高集成度、高性能、低功耗和低成本的毫米波单片集成电路(MMIC)迫在眉睫。
毫米波可以广泛应用于军事雷达系统、射电天文学和太空以及短距离无线高速传输等领域。
采用GaAs 或InP基的毫米波频段的MMIC已经应用于军事上的雷达和卫星通信中。
由于GaAs和InP材料具有较高的电子迁移率和电阻率,因此电路可以获得较好的RF性能,但成本较高。
由于受到成本和产量的限制,毫米波产品还没有真正实现商业化。
作为成熟的工艺,Si基CMOS具有低成本、低功耗以及能与基带IC 模块的工艺相兼容等优点,但是与GaAs相比,其在高频性能和噪声性能方面并不具备优势。
然而,随着深亚微米和纳米工艺的日趋成熟,设计实现毫米波CMOS集成电路已经成为可能。
近年来,美、日、韩等国相继开放了无需授权使用的毫米波频段(北美和韩国57-64GHz,欧洲和日本59-66GHz),从而进一步刺激了对毫米波CMOS技术的研究。
可以预期,在今后几年里,毫米波CMOS 技术将会突飞猛进,成为设计毫米波MMIC的另一种有效的选择。
硅基毫米波的研究起始于2000年左右,同年Berkeley的无线研究中心专门设立了60GHz项目,但是当时很少有人认为硅技术能够应用于60GHz频段。
而时至今日,毫米波的研究已经从一项模糊的课题演变至今日的研究热点,引起了工业界与风险投资商的浓厚兴趣。
目前,该项研究已经拓展到了商业领域,NEC、三星、松下和LG等消费类电子厂商共同成立了WirelessHD联盟来推动60GHz技术在无压缩高清视频传输中的应用,并于2007年制定了相关协议白皮书。
毫米波雷达分类和技术方案

毫⽶波雷达分类和技术⽅案毫⽶波毫⽶波雷达雷达分类和技术⽅案分类和技术⽅案⼀.什么是毫⽶波?毫⽶波是⼀项可⽤于检测物体并提供物体的距离、速度和⾓度信息的传感技术。
这是⼀项⾮接触式技术,⼯作频谱范围为 30GHz ⾄300GHz 。
由于该技术使⽤较⼩的波长,因此可以提供亚毫⽶的距离精度,此外该技术还能够穿透塑料、墙板和⾐服等特定的材料,并且不受⾬、雾、灰尘和雪等环境条件的影响。
毫⽶波传感器使⽤毫⽶ (mm) 范围的波长发送信号。
这被视为电磁谱中的短波长,是该技术的优势之⼀。
处理毫⽶波信号所需的系统组件(如天线)的尺⼨确实很⼩。
短波长的另⼀项优势是⾼分辨率。
在 60-64GHz 和 76-81GHz 的频率下,将距离解析为波长的毫⽶波系统的精度可达到毫⽶级。
此外,在此频谱范围内运⾏使得毫⽶波传感器很有趣,原因是::能穿透材料:穿透塑料、墙板和⾐服。
⾼度定向:形成具有 1° 精度的紧凑波束。
与光类似:可以使⽤标准光学技术进⾏聚焦和转向。
较⼤的绝对带宽:能够区分两个靠近的物体。
⼆.接近感应解决⽅案发现很难选择合适的接近感应技术?阅读我们的信息图表,快速了解我们提供的每种技术(包括毫⽶波)的优缺点以及它如何帮助您的设计实现智能。
采⽤单芯⽚毫⽶波传感器实现前沿的智能⾃主发送信号可以采⽤不同类型的波形,包括脉冲、移频键控 (FSK)、连续波 (CW) 和调频连续波形 (FMCW)。
TI 毫⽶波传感器实现了快速FMCW,从⽽可以在密集场景中实现可靠运⾏、快速传感以及更低的模糊性。
快速 FMCW 还能够提供针对物体的距离和速度提供精确的测量,从⽽使毫⽶波传感器能够提供多维传感。
完整的毫⽶波雷达系统包括发送 (TX) 和接收 (RX) 射频 (RF) 组件,以及时钟等模拟组件和模数转换器 (ADC)、微控制器单元 (MCU) 和数字信号处理器 (DSP) 等数字组件。
这些问题解决了,并设计了集成这些组件且基于 CMOS 的毫⽶波雷达器件。
2.4ghz接收机射频前端的分析与设计

1 绪论1 绪论 1.1 课题背景及其意义 近年来,移动通信产业的快速发展带动了无线通信技术及其研究的发展,也使宽带无线接入技术得到了快速发展和应用,如无线局域网、蓝牙技术(Bluetooth)等。
同时,无论是电信市场的开放,还是通信与信息产业技术的快速发展,都在促使各种高速率的宽带接入不断涌现。
宽带接入凭借其建设速度快、运营成本低以及投资成本回收快等优点正越来越受电信运营商的青睐。
这也促进了宽带接入技术的迅速发展,如各种微波、无线通信领域的先进技术不断引入,各种宽带固定无线接入技术不断涌现。
宽带固定无线接入技术一方面充分利用过去未被开发或者应用还不广泛的频率资源,另一方面,凭借微波和有限通信领域成功运用的先进技术可以实现更大的频谱利用率等功能。
由于频谱资源是不可再生资源,所以有限的频谱资源是影响现代无线通信发展的一个重要因素。
为了促进无线局域通信的发展,各国都采取了相应的措施以保证正常通信并合理利用频谱资源。
