气体放电管
气体放电管

选取原则
(1)气体放电管的直流放电电压必须高于线路正常工作时的最大电压,以免影响线路的正常工作。 (2)气体放电管的脉冲放电电压必须低于线路所能承受的最高瞬时电压值,才能保证在瞬间过电压时气体放 电管能比线路的响应速度更快,提前将过电压限制在安全值。 (3)气体放电管的保持电压应尽可能高,一旦过电压消失,气体放电管能及时熄灭,不影响线路的正常工作。 (4)接地线应尽量短,并且足够粗,以便于泄放瞬态大电流。 (5)若过电压持续时间过长,则气体放电管会产生很多热量。为防止因过热而造成被保护设备的损坏,应给 气体放电管配上失效保护卡装置。如今,有些气体放电管新产品中,就带失效保护卡。
气体放电管
一种间隙式的防雷保护元件
01 简介
03 结构 05 选取原则
目录
02 原理 04 技术参数
气体放电管指作过电压保护用的避雷管或天线开关管一类,管内有二个或多个电极,充有一定量的惰性气体。 气体放电管是一种间隙式的防雷保护元件,它用在通信系统的防雷保护。
简介
气体放电管是一种间隙型的防雷保护组件,它在通信系统的防雷保护中已获得了广泛的应用。放电管常用于 多级保护电路中的第一级或前两级,起泄放雷电瞬时过电流和限制过电压作用,由于放电管的极间绝缘电阻很大, 寄生电容很小,对高频信号线路的雷电防护有明确的优势。放电管保护特性的主要不足之处在于其放电时延较大, 动作灵敏度不够理想,对于波头上升陡度较大的雷电波难以有效地抑制,在电源系统的雷电防护中存在续流问 题。
常用的气体放电管有二极放电管和三极放电管,其封装外壳材料多为陶瓷,故称为陶瓷放电管。
原理
放电管的工作原理是气体间隙放电i当放电管两极之间施加一定电压时,便在极间产生不均匀电场:在此电场 作用下,管内气体开始游离,当外加电压增大到使极间场强超过气体的绝缘强度时,两极之间的间隙将放电击穿, 由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平,这种残压 一般很低,从而使得与放电管并联的电子设备免受过电压的损坏。
气体放电管型号

气体放电管型号
气体放电管是一种电子元件,它能够在低电压下通过气体产生一种带有放电特性的电流。
气体放电管广泛应用于气体分析、气体激光、光电控制和医疗器械等领域。
在不同的
应用场合中,需要选择不同种类和型号的气体放电管。
下面我们就介绍一些常见的气体放
电管型号及其特点。
1. 氦氖激光管
氦氖激光管(HeNe激光管)是一种常用的气体放电管,它是利用氦气和氖气混合放电产生的激光。
氦氖激光管可以产生稳定可靠的激光光束,其输出功率常常在几毫瓦到几十
毫瓦之间,可以用于制作测距仪、医疗器械和光学仪器等。
2. 氩离子激光管
氩离子激光管(Ar离子激光管)是一种利用氩气放电产生的激光,主要用于正交振荡器和泵浦激光器等方面。
氩离子激光管的输出功率通常在几十瓦到几百瓦之间,相对于氦
氖激光管来说,氩离子激光管产生的激光光束更稳定,光束质量也更高。
3. 氮化硅放电管
氮化硅放电管(Si3N4放电管)是一种利用氮化硅放电产生的冷等离子体,主要用于制备金属薄膜等方面。
氮化硅放电管具有良好的化学稳定性和高温稳定性,其放电过程中不
会产生高温和高压,可以使金属薄膜得到优良的质量和均匀性。
4. 二极管气体放电管
二极管气体放电管(DBD气体放电管)是一种利用空气或氮气放电产生的带电等离子体,主要用于空气净化、臭氧发生器和负离子发生器等器件。
二极管气体放电管具有低功耗、
可靠性高、容易集成等特点,可以应用于家居、医疗、工业等领域。
气体放电管作用

气体放电管作用
气体放电管的作用是什么?在电路中,气体放电管起到一个缓冲的作用,电路中有很多电子元件,如二极管、三极管等。
当电子元件工作时,他们之间会产生高频电流,产生的热量会使电子元件的内部温度上升,从而使电路出现故障。
当气体放电管的两端电压为零时,它会把高频电流泄放掉,这样就不会产生过高的温度,从而保护了电路中的元件。