1985年美国联邦通信委员会开放了9.02GHz、5.8 GHz及2.4 GHz三个ISM频段,允许在低发射功率下无照使用这些频段。
欧洲无线电委员会也于1991年公布了一组无线局域网建议频段:2.4 GHz、5.8 GHz、17.1 GHz、24 GHz和60.2 GHz ISM频段。
而我国无线电委员会也规定了2.4 GHz~2.5 GHz频段用于未来移动通信和无线接入应用。
这些规定的出台无疑大大地促进了无线通信的发展,如无线局域网、蓝牙、家用射频(Home RF)、通用分组无线业务、各频段的无线接入以及本地多点分配业务(LMDS)等主流无线通信系统正在蓬勃发展并被越来越广泛地运用。
而这些频段都处在较高的射频段,因此,对该频段无线通信接收机射频前端电路的研究也越来越重要。
接收机作为通信系统的重要部分,正面临着高工作频率、高集成度、低电压、低功耗以及低价格的挑战。
然而要提高接收机的集成度,关键是要提高接收机的模拟射频前端的集成度。
射频元器件制造技术的研究和应用

射频元器件制造技术的研究和应用射频(Radio-frequency,简称RF)元器件是指能够处理无线电频率信号的电子器件。
随着电信、航天、军事、医疗等领域的需求不断增加,射频元器件的制造技术也得到了越来越多的关注和研究。
本文将从两个方面分别说明射频元器件制造技术的研究和应用。
一、射频元器件制造技术的研究1. 射频元器件制造技术的分类射频元器件的种类繁多,不同的器件需要采用不同的制造技术。
一般而言,射频元器件的制造技术可以分为两类:微电子制造技术和微波器件制造技术。
微电子制造技术常用于制造低功率射频元器件,如功率放大器、低噪声放大器、混频器等。
该技术的主要特点是工艺稳定性好,可靠性高,制造成本低。
微电子射频元器件常采用CMOS工艺制造,其特点是功耗低,可集成性强,但限制其普及是发挥不了高功率功能。
微波器件制造技术常用于制造高功率射频元器件,如功率放大器、变频器等。
现代微波技术是在集成电路工艺和微波工艺的基础上发展而来,具有工艺复杂、特性精度高、衰减小、抗干扰能力强等特点。
2. 射频元器件制造的关键技术射频元器件制造过程中,有几个关键技术至关重要。
首先是精密工艺技术:射频元器件要求精密测量、精密刻蚀、精密封装等,这些工艺技术对于元器件的性能稳定性和可靠性至关重要。
其次是材料的选择和加工:材料对射频元器件的性能起到至关重要的作用,材料的物理和化学特性对器件的性能有很大的影响,而材料的加工技术能决定器件的精度和质量。
最后是射频电路设计:射频电路设计要求在手机、无线信号接收/发送等应用中有非常高的灵敏度和抗干扰能力,因此射频电路设计相对传统电路设计来说,是一项更加复杂和卓越的技术。
二、射频元器件制造技术的应用射频元器件广泛应用于电信、航天、医疗、军事等许多领域。
以下是一些射频元器件的应用实例:1. 天线射频变频器:广泛应用于无线通信系统中,主要用于信号变频和放大。
2. 射频开关:成像、雷达和卫星通信应用中的关键组件,比如抗雷达激光攻击和弹片侵袭。
成都电子科技大学物理电子学院团队介绍

成都电子科技大学物理电子学院团队介绍目录物电学院“超宽带电子学及应用”团队介绍 (2)物理电子学院“大功率毫米波行波管研究”团队介绍 (3)物理电子学院“高功率毫米波”团队介绍 (4)物理电子学院“毫米波电路与系统”团队介绍 (5)物理电子学院“计算电磁学及其应用”团队介绍 (6)物理电子学院“理论物理”团队介绍 (8)物理电子学院“理论与计算机模拟”团队介绍 (8)物理电子学院“强辐射实验室”团队介绍 (10)物理电子学院“太赫兹”团队介绍 (10)物理电子学院“微波仿真”团队介绍 (12)物理电子学院“微纳光学研究”团队介绍 (12)物理电子学院“先进材料制备及其物理性质研究”团队介绍 (13)物理电子学院“真空微电子及微波能应用研究”团队介绍 (15)注:团队排列先后按照团队名称首字母。
物电学院“超宽带电子学及应用”团队介绍一、团队简介超宽带电子学及应用现有教师机工程技术人员8名,其中,教授1名,副教授3名,讲师3名,工程技术人员1名;有博士学位的教师3名,正在攻读博士学位的教师2名;50-60岁教师2名,40-50岁教师3名,30-40岁教师2名。
超宽带电子学团队的主要研究方向包括:(1) 新型光控光电导器件研究激光与半导体相互作用理论与技术,新型光控光电导器件工作机理、研制工艺及应用。
(2) 电波传输与天线研究瞬态电磁脉冲传输理论与技术,超宽带天线理论与技术。
(3) 生物电磁学研究肿瘤电穿孔疗法的机理及应用,电穿孔效应在污水治理等领域的应用。
(4) 微波电路与系统研究高功率微波电路与系统在冲击雷达、探地雷达等领域中的应用。