气体放电管主要是用在交流220V的电源电压超过5V时,为了防止二极管击穿而采用的一种保护器件。
在我们日常生活中,也经常用到气体放电管,比如电视机、录像机、收音机等电子设备中。
当电子设备中发生短路时,气体放电管就会把电源中的浪涌电流泄放掉。
这样就不会产生过高的温度而损坏元件。
当我们在使用电视机时,有时会出现雪花屏或者图像模糊等现象,这是因为电视机发射管的栅极被氧化了,虽然也叫“栅极”,但它没有金属氧化层。
电视画面中出现雪花和模糊现象时,是因为显像管本身故障导致电压过高而损坏了显像管。
—— 1 —1 —。
485的气体放电管内部闪烁

485的气体放电管内部闪烁一、气体放电管概述气体放电管是一种用于高压、高功率电子设备中的保护元件。
其主要作用是在电压过高或电流过大时,通过放电通道将多余的能量释放出去,以保护设备免受损坏。
485气体放电管是其中一种类型,广泛应用于通信、电力、汽车等行业。
二、485气体放电管内部闪烁的原因1.电压过高:当电压超过气体放电管的额定电压时,气体内部的电子被激发,产生放电现象。
2.气压不稳定:气体放电管内部的气体压力不稳定,可能导致放电不均匀,从而引起闪烁。
3.杂质:气体放电管内部的杂质会在放电过程中产生热量,使气体温度升高,进而导致闪烁。
4.放电通道不均匀:放电通道不均匀会导致电流分布不均,使气体放电管内部出现闪烁现象。
三、485气体放电管的应用领域1.通信设备:485气体放电管可用于通信设备的电源保护,防止因电压过高、电流过大等原因导致的设备损坏。
2.电力系统:在电力系统中,485气体放电管可用于输电线路的过电压保护,保障电力系统的安全稳定运行。
3.汽车行业:485气体放电管可用于汽车电子设备的保护,如发动机控制模块、传感器等。
四、如何选择合适的485气体放电管1.额定电压:根据设备的电压等级选择合适的气体放电管,确保其额定电压大于设备的最高工作电压。
2.放电容量:选择与设备匹配的放电容量,以保证放电管在故障条件下能有效吸收能量。
3.响应时间:选择响应时间较快的气体放电管,以便在电压突变时迅速动作,保护设备。
4.外形尺寸:根据设备空间尺寸和安装要求选择合适尺寸的气体放电管。
五、485气体放电管的维护与注意事项1.安装时,确保放电管与设备连接可靠,接触良好。
2.定期检查放电管的工作状态,如发现异常,及时更换。
3.避免在高温、潮湿、尘埃多的环境下使用放电管。
4.不要拆卸和损坏放电管,以免影响其保护性能。
5.在维修设备时,务必切断电源,以免发生意外触电。
通过以上五点的介绍,我们对485气体放电管有了更深入的了解。
放电管工作原理

放电管工作原理
放电管(Discharge Tube)是一种含有气体的封闭玻璃管,其
工作原理基于气体离子化和放电过程。
放电管内通常充满了惰性气体、稀有气体或气体混合物,如氩气、氖气、氦气等。
以下是放电管的工作原理:
1. 构造:放电管通常由两个电极构成,即正极(阳极)和负极(阴极)。
两个电极之间被填充了适当压力下的气体。
2. 加电:当外部电源施加高压电势差时,电势差足够大以使得气体电离。
通过在电极之间施加适当的电压(通常为几百伏至数千伏),电场强度超过气体的击穿电场强度,导致气体分子电离形成带电离子。
3. 电离:当高电压施加到放电管上时,电子被加速到足够高的能量,以足够强的碰撞将部分气体分子电离,产生正离子和自由电子。
4. 电流流动:正离子和自由电子在电场作用下向着相反的电极运动,并且沿着管内形成电流。
电流的大小和特性取决于放电管的结构和气体种类。
5. 稳定工作区:在达到一定电压和电流的情况下,放电管进入稳定工作区。
在这个区域内,放电管可以维持一定程度的电流,并且电流的特性(如亮度、频率等)与管内气体的种类和压强有关。
放电管在不同的应用领域具有广泛的用途,如气体放电显示器、气体放电灯、气体激光器、气体探测器等。
通过调节电压、气体种类和压强等参数,可以实现不同的放电效果和应用功能。
气体放电管的使用技巧

气体放电管的使用技巧气体放电管是一种广泛应用于不同领域的技术装置。