二、团队导师介绍三、毕业学生就业去向团队培养的硕士研究生就业情况较好,主要去向包括国内一些研究所(如南京14所、成都29所、中国工程物理研究院等)和一些知名公司、企业(贝尔、华为、中兴等)。
物理电子学院“大功率毫米波行波管研究”团队介绍一、团队简介大功率毫米波行波管研究团队是经过三代人的艰苦努力自然形成的,现有成员50余人,其中教授/博导3人,副教授/研究员4人,高级工程师1人,讲师3人,在读博士13人,研究生30人。
射频前端的发展趋势

射频前端的发展趋势
射频前端的发展趋势包括以下几个方面:
1. 高频段的增长:随着5G网络的建设和发展,射频前端对高频段(例如毫米波段)的需求逐渐增加。
在高频段,射频前端需要具备更高的工作频率、更大的带宽和更低的功耗。
2. 集成度的提高:射频前端模块的集成度将不断提高,以满足设备越来越小型化的需求。
射频前端芯片将实现多个功能的集成,减小尺寸、降低功耗,并提高系统性能。
3. 较低的功耗需求:射频前端需要具备更低的功耗,以延长设备的续航时间。
技术创新将在射频前端领域发展,以降低功耗并提高能效。
4. 高度可重构性:随着业务需求的多样化,射频前端需要具备更高的可重构性以适应不同的频段和业务需求。
可重构射频前端将成为未来的发展趋势。
5. 射频前端与其他技术的整合:射频前端与其他技术的整合将不断深化,例如与集成电路、天线、射频MEMS等的结合,将进一步提高系统的性能和可靠性。
总之,射频前端的发展趋势将是高频段的增长、集成度的提高、功耗的降低、高度可重构性和与其他技术的整合。
这些发展趋势将推动射频前端技术在未来的应
用和市场中发展壮大。
相控阵和有源相控阵

相控阵和有源相控阵相控阵(Phased Array)是一种基于波束形成技术的天线阵列系统,它利用电子器件实现对发射和接收的信号进行相位和幅度的控制,从而实现对天线阵列辐射和接收波束方向的控制。
相控阵在通信、雷达、无线电导航等领域都有广泛应用。
有源相控阵是相控阵的一种特殊形式,它在阵列单元上集成了功率放大器,能够实现对信号的发射和接收。
相比于传统的被动相控阵,有源相控阵具有更高的灵活性和性能。
相控阵的核心是阵列单元,每个阵列单元都包含一个天线和一个相控器。
相控器通过调节天线的相位和幅度来控制阵列单元的辐射和接收方向。
相控阵可以通过改变相控器的控制信号来实现波束的形成和指向的控制。
相控阵的工作原理是利用阵列单元之间的相位差来形成波束。
当阵列单元的相位差为零时,阵列单元的辐射和接收方向就是波束的指向方向。
通过改变相位差,可以改变波束的指向,从而实现对目标的定向辐射和接收。
相控阵的优点之一是能够实现波束的电子扫描,即通过改变相控器的相位和幅度来改变波束的指向,从而实现对不同方向的目标的辐射和接收。
这种电子扫描比传统的机械扫描更快速、灵活。
相控阵还具有波束锁定和波束跟踪的能力,可以实时跟踪目标并对其进行定向辐射和接收。
有源相控阵在相控阵的基础上集成了功率放大器,具有更高的发射功率和接收灵敏度。
有源相控阵的功率放大器可以提供足够的发射功率,使得信号可以远距离传输,同时还可以提高接收信号的灵敏度,增强系统的接收能力。
有源相控阵在军事和民用领域都有广泛的应用。
在军事方面,有源相控阵可以用于雷达系统,实现对目标的高精度定位和跟踪;在民用方面,有源相控阵可以应用于通信系统和卫星导航系统,提供高速、高容量的通信和导航服务。
总之,相控阵和有源相控阵是一种基于波束形成技术的天线阵列系统,能够实现对发射和接收信号的相位和幅度的控制,从而实现对波束指向和形成的控制。
有源相控阵在相控阵的基础上集成了功率放大器,具有更高的灵活性和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 引ห้องสมุดไป่ตู้言
有源 相控 阵 射频前 端 是 毫米 波雷 达 、导 引 头等 装 备 的关键 部件 ,包 括 相控 阵天 线 阵 面 、T R组 件 、控 制 电
射 波长 ,结 果显 示 其 4位 P I N二极 管移 相 器插 损 4 . 5 d B,
阵元发射功 率 l O O mW。馈 电 网 络 的插 损 5 d B[ 1 J 。德 国 I MS T公 司开 发 的基 于 L T C C的 K a频段 8 x 8瓦 片式 智 能 天 线终 端 ,共 1 7层 ,其 中 1 1 层 集 成 了混 频 器 、滤波 器 以及 功 放 等 ,其 余 6层 主要 为 液体 冷 却系 统 ,封装 结 构 合 理 ,集 成制 造 方式 有 效四 。法 国 T h a l e s 公 司开 发 的 8 × 8数 字 接收 瓦 片模 块 ,包 括 电 源 、控 制 以及 光 学 接 口等
mo d ul e ,a nd mu l i—f t u nc io t n c hi p t e c hn o l o g y a r e k e y t e c h no l og i e s .As a s un u r m3 , ,s y s t e m n i p a c ka g e ,c omp r e h e n s i v e i n t e g r a io t n a nd mu l i— t u nc f io t n c h i p t e c hn o l o y g a l e he t ut f ur e de v do pme n t me n d o f i nt e ra g t e d ma nu f a c t u r i n g t e c h no l o g y. Ke y wo r d s :m i l l i me t e r a c iv t e ph me d a  ̄a y; R F ro f n t — — e nd; i nt e g r a i t on t e c h no l o y g
第2 6卷 第 6期 2 0 1 3年 1 1月 文章 编 号 : 1 0 0 2 — 6 6 7 3( 2 0 1 3 )0 6 — 0 1 I - 0 4
De v e l o p me n t& I n n o v a t i o n o f Ma c h i n e r y& E l e c t r i c a l P r o d u c t s
he t de v e l o pme n t n i he t wo ld,t r he t e c h n ol o y g of Th r e e —d i me n s i o n a l a s s e mbl y,a d va n c e d p a c k a g i n g ma t e r i a l s ,t he r ma l c i r c u i t de s i g n f o r TR
A b s t r a c t : T h e ma n u f a c t u r i n g t e c no h l o g y f o r R . F f r o n t — e n d o f Mi l l i me t e r — wa v e A c i t v e P h a s e d A r r a y i s h i 曲J y i n t e g r a t e d . C o mb i n e d w i t h
机 电 产 品 开 崖 与钏 新
Vo 1 . 2 6, No. 6
No v. , 201 3
毫米 波有源相控 阵射 频前端 集成 制造技术
谢 义 水
( 中 国电 子 科 技 集 团 公 司 第 十 研究 所 ,四川 成 都 6 1 0 0 3 6 )
摘
要 :毫米 波 有 源相控 阵射 频前 端 工 艺 集成 度 高 ,立体 组装 、 先进 封 装材 料 、T R . 组件 热 路设 计 和 芯 片 技 术是 实现 有 源相 控 阵射 频前 端集 成制 造 的 关键技 术 。综 合 国 内外研 究发展 现 状 , 系统封 装 、综 合 集 成 以及 多功 能芯 片技 术是 有 源相控 阵射频 前端 集成 制 造技 术的 未 来发 展趋 势。
组件 ,整个 厚 度 1 0 0 am.重 量 尚 不 足 8 r k g , 达 到 了 小 型
XI E Yi - S u
( T h e l O t h I n s t . o f Ch i n e s e F , . l e c t r o mc Te c h n o l o g y Co r p o r a i t o n,Ch e n g d u S i c h u a n 6 1 0 0 3 6 ,Ch i n a )
关键 词 :毫米 波有 源相 控 阵 ;射 频前 端 ;集 成制 造 中图 分类 号 :T N 9 5 文 献标 识码 :A d o i : l O . 3 9 6 9 / j . i s s n . 1 0 0 2 - 6 6 7 3 . 2 0 1 3 . 0 6 . 0 0 4
I n t e g r a t e d Ma n u f a c t u r i n g Te c h n o l o g y f o r RF F r o n t - e n d o f Mi l l i me t e r - wa v e Ac t i v e P h a s e d Ar r a y