它利用气体放电产生的光、热、声等性质,用于照明、通信、科研等各种用途。
然而,要正确并高效地使用气体放电管,掌握一些使用技巧是非常重要的。
本文将从选购、安装、维护几个方面,介绍气体放电管的使用技巧。
1. 选购气体放电管在选购气体放电管时,首先需要了解不同类型的放电管及其特点。
例如,氖灯、氙灯、氩氖(Ar/Ne)混合灯等常见的气体放电管,其光谱和亮度都有所不同。
因此,根据实际应用场景和需求,选择适合的放电管是至关重要的。
其次,考虑使用寿命和稳定性。
不同的气体放电管在使用寿命上可能有所差异,有些放电管可能在长时间使用后逐渐失去亮度或产生色偏。
因此,在选购时务必要仔细核对相关参数和说明。
另外,还要留意品牌和质量信誉,选择合适的供应商和品牌,以确保使用寿命和稳定性。
最后,还需要考虑购买成本与维护成本之间的平衡。
气体放电管在购买后,常常需要维护、更换一些零部件。
因此,在购买时要考虑到维护成本,并权衡总体的经济性。
2. 安装气体放电管正确的安装方法对于气体放电管的使用和效果都至关重要。
首先,安装时要确保放电管的连接部件牢固可靠,避免在使用过程中松动或掉落。
其次,要选择合适的安装位置和角度,以充分利用光线和热量的传播。
除此之外,在室内安装时需注意通风和散热,避免过热对放电管造成损害。
另外,对于需要长时间持续工作的放电管,考虑到散热问题,可以采取一些散热措施,如加装风扇或散热片,以保证放电管的温度在正常范围内。
3. 维护气体放电管维护对于气体放电管的寿命和稳定性至关重要。
首先,定期清洁放电管的表面是必要的,以确保其光线的传播效果。
可以使用一些清洁剂和柔软的布进行清洁,但要避免使用过多的水或液体接触放电管。
另外,注意定期更换放电管的零部件,如电极、滤光片等,以保持其正常工作状态。
根据使用情况和厂家的建议,也可以定期进行检查和维护,以确保放电管的性能和使用寿命。
气体放电管的残压

气体放电管的残压摘要:I.气体放电管简介A.气体放电管的定义B.气体放电管的种类II.气体放电管残压的概念A.残压的定义B.残压的影响因素III.气体放电管残压的测量方法A.直流残压测量B.交流残压测量IV.气体放电管残压的标准A.我国相关标准B.国际标准V.气体放电管残压的应用A.在通信设备中的应用B.在电力系统中的应用VI.结论正文:气体放电管是一种用于保护电路和设备的被动元件,当电压超过其额定电压时,放电管会导通,将过电压引向地线,从而保护电路和设备。
气体放电管的残压是指在放电管放电后,其两端电压降达到一定值时,放电管自动截止,这个电压值就是残压。
气体放电管的残压受多种因素影响,包括放电管的材料、结构、电压波形等。
在实际应用中,准确测量气体放电管的残压对于选择合适的放电管以及设计保护电路具有重要意义。
测量气体放电管残压的方法主要有直流残压测量和交流残压测量。
直流残压测量是通过施加一定的直流电压,测量放电管放电后的电压降;交流残压测量是通过施加一定的交流电压,测量放电管在一定时间内放电的次数。
我国对气体放电管残压有相应的标准,如GB/T 18802.12-2014《低压电涌保护器第12 部分:气体放电管》。
此外,国际上也有相关的标准,如IEC 61643-12。
气体放电管残压在通信设备和电力系统中有着广泛的应用。
在通信设备中,气体放电管用于保护发射和接收电路,防止雷电等突发电压损坏设备。
在电力系统中,气体放电管用于保护输电线路、变电站设备等,防止因操作失误或天气原因导致的过电压,保障电力系统的稳定运行。
总之,气体放电管残压是一个重要的参数,对于放电管的性能评价和应用选择具有重要意义。
气体放电管基础知识

2.1气体放电管2.1.1简介气体放电管是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电引燃机构,通过银铜焊料高温封接而制成的一种特殊的金属陶瓷结构的气体放电器件。
它主要用于瞬时过电压保护,也可作为点火开关。
在正常情况下,放电管因其特有的高阻抗(>1000MQ)及低电容(<2pF)特性,在它作为保护元件接入线路中时,对线路的正常工作几乎没有任何不利的影响。
当有害的瞬时过电压窜入时,放电管首先被击穿放电,其阻抗迅速下降,几乎呈短路状态,此时,放电管将有害的电流通过地线或回路泄放,同时将电压限制在较低的水平,消除了有害的瞬时过电压和过电流,从而保护了线路及元件。
当过电压消失后,放电管又迅速恢复到高阻抗状态,线路继续正常工作。
气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。
放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。
由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。
气体放电管的基本特点是:通流量容量大,绝缘电阻高,漏电流小。
但残压高,反应时间慢(WIOOns),动作电压精度较低,有续流现象。
Figure 1气体放电外观图2.1.2气体放电的伏安特性气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。
现以一个直流放电电压为150V的二极放电管为例,来说明放电管伏安特性的基本特征。
下图是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。
由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。
如图所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。
在A到B之间的这段伏安特性上,其斜率(即动态电阻du/di) 是负的,称为负阻区。
如果200V的直流电压源经1MQ的电阻加到放电管上,放电管即工作在此区间,这时的放电具有闪变特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放电管特性及选用
吴清海
放电管的分类
放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。
气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。
其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。
气体放电管同流量大,但动作电压较难控制。
半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。
半导体放电管的保护机理和应用方式和气体放电管相同。
半导体放电管动作电压控制精确,通流量较小。
放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。
当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。
气体放电管
气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。
放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。
在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。
其中,r表示一个正离子轰击阴极表面而
使阴极表面逸出的电子数,d为极间距离,a为电子的有效电离系数。
放电管放电后,管子从绝缘态变为导体,管内产生电流,随着电流的增加,放电管由辉光放电变为弧光放电,而此时管压降远远小于Vs,而且其值不随电流的变化而变化,此时放电管两端只要保持很低的电压即可维持其自持放电状态,显现一种稳态,从而达到吸收过压浪涌的作用。
当充气压力与极间距离的乘积为定值时,放电管有一最小击穿电压Vsm,它仅与阴极表面及气体种类有关,其值如下:
Vsm=Vi+(1/am)Log(1/r)
其中 Vi为气体的电离电位;am为在最小击穿电压下的有效电离系数;r为正离子打到阴极上产生的二次电子数。
放电管在机械结构一定的情况下,阴极发射材料和充入气体的成分及压力,是其特性是否一致性的决定性因素。
阴极发射材料是气体放电管的关键,我们一般要求它发射效率高,耐离子轰击能力强,溅射小,它的配方及处理工艺,不但对直流击穿电压有影响,也直接影响到放电管的其他各参数。
阴极发射材料涂复在电极两端,它有利于电子的发射,特别有利于初始电子的产生,由于不同的阴极材料具有不同的逸出功,因此,在其他条件相同的情况下,不同的阴极材料,其击穿电压是不同的,逸出功低,击穿电压低,逸出功高,击穿电压也高。
要求击穿电压稳定,就必须要求阴极材料具有稳定的逸出功。
气体放电管中填充的气体是影响放电管特性的另一主要因素,在制备过程中由于极限真空的影响,在放电管的填充气体中存在有其他杂质,在制作中应提高排气系统的极限真空度,电极材料要真空除气,采用高纯度的惰性气体,并保持气体压力的一致性。
半导体放电管
半导体放电管和气体放电管具有相同的外在特性和保护机理。
半导体过压保护的工作原理为:浪涌电压超过其转折电压V BO时放电管动作,起到旁路的作用,其中半导体放电管有一个返送装置,就像一个可自动切换的开关,其电流-电压(I-V)特性曲线如图1中所示;
图1 半导体放电管工作原理
图中I PP(非重复峰值脉冲电流):施加时不会损坏装置的特定波幅和波形的峰值脉冲电流的额定最大值;
I T (导通电流):在导通条件下通过装置的电流;
V T (导通电压):在特定电流I T的导通条件下跨过装置的电压;
I H (保持电流):将装置维持在导通状态所需的最小电流
I BO (转折电流):在转折电压V BO处的瞬态电流;
V BO(转折电压):当浪涌电压超过反向击穿电压V BR,即将返送时跨过装置的最大电压,此值是在特定的电压增长率和电流增长率下测量的;
V D (闭态电压):装置处在断开状态时两端的DC电压;
I D (泄漏电流):装置处在断开状态时流过的极小的电流。
半导体放电管返送装置在电压低于转折电压V BO时通常处于高阻状态。
在这个状态之前,流过装置的泄漏电流ID非常小,当电压超过V BO时,装置立刻返送而进入低阻状态,此时,跨过装置两端的电压为导通电压 V T(约为5伏),流过装置的电流为导通电流I T,放电管保持在低阻状态,直至通过装置的电流降至低于其保持电流I H。
放电管的应用
气体放电管和半导体放电管压敏电阻TVS二极管的特性比较如下表:
放电管主要应用在对电压浪涌冲击比较敏感的电子电路中,和保护电路并联使用,当有电压浪涌发生时,放电管动作,放电管动作后的低阻起到旁路和保护后级电子电路的作用,应用电路图如图2。
图2 放电管应用电路
因放电管属于开关型SPD,当放电管动作以后只需要极低的电压即可保持导通的状态,存在有浪涌后的续流问题。
所以在放电管在防浪涌应用中须有可靠的续流遮断器,保证浪涌过后电路能正常工作。
气体放电管在浪涌保护应用中大多和压敏电阻串联共同使用,起到响应速度快,通流量大的作用,同时压敏电阻起到浪涌过后的续流遮断的作用。
放电管在选用时候主要考虑到的参数有:放电管的动作电压,放电管的最大承受8/20 us 浪涌电流;还有就是元器件的安装和尺寸。
气体放电管和半导体放电管在外在特性参数相同时可以直接互换使用。
放电管使用中的注意事项
1,因放电管属于开关型SPD,在防浪涌应用中须有续流遮断装置,保证浪涌过后电路
能正常工作。
2,当瞬间通过较大的浪涌冲击电流时,放电管会出现爆裂现象,在应用中应注意。
放电管常用厂家和型号
气体放电管主要的厂家有EPCOS:电压从200V~5000V,浪涌电流在30KA以上,封装有直插和表面装贴;君耀公司:电压从75V~800V,浪涌电流在20KA以上,封装只有直插。
半导体放电管主要的厂家有Teccor:电压从5V~550V,电流50A~3000A;上海科特:电压230V,电流100A I pp。